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Abstract A new free-from deforma-
tion method is presented in this paper.
Object deformation is controlled by
a mesh of arbitrary topology, namely
a control mesh. The subdivision sur-
face determined by the control mesh
spans an intermediate deformation
space. The object is embedded into
the space by the nearest point rule.
When the shape of the control mesh
is changed, the object embedded in
the intermediate deformation space
will be deformed accordingly. Since
the subdivision surface has a mul-
tiresolution property, the proposed
deformation method naturally has a

multiresolution property. A technique
for generating control meshes is also
introduced in the paper. Compared
with previous deformation methods
with arbitrary topology control
tools, the proposed method has the
advantages of flexible control and
computational efficiency.
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1 Introduction

Space deformation is very useful in geometric modeling
and computer animation. It can be described concisely as
a mapping f from R3 to R3. A deformation method is
totally determined by the mapping f . Many space defor-
mation methods have been proposed in recent decades.
The criteria for assessing them include deformation DOF
(degree of freedom), global and local deformation ability,
storage and computational costs, simplicity, independence
of object representation etc. It is difficult to find a defor-
mation method to satisfy all of these criteria.

Free-form deformation (FFD) is a simple and intuitive
geometric modeling and animation tool [20]. However, it
is not easy to produce special deformation effects when
there are many control points in the 3D lattice. To over-
come the shortcomings of FFD, many new space deforma-
tion or extended FFD methods have been proposed. Bech-
mann sorts space deformation methods into four classes

according to the dimension of the deformation control
tools, e.g., 3D, 2D, 1D, and 0D deformation tools, in
which volumes, surfaces, curves, and points are adopted
as control tools, respectively. These space deformation
methods are suitable for different geometric modeling pur-
poses. For example, the methods with 3D, 2D, and 1D
tools are more suitable for global shape modification [9,
15, 20], while DOGME with an 0D tool is more suitable
for local deformation [2, 4]. Theoretically, the FFD with
3D tools is the most powerful one since the DOF of the
user’s manipulation is 3. The assertion can also be proved
by the fact that most of the leading commercial computer
animation software systems have integrated the FFD as
their modeling and animation components, for example
Maya, Softimage XSI, 3DS MAX etc.

The original FFD method adopts the parallelepidal
lattice as the initial control tool [20]. This is a control
point array of the tensor-product Bézier volume. In gen-
eral, this lattice cannot approximate the object shape well.
Thus it is inconvenient to achieve elaborate local defor-
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mation. Coquillart proposed an extended FFD method to
overcome the limitation [6]. She uses a nonparallelepidal
lattice, which is made of combined prismatic or nonpris-
matic control lattices. To keep the deformation space G1

smooth, continuity constraints must be imposed on the ad-
jacent Bézier volumes. Thus the user’s manipulation of
the control lattice is no longer free-form. Another solu-
tion to overcoming the rectangular topology limitation of
tensor-product volumes was proposed by MacCracken and
Joy [18]. They use a Catmull–Clark subdivision volume as
the intermediate deformation space, which is the volume
extension of the Catmull–Clark subdivision surface [5].
In their method, the topology of the control lattice can
be arbitrary. The control lattice can approximate the ob-
ject shape well. It makes the deformation more flexible.
Since the subdivision volume is defined by the recursive
refinement rules, the convergence problem of the refine-
ment procedure is also problematic. Thus the smoothness
of the deformation space is not guaranteed. Furthermore,
generation of the control lattice is also difficult. Finally,
the storage and computational costs are much higher than
with classical FFD methods.

The authors have proposed a FFD method that is con-
trolled by two B-spline surfaces [9]. The main advantage
of the method is computational efficiency. However, it
loses one DOF in the deformation control since its con-
trol tool is 2D parametric surfaces. Furthermore, as the
initial control surfaces are planar and have rectangular
topology, it is inconvenient to achieve an elaborate local
deformation such as a bump-shaped effect. Kobbelt et al.
proposed a multiresolution deformation method for mesh
objects [14]. The purpose of the method is to solve the
mesh-editing problem of how to transform the mesh modi-
fication from the coarse level to the fine level in the context
of a levels of detail (LOD) representation [13]. In their
method, a simple control mesh is defined. The mesh object
is parameterized on the control mesh through a displace-
ment map. During the deformation, the control mesh can
be edited while the displacement map remains unchanged
as geometric detail. Thus the user can change the rough
shape of the mesh while retaining its detail by pasting the
displacement map onto the deformed control mesh.

However, mesh parameterization is still problematic. It
is not trivial to find a control mesh that satisfies a one-to-
one displacement map. Secondly, the deformation space
is only position continuous G0 rather than smooth G1.
Kobayashi et al. proposed a similar method which adopted
a triangular mesh as the deformation control tool [12]. The
control mesh can be independent of the shape of the ob-
ject. In this method, each triangle determines a local affine
coordinate system. Each point of the object has its local
coordinates corresponding to each triangle. Then all of
the local coordinates are blended. In fact, this parameter-
ization is a 3D extension of Beier’s feature-based image
morphing method [3]. During the deformation, the local
coordinates are fixed. Since the method computes and

stores the local coordinates for each triangle, the storage
and computational costs are high.

Recently, several partial differential equation (PDE)-
based mesh-editing methods have been proposed, such as
Laplacian coordinate approaches [16, 22] and a Poisson
equation approach [24]. In these methods, the differential
attributes rather than the mesh geometry of the object are
edited directly. The deformed mesh can be reconstructed
from least-squares minimization of modified differential
attributes. However, the PDE-based methods are not inde-
pendent of the underlying geometric representation, and
their computational costs are high compared with those of
space deformation approaches.

Since control points and smooth basis functions are
defined, it is convenient to edit the shape of a B-spline
surface by moving its control points. The editing method-
ology cannot be extended directly to the polygonal objects
of arbitrary topology since there are no smooth basis func-
tions defined. If a set of smooth basis functions are im-
posed on the polygonal object automatically or manually,
a similar shape modification can be achieved. As we know,
the subdivision surface is a good candidate for such pur-
poses since it is the bridge between the discrete control
mesh and the smooth surface.

Inspired by the above observation, a new FFD method
is proposed in this paper where the control tool is a polyg-
onal mesh of arbitrary topology. The objects can be de-
formed or edited similarly to the editing subdivision sur-
face. It belongs to the class of space deformation methods
that have 2D control tools. The deformation space is
spanned by the subdivision surface of control mesh and
its normal. The object is embedded in the deformation
space by the nearest-point rule. Since the subdivision sur-
face intrinsically has a multiresolution property, the pro-
posed method also has a multiresolution property. Com-
pared with existing deformation methods with arbitrary
topology control tools, the proposed method has the ad-
vantages of having low storage and computational costs
and being intuitive and simple. The method is also inde-
pendent of the underlying object representation.

The rest of the paper is organized as follows. In Sect. 2
the method is introduced briefly. In Sect. 3 the method
is described in detail, which includes a definition of the
control mesh, attachment of an object to the subdivision
surface, deformation of the object, and multiresolution de-
formation control. In Sect. 4 experimental results are given
and the proposed method is discussed. Finally, conclu-
sions are drawn and some possible future research direc-
tions are given.

2 Overview of the proposed method

The proposed method is a new FFD controlled by a 2D
mesh of arbitrary topology. It can also be regarded as
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Fig. 1. Flowchart of proposed space deformation method

an extension of the deformation method controlled by
B-spline surfaces [9] or a deformation method controlled
by subdivision volume [18].The proposed method can be
described by the flowchart in Fig. 1.

First the control mesh, whose shape is similar to the
object shape in general, is generated interactively or auto-
matically. The control mesh should be regular, i.e., each
edge is shared by two faces except for the boundary ones.
Otherwise it cannot be used to generate the subdivision
surface. In our implementation, several interactive con-
trol mesh generation methods are given including prim-
itive meshes, revolution meshes, and sweeping meshes.
Complex control meshes can be obtained by combining
these simple ones via Boolean operations. The Reeb graph
algorithm is employed to generate a control mesh auto-
matically for a manifold mesh. Then the control mesh

Fig. 2. Deformation procedure

is refined by subdivision rules such as Doo–Sabin [7],
Loop [17], Modified Butterfly [8], etc. The subdivision
surface and its normal will span a 3D space—the defor-
mation space. For each point of the object there are cor-
responding local coordinates defined in the deformation
space. The local coordinates are determined by the nearest
point rule. During the deformation, the control mesh will
be deformed; then the deformation space is changed. Fi-
nally, the deformation is passed to the object embedded in
the deformation space. When the control mesh is coarse,
the deformation is in general global. To implement local
deformation or perform fine detail editing on the object,
the initial control mesh can be refined using subdivision
rules cited previously and the refined control mesh is used
as a new control mesh. Since the subdivision surface has a
local property, the influence region of each control point in
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the refined control mesh on the object will be smaller than
that of the original one. Thus multiresolution space defor-
mation is achieved. The procedure is illustrated in Fig. 2.
All of the above algorithms are integrated into a space de-
formation modeler.

3 Multiresolution free-form deformation with
subdivision surface of arbitrary topology

3.1 Generation of control mesh

As described above, if the control mesh shape approxi-
mates the object shape, the deformation control will be
intuitive and convenient. A good control mesh should be
generated according to the object shape and user intents.
However, it is difficult to generate meshes automatically
since the object representations are different. Even for
a mesh object, generation of the control mesh is difficult.
It seems that LOD representations of meshes can be used
to solve the problem [11], i.e., the coarse-resolution object
is used as a control mesh. However, most of the LOD al-
gorithms are applicable to manifold meshes. Furthermore,
the coarse-resolution models in the LOD representation
may be nonmanifold and cannot be used as the control
mesh. On the other hand, nonmanifold meshes are not
rare in geometric model warehouses. A classical one is the
famous Utah teapot model shown in Fig. 3, which is com-
posed of four disconnected components.

To make the deformation method practical, both inter-
active and automatic control mesh generation methods are

Fig. 3. Utah teapot: a nonmanifold mesh example

Fig. 4a–c. Some primitive control meshes. a Cylindrical mesh.
b Cubic mesh. c Spherical mesh

proposed. In addition, some polygonal mesh-editing op-
erations are supplied so that the deformation modeler can
generate the control mesh that more closely corresponds to
the object.

The simple control meshes are primitives such as
spheres, cubes, and cylinders. Their sizes can be deter-
mined by the object bounding box, and their segments can
be specified by the user. Figure 4 shows some examples of
meshes generated by our system.

In general, the primitive mesh is suitable for global de-
formation control. Elaborate and local deformation control
needs a complex control mesh. As with NURBS surface
generation methods, analogous methods are also proposed
for polygonal meshes. They are revolution meshes, sweep-
ing meshes, etc. The revolution mesh is generated by an
axial line and a generatrix polyline. The revolution sec-
tion is specified by the user. An example is shown in
Fig. 5a. A sweeping mesh is generated by a path poly-
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Fig. 6a–d. Generating control mesh via Reeb graph. a Reeb graph. b Raw control mesh. c Fine control mesh. d Deformation

their combinations. A useful tool is the one where a poly-
gon in the mesh moves along a specified direction such
as the polygon’s normal or an arbitrary direction. This
is called face extrusion. In this case, new polygons will
be generated in the control mesh. These editing tools can
make the control mesh shape approach the underlying ob-
ject shape closely. Figure 7 is an example of face extrusion
on a sphere.

Fig. 7a,b. Face extrusion operation. a Sphere. b Face extrusions on
sphere

These methods are suitable for manifold objects. For
nonmanifold objects such as the Utah teapot in Fig. 3, con-
trol meshes can be generated for each component and then
combined using a Boolean operation and triangulation.
The final result is a manifold control mesh. Figure 8 is an
example of a control mesh for the Utah teapot in Fig. 3.
The control mesh for the teapot cap and body is generated

Fig. 8. Complex control mesh via Boolean operation

by using a revolution mesh. Then the control mesh for the
spout is generated by extruding a polygon on the revolu-
tion mesh. The control mesh for the handle is a sweeping
mesh. Then the Boolean union of the modified revolution
mesh and sweeping mesh is the final control mesh for the
nonmanifold teapot model.

Using the methods described above we can generate
a control mesh that approximates the object shape. The
control mesh should be a manifold mesh that can be used
for generating the subdivision surface. The rough control
mesh is only suitable for global deformation. To achieve
a fine sculpture of the object, the control mesh should ap-
proximate the object well.

3.2 Generation of deformation space by subdivision
surface

To deform an object, the deformation space should be de-
fined first: it is associated with the control mesh. Like the
Bézier volume in the FFD [20], the deformation space in
the proposed method should also be smooth and its shape
can be determined by the control mesh. The heuristic solu-
tion is that the deformation space is spanned by the control
mesh and its normals. However, the generated deforma-
tion space is not smooth. This can be illustrated by a 2D
case in the upper part of Fig. 9. By using such a deforma-
tion space, the deformation of the sphere in Fig. 2 will not

Fig. 9. Deformation space illustration
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Fig. 10a,b. Deformation results by using nonsmooth and smooth
deformation space. a Result by nonsmooth deformation space.
b Result by smooth deformation space

be smooth, as is shown in Fig. 10(a). To generate a smooth
deformation space, the subdivision surface and its normals
are selected to span the deformation space. The 2D case is
illustrated in the lower part of Fig. 9.

The subdivision surface is the connection between the
discrete polygonal mesh and the smooth parametric sur-
face [25]. It is the limit surface generated through recur-
sively refining the original control mesh. The limit subdi-
vision surface is G1 smooth in general. However, it is diffi-
cult to find analytical expressions for the limit subdivision
surfaces in general. Thus the approximation is adopted in
practice. The nth subdivision result will approximate the
limit surface better than the (n −1)th subdivision result
with an increase in storage and computational costs. Thus
the compromise between surface smoothness and costs
should be balanced. In our implementation, the subdivi-
sion depth is chosen as 2 ∼ 4, which can achieve satisfying
results. The subdivision surface is then triangulated if ne-
cessary, e.g., for the Doo–Sabin subdivision surface.

The subdivision surface has many good geometric
properties that are similar to NURBS such as affine invari-

Fig. 11a–c. Subdivision results for a unit cube. a Doo–Sabin subdivision. b Loop subdivision. c Modified Butterfly subdivision

ance, local modification scheme, etc. If one vertex on the
control mesh is moved, only part of the subdivision sur-
face will be influenced. The deformation space spanned
also has a local modification property. Thus the proposed
deformation approach has both global and local defor-
mation capabilities. In addition, the subdivision surface
intrinsically has a LOD property. With the increase of sub-
division depth, the mesh resolution becomes finer. The
influence region on the subdivision surface of one vertex
in the refined mesh becomes smaller. Thus elaborate mod-
ification of the object can be achieved by modifying the
refined control mesh. Details will be given in Sect. 3.5.

For the same control mesh, different subdivision
schemes will generate different results. In fact, the pro-
posed deformation method is independent of the subdi-
vision method. All of the current subdivision schemes
can be adopted for generating the smooth deformation
space. In our system, three classical subdivision schemes
are implemented: Doo–Sabin, Loop, and Modified But-
terfly schemes, which are approximate and vertex split,
approximate and face split, and interpolated and face split
schemes, respectively. Figure 11 shows the subdivision
surfaces of a unit cube using the above three schemes.
Comparing the results in Fig. 11, we can draw the follow-
ing conclusions:

• The shrinkage of the Loop subdivision surface is the
most serious.

• There is no shrinkage in the Modified Butterfly sub-
division surface; however, it is not as fair as the other
results.

• The number of polygons in the Doo–Sabin subdivision
surface is small. Its shrinkage is moderate.

The influence regions on the subdivision surfaces by
modification of a single vertex are different for the three
subdivision methods. Figure 12 shows a comparison of the
local property of the Doo–Sabin, Loop, and Modified But-
terfly subdivision surfaces. The example is a spherelike
mesh that is subdivided twice. The gray region is the influ-
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Fig. 12a–c. Influence region on subdivision surface affected by moving a control point in the control mesh. a Doo–Sabin subdivision.
b Loop subdivision. c Modified Butterfly subdivision

ence region due to modification of a single vertex marked
as a dot. From the example we see that the local prop-
erty of the Modified Butterfly subdivision scheme is not as
good as the other schemes.

3.3 Parameterization: attaching an object on the
subdivision surface of the control mesh

After the control mesh and the deformation space are de-
fined, the object will be attached to the subdivision surface
of the control mesh by the nearest-point rule [10]. This is
called the object parameterization procedure in the defor-
mation space. The procedure is shown in Fig. 13. Let pi be
a vertex on the object. Point qi is the nearest point on the
subdivision surface corresponding to point pi . The trian-
gle �v1v2v3 in the subdivision surface contains point qi .
The unit vectors n1, n2, and n3 are the average normals of
the triangle vertices v1, v2, and v3. The barycentric coordi-
nates (uq, vq, 1−uq −vq) of point qi in the �v1v2v3 can
be computed using Eq. Eq. 1:

qi = uqv1 +vqv2 + (1−uq −vq)v3 . (1)

The approximate normal nq at point qi can be computed
by linearly interpolating the normals n1, n2, and n3:

nq = uqn1 +vqn2 + (1−uq −vq)n3 . (2)

Fig. 13. Parameterization by nearest-point rule

Thus an affine coordinate system (qi, Ui, Vi, Wi) is de-
fined at point qi as follows:
⎧
⎨

⎩

Ui = v2 −v1 ,

Vi = v3 −v1 ,

Wi = nq/‖nq‖ .

(3)

Point pi on the object can be represented or parameterized
in the affine coordinate system (qi, Ui, Vi, Wi) by solving
the following linear equation:

pi = qi +uUi +vVi +wWi . (4)

Following the above steps, each point pi on the ob-
ject is associated with a point qi on the subdivision sur-
face, the barycentric coordinates {uq, vq, (1 −uq −vq)},
and the local coordinates {u, v, w}. During deformation,
the two triples {uq, vq, (1−uq −vq)} and {u, v, w} remain
unchanged. They play roles similar to those of the local
coordinates in the FFD [20]. They embed the object in the
deformation space spanned by the subdivision surface and
its normal.

Analyzing the embedding procedures above we found
that the computational cost of finding the nearest point on
the subdivision surface was high in general. The nearest
point may be the vertex of the triangle in the subdivi-
sion surface or the point on the triangle in the subdivi-
sion surface. Obviously it is not an efficient solution to
traverse all vertices and triangles in the subdivision sur-
face. A uniform space subdivision method is adopted to
accelerate the embedding steps in our implementation.
First the bounding box of the object and control mesh
is subdivided uniformly along the coordinate axes. The
cell size is determined adaptively by the average edge
length of the control mesh and object. Then the vertex
of the subdivision surface is located in each cell. Finally,
a fast accept or reject decision is made according to the
cell’s neighbor relation. Details of the acceleration algo-
rithm are omitted here. Like the axial deformation [15],
ambiguity may occur while adopting the nearest-point
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rule, i.e., there may be two or more nearest points on
the subdivision as the corresponding points. This is a rare
case with our method and can be alleviated by consid-
ering the vertex neighbor information. In Sect. 4 the pa-
rameterization runtime statistics are given. It should be
noted that the embedding step is computed only once
for the given control mesh. Thus its computational time
will not influence the subsequent deformation interac-
tion.

3.4 Modification of the control mesh and object
deformation

The control mesh can be modified through traditional
mesh-editing methods, such as pulling the control points,
conducting the affine transformations, etc. However, the
topology of the control mesh remains unchanged. Object
deformation is achieved by transforming the modifica-
tion of the control mesh to the object, which is embed-
ded in the deformation space determined by the control
mesh.

The subdivision rule and the depth of the modified
control mesh are the same as those in Sect. 3.2. If the
subdivision surface is not triangular, it should be trian-
gulated as described in Sect. 3.3. Thus the triangulated
subdivision surface has the same topology as the initial
subdivision surface in Sect. 3.3. For point pi on the object,
its nearest point qi on the subdivision surface lies in the
triangle �v1v2v3. Let �v′

1v
′
2v

′
3 be the corresponding tri-

angle in the modified subdivision surface. The two triples
{uq, vq, (1 −uq −vq)} and {u, v, w}, which are the local
coordinates of point pi , are described in Sect. 3.3. The de-

Fig. 14. Flowchart of multiresolution de-
formation

Fig. 15a–d. Multiresolution deformation control, where red area on sphere is influence area by one control point in control mesh. a Initial
raw control mesh. b Deformed raw control mesh. c Refined control mesh in b. d Deformed fine control mesh

formation point p′
i can be calculated as follows: first, the

corresponding point q′
i of the nearest point qi on the modi-

fied triangle �v′
1v

′
2v

′
3 can be computed as

q′
i = uqv

′
1 +vqv′

2 + (1−uq −vq)v
′
3 . (5)

Let n′
1, n′

2, and n′
3 be the unit average normals at the modi-

fied triangle vertex v′
1, v′

2, and v′
3. Then, at point q′

i , the
normal n′

q can be computed as:

n′
q = uqn′

1 +vqn′
2 + (1−uq −vq)n′

3 . (6)

Thus the corresponding affine coordinate system (q′
i, U ′

i ,
V ′

i , W′
i ) at point q′

i is defined as:

⎧
⎨

⎩

U ′
i = v′

2 −v′
1 ,

V ′
i = v′

3 −v′
1 ,

W′
i = n′

q/‖n′
q‖ .

(7)

Finally, the deformation point p′
i corresponding to point

pi can be computed by the following formula:

p′
i = q′

i +uU ′
i +vV ′

i +wW′
i . (8)

From the above equations we find that the triples
{uq, vq, (1 − uq − vq)} and {u, v, w} remain unchanged
during the deformation. They serve to freeze the object in
the deformation space. Since the subdivision surface has
a local property, i.e., the modification of a single control
point in the control mesh will influence a finite region on
the subdivision surface, the deformation also has a local
property. The local property allows local update of the ob-
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Fig. 16a–k. Global and local deformations. a Original object. b Initial control mesh for global deformation. c Modified control mesh.
d Initial control mesh for local deformation. e Modified control mesh. f Global deformation using Doo–Sabin subdivision of c. g Global
deformation using Loop subdivision of c. h Global deformation using Modified Butterfly subdivision of c. i Local deformation using Doo–
Sabin subdivision of e. j Local deformation using Loop subdivision of e. k Local deformation using Modified Butterfly subdivision (e)

ject deformation rather than the global approach. Thus the
computational efficiency is high and performance of the
algorithm can be improved.

3.5 Multiresolution space deformation

Although the deformation method described above has a
local property inherited from the subdivision surface, the
local influence region is not arbitrarily small for the given
control mesh and the subdivision rule, i.e., the influence
region on the deformed object by moving a control point
in the control mesh will be fully determined by the con-
trol mesh and the subdivision rules. To achieve a more
elaborate sculpture ability, a multiresolution deformation
method is proposed (Fig. 14).

Since the subdivision surface has a multiresolution
property, the refined control mesh will have fine resolution

while its approximate shape will be similar to the original
one. If the refined control mesh is adopted as the control
mesh and the object is reattached to the subdivision sur-
face generated from the refined control mesh, the local
property of the deformation will be better than the original
control mesh. This is obvious since the refined control
mesh has the better local property.

In the implementation, we suggest that the object first
be deformed by the raw control mesh. This is a global de-
formation, in general. Then the refined control mesh is
used as the new control mesh. The globally deformed ob-
ject is reattached on the new control mesh to achieve fine
local deformation. This interactive procedure continues
until a satisfying deformation result is obtained. Figure 15
is an example of multiresolution deformation control for
a sphere, where the control surface is the Loop subdivision
surface.
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Subdivision method Subdivision depth Depth = 1 Depth = 2 Depth = 3 Depth = 4

Para-Time 0.275s 0.308s 0.430s 0.950sDoo–Sabin
Deform-Time 0.0153s 0.0173 s 0.0264s 0.0586s

Para-Time 0.219s 0.255s 0.402s 1.023sLoop
Deform-Time 0.0159 s 0.0198 s 0.0342 s 0.0973 s

Para-Time 0.219 s 0.256 s 0.397 s 1.012 sModified Butterfly
Deform-Time 0.0159 0.0202 s 0.0383 s 0.1114 s

Table 1. Runtime comparison among three
subdivision methods, where Para-Time is
the runtime for attaching the object to the
subdivision surface and Deform-Time is the
runtime for computing the deformed object

Fig. 17a–d. Deforming a ball as a bowl using Doo–Sabin subdivision scheme. a Control mesh. b Modified control mesh. c Object.
d Deformed object

4 Implementation results and discussion

All of the algorithms described above have been inte-
grated into a geometric deformation system. The system
has functions such as primitive control mesh generation,
sweeping and revolution control mesh generation, con-
trol mesh generation via a Reeb graph, mesh extrusion,
Boolean operation between control meshes, Doo–Sabin,
Loop, and Modified Butterfly subdivision surfaces, mul-
tiresolution deformation, etc. By choosing different reso-
lutions of the control mesh, global and local deformations
can be easily achieved. In general, global deformation is
achieved using the raw-resolution control mesh, and local
deformation can be achieved using the fine-resolution con-
trol mesh. Figure 16 gives examples of global and local
deformations of the dolphin model shown in Fig. 16a. In
the global deformation, the initial control mesh is a rectan-
gular box (Fig. 16b). The deformation operation is to bend
the dolphin’s body. The modified control mesh is shown in
Fig. 16c. Figure 16f–h presents the global deformation re-
sults using the Doo–Sabin, Loop, and Modified Butterfly
subdivision schemes, respectively. The local deformation
is controlled by an elaborate control mesh that approxi-
mates the dolphin’s shape well. The initial and modified
control meshes are shown in Fig. 16d and e, respectively.
We can see that three deformation results look similar ex-
cept for the lack of fairness produced by the Modified
Butterfly scheme. This is because the fairness of the inter-
polating Modified Butterfly subdivision scheme is not as
good as the other two approximating methods. The local
deformation is to extrude the dolphin’s rostrum and its

dorsal fin. Figure 16f–h presents the local deformation re-
sults using the Doo-Sabin, Loop, and Modified Butterfly
subdivision surfaces, respectively. The three local defor-
mation results look similar. After careful observation, we
find that the extruded dolphin’s rostrum by Loop subdi-
vision in Fig. 16j is shorter than the others. As with the
previous discussion, the shrinkage of the Loop subdivi-
sion scheme is the most serious of the three subdivision
schemes. It causes the small difference in the local defor-
mation results.

Table 1 gives the runtime statistics for the local defor-
mation examples in Fig. 16. The dolphin model contains
15,774 vertices. The control mesh contains 44 vertices and
48 faces for the Doo–Sabin subdivision surface and 44
vertices and 84 faces for the Loop and Modified Butterfly
subdivision surfaces since the control meshes are triangu-
lated for the latter two cases. The runtime data are col-
lected on a PC with a 1.7-GHz Pentium IV CPU, 256 MB
memory, and Windows 2000 OS. The runtime for attach-
ing the object to the subdivision surface is high in general.
As it is computed only once, it will not influence the sys-
tem response. We also can conclude from Table 1 that
the runtimes of the three deformation methods are of the
same order; they increase rapidly with an increase in sub-
division depth. For the models with tens of thousands of
vertices, the deformation runtime can fulfill the real-time
requirement under subdivision depth 4. According to our
experiments, the Doo–Sabin method is more efficient than
the others.

Figures 17 and 18 are deformation examples using
primitive control meshes: sphere and cube. Figure 19 is
an example of the generation of a complex control mesh
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Fig. 18a–d. Deforming a sheet as a tile using Doo–Sabin subdivision. a Control mesh. b Modified control mesh. c Object. d Deformed
object

Fig. 19a–d. Generating complex control mesh via Boolean operations for Utah teapot model. a Revolution mesh. b Face extrusion.
c Sweeping mesh. d Boolean union

Fig. 20a–f. Local and global deformations of Utah teapot by complex control mesh. a Initial control mesh. b Modifying handle locally.
c Modifying body and spout globally. d Initial object; e Local deformation controlled by b. f Global deformation controlled by c.

for the Utah teapot. The control mesh for the teapot
body is generated first by a revolution mesh. Then one
polygon is extruded as the spout. A sweeping mesh is
generated as the control mesh for the handle. Finally,
the Boolean union between the body and spout control
meshes is computed as the final control mesh for the
teapot. Figure 20 shows local and global deformations of
the Utah teapot controlled by the control mesh in Fig. 19.
Figure 21 shows multiresolution deformations of a horse
model. The control mesh is initially a sweeping mesh.
Then the vertices are edited so that the control mesh

approximates the horse shape better. Then several poly-
gons are extruded to generate the control mesh on the
legs. Figure 22 is an example of multiresolution deforma-
tion where the subdivision rule is the Loop subdivision.
From the example we can conclude that the influence re-
gion of a refined-resolution control mesh is smaller than
that of a raw-resolution control mesh. Thus elaborate
shape editing can be achieved using a refined subdivision
surface.

From the implementation results we see that our defor-
mation is smooth. Although only the approximated subdi-
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Fig. 21a–j. Multiresolution deformation of horse model by complex control meshes. a Horse model. b Raw control mesh. c Refining con-
trol mesh in b. d Modifying control mesh in c. e Horse head turn by d. f Refining control mesh in d. g Modifying control mesh in f;
h Horse leg raise by g. i Modifying control mesh in g. j Horse head raise by i

vision surface is used, the vertex normal for generating the
deformation space is the average one, rather than the trian-
gle’s normal. It is similar to a normal interpolation in the
Phong shading.

The proposed deformation is invariant under transla-
tion and rotation since the subdivision surface is affine
invariant. The assertion can be proved both in theory and
by implementation. However, it is not true under a shear-
ing transformation.

Since the object is attached to the control mesh using
the nearest-point rule, there is a simple relationship be-
tween the object and the control mesh. Thus undo/redo
operations can be realized by loading previous or later
control mesh configurations. However, it will take more
storage space to implement redo/undo operations.

Finally, we should point out that the proposed defor-
mation method is a good compromise between deforma-
tion capability and cost. Compared with space deforma-
tion methods controlled by the Catmull–Clark subdivision
volume [18], the proposed method has the advantages in
terms of computational and storage costs, which are O(n2)
to O(n3). However, the deformation capability is similar.
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Fig. 22a–h. Multiresolution deformation: red region in e is influence region of a yellow vertex in control mesh (a). The control mesh (c)
is the refined (one-time Loop subdivision) control mesh (b). Red region in g is influence region of yellow vertex in control mesh (c). Note
that influence region of refined control mesh is smaller than that of original control mesh. a Control mesh. b Modifying control mesh.
c Refining control mesh. d Modifying refined control mesh. e Object and influence region. f Raw resolution deformation. g Influence
region under refined control mesh. h Object deformation under refined control mesh

5 Conclusion

In this paper, a new multiresolution space deformation
method is proposed that is controlled by a mesh of arbi-
trary topology. The deformation space is spanned by the
subdivision surface and its normals. The object is attached
to the subdivision surface using the nearest-point rule.
Thus the control mesh deformation can be transformed to
the embedded object. Since the subdivision surface has
a multiresolution property intrinsically, the resulting de-
formation has multiresolution capabilities. Compared to
space deformation methods with 3D and 2D deformation
tools, the computational and storage costs of the pro-
posed method are O(n2), while it has 3D deformation
capabilities.

The authors believe that future research should be fo-
cused on two problems. The first is how to generate a con-
trol mesh automatically whose shape is similar to the
object shape, especially for complex objects and nonmani-
fold objects. The second problem is the sampling problem.
When multiresolution deformation is used to sculpture
fine detail on an object, it is necessary to resample the ob-
ject when the resolution of the approximate subdivision
surface is higher than that of the object.
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