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A convolution surface is an isosurface in
a scalar field defined by convolving a skele-
ton, comprising of points, curves, surfaces,
or volumes, with a potential function. While
convolution surfaces are attractive for mod-
eling natural phenomena and objects of com-
plex evolving topology, the analytical eval-
uation of integrals of convolution models
still poses some open problems. This paper
presents some novel analytical convolution
solutions for arcs and quadratic spline curves
with a varying kernel. In addition, we ap-
proximate planar higher-degree polynomial
spline curves by optimal arc splines within
a prescribed tolerance and sum the potential
functions of all the arc primitives to approxi-
mate the field for the entire spline curve.
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Field-based implicit surfaces have become an in-
creasingly popular modeling approach in recent
years (Bloomenthal et al. 1997; Cani-Gascuel and
Desbrun 1997). Their implicit representations, which
have smooth-blending properties, make them conve-
nient for modeling and animating smooth objects of
complex topology that may change over time. Ex-
amples of such objects are liquids, clouds, plants,
sea-life forms, and other organic shapes. In ad-
dition to object modeling, implicit surfaces have
gained acceptance in other applications, namely,
shape morphing (Turk and O’Brien 1999), surface
reconstruction (Savchenko et al. 1995), natural phe-
nomena simulation (Dobashi et al. 2000; Nishita et
al. 1997), and space deformation (Jin et al. 2000).
Since implicit surface can produce visually strik-
ing special effects, they have become a powerful
tool for animators to convert their imaginations into
reality.
Several types of implicit surfaces have appeared
in the literature. They include metaballs, (Wyvill
et al. 1989), distance surfaces (Bloomenthal and
Wyvil 1990), convolution surfaces (Bloomenthal and
Shoemake 1991), R-functions (Pasko et al. 1995),
variational surfaces (Savchenko et al. 1995) and
blob trees (Wyvill et al. 1999). The implicit func-
tions in metaballs (or blobs, soft objects) are de-
fined as a summation of point fields (Blanc and
Schlick 1995), which are widely implemented in
commercial modeling packages and are supported
by many public-domain ray-tracers. However, de-
spite their simplicity and popularity, point-based
field surfaces have some drawbacks: modeling flat
surfaces requires many closely packed metaballs
to avoid bumps; incompact representation for ob-
jects whose skeletons are not points, but curves.
Distance surface overcomes these drawbacks since
it allows higher dimensional skeletons (Bloomen-
thal and Wyvill 1990; Bloomenthal 1995). Unfortu-
nately, distance surfaces have their own weakness
in that when a skeleton is not convex, the surface
may have bulges, creases, and curvature discontinu-
ity (Bloomenthal 1997).
Convolution surface was proposed by Bloomenthal
and Shoemake (1991) as a natural and powerful
extension to point-based field surfaces. A convo-
lution surface is obtained by convolving a skele-
ton – which in principle can comprise points, line
segments, curves, polygons, or other geometri-
cal primitives – with a three-dimensional, low-
pass Gaussian filter kernel. This approach over-
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comes the drawback of bulges and curvature dis-
continuity in distance surfaces. Convolution sur-
faces offer many desirable advantages, such as in-
tuitive shape design, well-behaved blending and
fluid topology changes with the underlying skele-
ton. Thus, they provide a powerful and flexible
representation for modeling more complex objects
than point-based field surfaces. Computer vision
research has shown that any 3D object can be de-
fined entirely from a geometric skeleton (Attali and
Montanvert 1997), which implies that skeletons are
natural abstractions for 3D objects. Convolution
surfaces provide us with a means to control the
shape of an underlying modeling object by control-
ling its skeleton, just as controlling a parametric
surface by manipulating its control vertices. The
lower dimension of skeleton also means simpler
manipulation.
The mathematical formulations of convolution sur-
faces still pose some open problems because there
are limited choices of kernel functions and skele-
tal primitives that can be convolved together an-
alytically. By using the superposition property of
convolution surfaces and the separable property
of Gaussian filters, Bloomenthal and Shoemake
(1991) calculated field functions numerically based
on a point-sampling method, which unfortunately
implies potential under-sampling artifacts and stor-
age problems. McCormack and Sherstyuk (1998)
addressed this weakness by employing a new ker-
nel function, called Cauchy function, and were
able to deduce analytical solutions for several use-
ful primitives, namely, points, line segments, poly-
gons, arcs, and planes. Since many complex skele-
tons can be divided into these simpler primitives,
their work enables convolution surfaces of many
general shapes to be modeled accurately and
robustly.
The analytical models for line segments and arcs de-
rived by McCormack and Sherstyuk assume constant
weight distribution along a primitive, and there-
fore can only produce constant-radius convolution
surfaces from each primitive. Furthermore, no an-
alytical model for spline curves was proposed. We
note that, unlike varying-radius distance surfaces,
which can be produced by simply changing the
distance function in the field computation (Ferley
1997), varying-radius convolution surfaces cannot
be produced in the same way. Although implicit sur-
faces with varying radius based on curves and lines
can be easily faked by convolving a constant ker-

nel, and then multiplying the result by some scalar
function s(t), where t is the distance along the curve
(Sherstyuk 1999b) this approach has several weak-
nesses. Firstly, as the resultant surface is no longer
a true convolution surface, the superposition prop-
erty of convolution surfaces no longer holds. Sec-
ondly, when determining the t parameter value for
the scalar function s(t) for a curve skeleton, ambi-
guity may arise since there may be more than one
closest point to the skeleton for a space point. As a re-
sult, potential bulges and discontinuities may occur
in the resultant surfaces.
In this paper, we propose some new analytical con-
volution solutions for arc and quadratic spline skele-
ton with polynomial weight distributions. For planar,
higher-degree polynomial splines, such as Bezier,
B-spline, or NURBS curves, we approximate them
by GC1 optimal arc splines to within a prescribed
tolerance. The field for the entire curve can then be
computed by summing the potential function of all
arc primitives.
The remainder of this paper is organized as fol-
lows. The polynomial-weighted convolution surface
model is introduced in Sect. 2. The field function
computation for line segments, arcs, and quadratic
curves with polynomial weight distribution are dis-
cussed in Sects. 3, 4 and 5 respectively. Section 6
presents the field computation for planar higher-
degree polynomial spline curves via an optimal
arc-spline approximation. Section 7 describes imple-
mentation details and results. Conclusions and future
work are discussed in Sect. 8.

2 Polynomial-weighted convolution
surfaces

Let P be a space point, and let f be a potential func-
tion describing the field generated by a single point
Q in a curve skeleton g, then the field function of the
convolution surface for the curve skeleton is

F(P) =
∫
g

f(P − Q)ds. (1)

where ds is the differential arc length of the curve
skeleton, and f is called the convolution kernel func-
tion.
An important property that makes convolution sur-
faces suitable for modeling is superposition, which
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implies that summing the convolution surfaces gen-
erated by two separate skeletons yields the same
surface as that generated by their combined skele-
ton. This independent evaluation property ensures
that a skeleton can be arbitrarily subdivided into
sub-skeletons whose field functions can be sim-
ply summed to evaluate the final convolution
surface.
Several kernel functions have been adopted in im-
plicit surface modeling, such as Gaussian, inverse
linear, inverse squared, Cauchy, and polynomial
functions. Polynomial functions have been proven to
be very effective and are widely used because of their
small computation cost. For example, Nishimura
et al. use piecewise quadratic polynomials to de-
fine metaballs (Bloomenthal et al. 1997); Wyvill and
Wyvill (1999) introduced a six-degree polynomial
to model soft objects; quartic polynomials are used
in ray-tracing software such as Rayshade and POV-
Ray. In this paper, we adopt the quartic polynomial
as the kernel function because it leads to simplest
computation. The quartic polynomial kernel is de-
fined as

f(r2) =
{(

1− r2

R2

)2
, r ≤ R

0 r > R
, (2)

where R is the effective radius of the kernel.
The ability to design convolution surfaces of vary-
ing profiles from curve skeletons would facilitate the
modeling of many shapes. By using a cubic control
curve to define a polynomial distribution function
q(Q):R3 → R along a curve skeleton, and multiply-
ing the field function of a point Q in the skeleton by
q(Q), the convolution model in Eq. (1) now becomes
a weighted convolution surface model with polyno-
mial weight distribution:

F(P) =
∫
g

q(Q) f(P − Q)ds. (3)

We represent the cubic control curve as a one-
dimensional Bezier curve (Farin 1997), which is
an intuitive and computationally efficient tool for
shape control. Assuming that the control points are(

i
n , qi
)
, i = 0, 1, 2, 3, and based on the identity

n∑
i=0

i
n Bi,n(u) = u[(1−u)+u]n = u, where Bi,n(u)are

Bernstein polynomials, the curve can be rewrit-

Fig. 1. A cubic curve for controlling the polynomial func-
tion distribution

ten as q(u) =
n∑

i=0
qi Bi,n(u). Figure 1 shows our in-

terface for controlling the polynomial distribution
curve. The user can move the Bezier control vertices
q0, q1, q2, q3 vertically to adjust the curve.
With the kernel and the polynomial weight distribu-
tion function defined, for a one-dimensional skele-
ton with parameter t, we can now write the field of
a point P of interest as

F(P) =
∫ { 3∑

i=0

qi Bi,3(u(t))

}
f(r2(t))dt. (4)

By modulating the weight of the integration kernel
along the skeleton curve, a convolution surface with
varying radius can be achieved.

3 Field computation for line segments
with varying kernels

A line segment of length l with start point b and unit
direction n can be represented parametrically as

L(t) = b+ tn, 0 ≤ t ≤ l. (5)

Letting d = P − b, the squared distance from the
point P to a point on the line L(t) is given by

r2(t) = ‖d‖2 + t2 −2td ·n = (t −h)2 + (d2 −h2),
(6)

where d = ‖d‖ and h = d ·n.
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Fig. 2. Calculating the integration domain of a line seg-
ment

3.1 Effective-span computation for line
segments

The quartic polynomial is a finite-support piecewise
function; that is, for any point on a line segment
whose distance from P is larger than R, its field
contribution to P is zero. Thus, when calculating
the field at the point P, we must use a sphere cen-
tered at P with radius R to clip the line segment
to find the effective span that contributes to that
field (Fig. 2). We call this sphere the clipping sphere
of P.
The equation of the clipping sphere is

(X− P)2 = R2. (7)

Substituting the line segment equation (5) into the
equation for the clipping sphere (7) gives

(t −h)2 = R2 −d2 +h2. (8)

If the discriminant ∆ = R2 −d2 +h2 < 0, then there
is no intersection between the line segment L(t) and
the clipping sphere, thus the field contribution from
the line segment to P is zero, and there is no effective
span. If ∆ ≥ 0, then there are two intersection points,
which correspond to

t1 = h −
√

R2 −d2 +h2, t2 = h +
√

R2 −d2 +h2.
(9)

If t2 < 0 or t1 > l, then there is no valid intersec-
tion, and thus no effective span. Otherwise, the ef-
fective span is t ∈ [l1, l2], where l1 = max(0, t1) and
l2 = min(l, t2).

3.2 Field computation for line segments

If the effective span is [l1, l2], where l1 < l2, the field
of a point P is

Fline(P) =
l∫

0

{
3∑

i=0

qi Bi,3

(
t

l

)}
f(r2(t))dt

=
3∑

i=0


q′

i

1

R4

l2∫
l1

ti
(
t2 −2ht − (R2 −d2)

)2
dt




= q′
0F1

line(P)+q′
1Ft

line(P)+q′
2Ft2

line(P)+q′
3Ft3

line(P)

(10)

where q′
0 = q0, q′

1 = 1
l (−3q0 + 3q1), q′

2 = 1
l2
(3q0 −

6q1 + 3q2), q′
3 = 1

l3
(−q0 + 3q1 − 3q2 + q3), and

Fti

line(P), i = 0, 1, 2, 3, are the field functions of the
line segment L(t) with weight distribution ti defined
as

Fti

line(P) = 1

R4

l2∫
l1

ti
(
t2 −2ht − (R2 −d2)

)2
dt. (11)

By applying integration techniques, Fti

line(P)can be
calculated using the following formulae,

F1
line(P) = 1

R4

(
1

5

(
l5
2 − l5

1

)− (l4
2 − l4

1

)
h

+ 2

3

(
l3
2 − l3

1

)
(2h2 − (R2 −d2))+2

(
l2
2 − l2

1

)
×h(R2 −d2)+ (l2 − l1) (R2 −d2)2

)
, (12)

Ft
line(P) = 1

R4

(
1

6

(
l6
2 − l6

1

)− 4

5

(
l5
2 − l5

1

)
h

+ 1

2

(
l4
2 − l4

1

)
(2h2 − (R2 −d2))+ 4

3

(
l3
2 − l3

1

)
×h(R2 −d2)+ 1

2

(
l2
2 − l2

1

)
(R2 −d2)2

)
, (13)

Ft2

line(P) = 1

R4

(
1

7

(
l7
2 − l7

1

)− 2

3

(
l6
2 − l6

1

)
h

+ 2

5

(
l5
2 − l5

1

)
(2h2 − (R2 −d2))+ (l4

2 − l4
1

)
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×h(R2 −d2)+ 1

3

(
l3
2 − l3

1

)
(R2 −d2)2

)
, (14)

Ft3

line(P) = 1

R4

(
1

8

(
l8
2 − l8

1

)− 4

7

(
l7
2 − l7

1

)
h

+ 1

3

(
l6
2 − l6

1

)
(2h2 − (R2 −d2))+ 4

5

(
l5
2 − l5

1

)
×h(R2 −d2)+ 1

4

(
l4
2 − l4

1

)
(R2 −d2)2

)
. (15)

Due to the high-degree polynomial terms of l1 and
l2 in the field computation, numerical errors may be
large for long line segments. Hence, to improve the
stability of the algorithm, after computing the effec-
tive span, we reparameterize the line segment as

L′(t) = (b+ l1n)+ tn, 0 ≤ t ≤ l2 − l1. (16)

The weight distribution curve over the interval [l1, l2]
can be obtained by Bezier subdivision algorithm
(Farin 1997). Obviously, the effective span of L′(t)
for the point P is [0, l2 − l1]. Since l2 − l1 is indepen-
dent of the length of L(t), this field computation is
more stable.
Linear weight distribution is the most frequently
used in applications. Since Eqs. (14) and (15) are
zero in this case, the computation can be simplified to
only calculating Eqs. (12) and (13).

4 Field computation for arcs with
varying kernels

Let A(t) be an arc defined in the arc’s local z-aligned
coordinate system,

A(t) = (R0 cos t, R0 sin t, 0), ϕ1 ≤ t ≤ ϕ2 , (17)

where R0 is the radius of the arc, and ϕ1 and ϕ2 are
the starting and ending angles of the arc (Fig. 3). The
squared distance from P(x, y, z) to a point on the arc
is then given by

r2(t) = (x − R0 cos t)2 + (y − R0 sin t)2 + z2

= d2 + R2
0 −2R0(x cos t + y sin t). (18)

where d2 = x2 + y2 + z2.

Fig. 3. An arc primitive

4.1 Effective-span computation for arcs

As with line-segment primitives, before computing
the field of a point of interest P(x, y, z)contributed
by an arc, we use the clipping sphere to clip the arc to
obtain the effective span of the arc contributing to P.
Clearly, the intersection points between the clipping
sphere and the circle on which the arc lies satisfy the
following equations:


(x̃ − x)2 + (ỹ − y)2 + (z̃ − z)2 = R2

x̃2 + ỹ2 = R2
0

z̃ = 0
. (19)

Eliminating x̃ gives the following quadratic equation
with unknown ỹ:

4(x2 + y2)ỹ2 −4y(R2
0 +d2 − R2)ỹ

+ (R2
0 +d2 − R2)2 −4x2R2

0 = 0. (20)

The discriminant of Eq. (20) is

∆ = 16x2
(
4(x2 + y2)R2

0 − (R2
0 +d2 − R2)2

)
. (21)

If 4(x2 + y2)R2
0 < (R2

0 + d2 − R2)2, then there is no
intersection between the clipping sphere and the cir-
cle (see case a in Fig. 4) and thus no effective span;
otherwise there are two intersection points (see cases
b and c in Fig.4).
Singularity will arise if |x| < ε and |y| < ε, where
ε is a specified small number. In this case, if R2 −
z2 > R2

0, then the effective span is the entire param-
eter range [ϕ1, ϕ2] of the arc; otherwise there is no
effective span. If it is not a singular case, in order
to avoid the division-by-zero error and to reduce nu-
merical error, we use the following formulae to cal-
culate the intersection points (x̃1, ỹ1) and (x̃2, ỹ2) if
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Fig. 4. A clipping sphere, and three possible arcs with the
circles containing them

|x| ≥ |y|:

ỹ1 = 4y(R2
0 +d2 − R2)−√

∆

8(x2 + y2)
,

x̃1 = − y

x
ỹ1 + R2

0 +d2 − R2

2x
, (22)

ỹ2 = 4y(R2
0 +d2 − R2)+√

∆

8(x2 + y2)
,

x̃2 = − y

x
ỹ2 + R2

0 +d2 − R2

2x
. (23)

If |y| > |x|, we eliminate ỹ in Eq. (19). The new dis-
criminant is

∆ = 16y2
(
4(x2 + y2)R2

0 − (R2
0 +d2 − R2)2

)
,

and the intersection points are calculated using the
following formulae:

x̃1 = 4x(R2
0 +d2 − R2)−√

∆

8(x2 + y2)
,

ỹ1 = −x

y
x̃1 + R2

0 +d2 − R2

2y
, (24)

x̃2 = 4x(R2
0 +d2 − R2)+√

∆

8(x2 + y2)
,

ỹ2 = −x

y
x̃2 + R2

0 +d2 − R2

2y
. (25)

To find the effective parameter span of the arc after
obtaining the intersection points, we examine the in-

tersection between the clipping sphere and the plane
z̃ = 0, which produces a clipping circle. The radius
of the clipping circle is R1 = √

R2 − z2. Based on
the relative position of the clipping circle and the
arc A(t), their intersection may produce zero, one,
or two effective spans (Fig. 5). Let the two intersec-
tion points between the clipping circle and the circle
containing the arc be P1(x̃1, ỹ1) and P2(x̃2, ỹ2). We
determine which of the arcs OP1 P2 and OP2 P1 is in-
side the clipping circle (i.e., which one of them is the
intersection arc) and swap P1 and P2 if it is the latter:
If R1 < R0 (i.e., R2 − z2 < R2

0), then the angle sub-
tended by the intersection arc is less than π(Fig. 5a).
In this case, if OP1 × OP2 > 0, i.e., x̃1 ỹ2 − x̃2 ỹ1 > 0,
then OP1 P2 is the intersection arc; otherwise OP2 P1
is the intersection arc, so we swap P1 and P2.
If R1 ≥ R0, then P and O must lie on the same
side of the line P1 P2 (Fig. 5c). If P1 PP2 is counter-
clockwise, then OP1 P2 is the intersection arc; other-
wise OP2 P1 is the intersection arc, so we swap P1
and P2.
Now we have obtained the intersection arc OP1 P2.
The corresponding angles of P1 and P2 with respect
to the positive x-axis are

θ1 = atan2(ỹ1, x̃1), θ2 = atan2(ỹ2, x̃2).

If θ2 < θ1, we set θ2 = θ2 + 2π to ensure that θ2
is larger than θ1. In order to calculate the inter-
secting parameter interval(s) for the intersection arc
and arc A(t), we set ϕ = ϕ1 and subtract ϕ from
ϕ1, ϕ2, θ1, θ2, which give

ϕ1 = 0, ϕ2 = ϕ2 −ϕ, θ1 = θ1 −ϕ, θ2 = θ2 −ϕ.

If θ1 < −2π, we set θ1 = θ1 +2π and θ2 = θ2 +2π;
if θ1 > 2π, we set θ1 = θ1 −2π and θ2 = θ2 −2π. Af-
ter these transformations, we have θ1 ∈ (−2π, 2π),
θ2 ∈ (−2π, 2π), and ϕ2 ∈ (0, 2π], and the effective
span(s) can be computed according to the following
cases:

Case 1: θ1 > 0 and θ2 ≤ 2π (arc a in Fig. 6). If θ1 >
ϕ2, there is no effective span; otherwise there is one
effective span [θ1 +ϕ, min(ϕ2, θ2)+ϕ].

Case 2: θ1 > 0 and θ2 > 2π (arc b in Fig. 6). We sub-
divide the span [θ1, θ2] into two sub-spans [θ1, 2π]
and [0, θ2 −2π], and compute the intersecting inter-
vals between these two sub-spans and [ϕ1, ϕ2]. The
union of the two intersecting intervals is the effective
span.
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5a 5b 5c

6

Fig. 5a–c. Three possible cases of intersections between
the clipping circle of P and an arc with center O: a no
effective span; b one effective span; c two effective spans
Fig. 6. Computation of the effective spans

Case 3: θ1 < 0 and θ2 ≤ 0 (arc c in Fig. 6). The ef-
fective span is the intersecting interval between [θ1 +
2π, θ2 +2π] and [ϕ1, ϕ2].
Case 4: θ1 < 0 and θ2 > 0 (arc d in Fig. 6). We sub-
divide the span [θ1, θ2] into two sub-spans [0, θ2] and
[θ1 +2π, 2π], and compute the intersecting intervals
between these two sub-spans and [ϕ1, ϕ2]. The union
of the resulting two intersecting intervals is the effec-
tive span.

4.2 Field computation for arcs

Let ∆ϕ = ϕ2 −ϕ1, and let SpanNum be the number
of effective spans. If there is only one effective span,
let it be [θ1, θ2]; if there are two of them, let them be
[θ1, θ2] and [θ3, θ4]. The arc’s analytical field func-
tion for a point P(x, y, z) is then

Farc(P) =
ϕ2∫

ϕ1

{
3∑

i=0

qi Bi,3

(
t −ϕ1

∆ϕ

)}
f(r2(t))dt

=
SpanNum∑

j=1

3∑
i=0

{
q′

i

R0

R4

θ2 j∫
θ2 j−1

ti
(
R2 −d2 − R2

0

+2R0(x cos t + y sin t)
)2

dt

}

=
SpanNum∑

j=1

{
q′

0 jF
1
arc(P)+q′

1 jF
t
arc(P)

+q′
2 jF

t2

arc(P)+q′
3 jF

t3

arc(P)
}
,

(26)

where

q′
0 = 1

∆ϕ3

(
q0ϕ

3
2 −3q1ϕ1ϕ

2
2 +3q2ϕ

2
1ϕ2 −q3ϕ

3
1

)
,

q′
1 = 1

∆ϕ3

(−3q0ϕ
2
2 +3q1(ϕ

2
2 +2ϕ1ϕ2)

−3q2(ϕ
2
1 +2ϕ1ϕ2)+3q3ϕ

2
1

)
,
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q′
2 = 1

∆ϕ3

(
3q0ϕ2 −3q1(2ϕ2 +ϕ1)

+3q2(2ϕ1 +ϕ2)−3q3ϕ1
)
,

q′
3 = 1

∆ϕ3
(−q0 +3q1 −3q2 +q3),

and jFti

arc(P), i = 0, 1, 2, 3 are the field functions of
the arc A(t) for span j with weight distribution ti de-
fined as follows:

jF
ti

line(P) =
θ2 j∫

θ2 j−1

ti
(
R2 −d2 − R2

0 +2R0(x cos t + y sin t)
)2

dt.

(27)

By applying integration techniques, we obtain the
following formulae for computing the various field
functions for the first span [θ1, θ2], the corresponding
field functions can be calculated using the following
formulae by applying integration techniques,

R4

R0
F1

arc(P) = 2R2
0(x

2 + y2)(θ2 − θ1)

+ R2
0(x

2 − y2)(sin 2θ2 − sin 2θ1)

−2R2
0xy(cos 2θ2 − cos 2θ1)

+4R0(R2 −d2 − R2
0)(x(sin θ2 − sin θ1)

− y(cos θ2 − cos θ1))

+ (R2 −d2 − R2
0

)2
(θ2 − θ1), (28)

R4

R0
Ft

arc(P) = R2
0(x

2 + y2)(θ2
2 − θ2

1 )

+ R2
0(x

2 − y2)(θ2 sin 2θ2 − θ1 sin 2θ1)

+ 1

2
R2

0(x
2 − y2)(cos 2θ2 − cos 2θ1)

+ R2
0xy(sin 2θ2 − sin 2θ1)

−2R2
0xy(θ2 cos 2θ2 − θ1 cos 2θ1)

+4R0(R2 −d2 − R2
0)x(cos θ2 − cos θ1)

+4R0(R2 −d2 − R2
0)x(θ2 sin θ2 − θ1 sin θ1)

+4R0(R2 −d2 − R2
0)y(sin θ2 − sin θ1)

−4R0(R2 −d2 − R2
0)y(θ2 cos θ2 − θ1 cos θ1)

+ 1

2

(
R2 −d2 − R2

0

)2
(θ2

2 − θ2
1 ), (29)

R4

R0
Ft2

arc(P) = 2

3
R2

0(x
2 + y2)(θ3

2 − θ3
1 )

+ R2
0(x

2 − y2)(θ2 cos 2θ2 − θ1 cos 2θ1)

+ R2
0(x

2 − y2)

((
θ2

2 − 1

2

)
sin 2θ2

−
(

θ2
1 − 1

2

)
sin 2θ1

)
+2R2

0xy(θ2 sin 2θ2 − θ1 sin 2θ1)

− R2
0xy
(
(2θ2

2 −1) cos 2θ2 − (2θ2
1 −1) cos 2θ1

)
+8R0(R2 −d2 − R2

0)x(θ2 cos θ2 − θ1 cos θ1)

+4R0(R2 −d2 − R2
0)x
(
(θ2

2 −2) sin θ2

− (θ2
1 −2) sin θ1

)
+8R0(R2 −d2 − R2

0)y(θ2 sin θ2 − θ1 sin θ1)

−4R0(R2 −d2 − R2
0)y
(
(θ2

2 −2) cos θ2

− (θ2
1 −2) cos θ1

)
+ 1

3

(
R2 −d2 − R2

0

)2
(θ3

2 − θ3
1 ), (30)

R4

R0
Ft3

arc(P) = 1

2
R2

0(x
2 + y2)(θ4

2 − θ4
1 )

+ 3

4
R2

0(x
2 − y2)

(
(2θ2

2 −1) cos 2θ2

− (2θ2
1 −1) cos 2θ1

)
+ 1

2
R2

0(x
2 − y2)

(
(2θ3

2 −3θ2) sin 2θ2

− (2θ3
1 −3θ1) sin 2θ1

)
+ 3

2
R2

0xy
(
(2θ2

2 −1) sin 2θ2 − (2θ2
1 −1) sin 2θ1

)
− R2

0xy
(
(2θ3

2 −3θ2) cos 2θ2

− (2θ3
1 −3θ1) cos 2θ1

)
+4R0(R2 −d2 − R2

0)x
(
(3θ2

2 −6) cos θ2

− (3θ2
1 −6) cos θ1

)
+4R0(R2 −d2 − R2

0)x
(
(θ3

2 −6θ2) sin θ2

− (θ3
1 −6θ1) sin θ1

)
+4R0(R2 −d2 − R2

0)y
(
(3θ2

2 −6) sin θ2

− (3θ2
1 −6) sin θ1

)
−4R0(R2 −d2 − R2

0)y
(
(θ3

2 −6θ2) cos θ2

− (θ3
1 −6θ1) cos θ1

)
+ 1

4

(
R2 −d2 − R2

0

)2
(θ4

2 − θ4
1 ). (31)
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The field functions for the second span [θ3, θ4] can be
calculated similarly.
For an arbitrary arc in space, since the field is coor-
dinate system independent, we may first transform
a point P(x, y, z) into the arc’s local z-aligned co-
ordinate system and then perform the field
computation.

5 Field computation for quadratic
curves with varying kernels

Let the quadratic curve primitive be represented as

Q(t) = (x(t), y(t), z(t)) =
2∑

i=0

Qi t
i , 0 ≤ t ≤ 1 (32)

where Qi = (Qix , Qiy, Qiz) are vector coefficients.
Quadratic curves that are represented in other para-
metric schemes, such as Bezier or B-spline, can be
easily converted into this power basis form.

5.1 Effective-span computation for
quadratic curves

As with line segments and arcs, we first use the clip-
ping sphere of P to clip the quadratic curve to obtain
the effective span(s) of the curve. To compute the in-
tersection points between the clipping sphere and the
quadratic curve, we substitute Q(t) in Eq. (32) into
Eq. (7), the clipping sphere equation, to obtain

(Q2t2 + Q1t + Q0 − P)2 = R2. (33)

This equation can be converted to a quartic polyno-
mial

a4t4 +a3t3 +a2t2 +a1t +a0 = 0

where

a4 = Q2 · Q2, a3 = 2Q2 · Q1,

a2 = Q1 · Q1 +2Q2 · (Q0 − P),

a1 = 2Q1 · (Q0 − P),

a0 = (Q0 − P) · (Q0 − P)− R2.

For quartic polynomials, their real roots can be found
analytically (Schwarze 1990).
The effective spans of the quadratic curve can be
calculated according to the number of roots of the
quartic equation:

Fig. 7. A clipping sphere and three possible quadratic
curves

Case 1: The quartic equation has no real root (curve
a in Fig. 7). The effective span is empty and the field
of the point P is zero.
Case 2: The quartic equation has two real roots
(curve b in Fig. 7). Let the two roots be t̃1 and t̃2 in in-
creasing order. Let t1 = max(0, t̃1), t2 = min(1, t̃2),
then
if ( t2 < 0 or t1 > 1) there is no effective span;
else there is one effective span [t1, t2].
Case 3: The quartic equation has four real roots
(curve c in Fig. 7). Let the four roots be t̃1, t̃2, t̃3 andt̃4
in increasing order. Obviously, the intersecting spans
between the quadratic curve and the clipping sphere
are [t̃1, t̃2] and [t̃3, t̃4]. Let t1 = max(0, t̃1), t2 =
min(1, t̃2), t3 = max(0, t̃3), t4 = min(1, t̃4), then
if (t4 ≤ 0 or t1 ≥ 1), there is no effective span;
else if (t3 ≥ 1), there is one effective span [t1, t2];
else if (t2 ≤ 0), there is one effective span [t3, t4];
else there are two effective spans [t1, t2]and [t3, t4].

5.2 Field computation for quadratic curves

Now we have obtained the effective spans of a quadr-
atic curve contributing to a point P(x, y, z). Let the
effective span be [t1, t2] if there is only one such
span, and be [t1, t2]and [t3, t4] if there are two. The
squared distance from P to a point on Q(t) is

r2(t) = (Q2t2 + Q1t + Q0 − P)2

= a4t4 +a3t3 +a2t2 +a1t +a0 + R2. (34)

For a parametric curve, we must use the arc length as
the integral parameter in the convolution model so as
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to guarantee that each point on the curve contributes
a correct amount of field to the resulting integral. The
differential arc length of a quadratic curve is

ds =
√

(ẋ(t))2 + (ẏ(t))2 + (ż(t))2dt

=√b2

√(
t + b1

2b2

)2

+ 4b0b2 −b2
1

4b2
2

dt, (35)

where

b2 = 4
(
Q2

2x + Q2
2y + Q2

2z

)= 4a4,

b1 = 4
(
Q2x Q1x + Q2y Q1y + Q2z Q1z

)= 2a3,

b0 = (Q2
1x + Q2

1y + Q2
1z

)
.

Obviously,

4b0b2 −b2
1

= 16
(
Q2

2x + Q2
2y + Q2

2z

) (
Q2

1x + Q2
1y + Q2

1z

)
−16
(
Q2x Q1x + Q2y Q1y + Q2z Q1z

)2 ≥ 0

Let c0 = √
b2, c1 = − b1

2b2
, c = 4b0b2−b2

1

4b2
2

, then the dif-

ferential arc length can be rewritten as

ds = c0

√
(t − c1)

2 + cdt, c ≥ 0. (36)

The quadratic curve’s analytical field function for
a point P(x, y, z) is then

Fcurve(P) =
1∫

0

{
3∑

i=0

qi Bi,3(t)

}
f(r2(t))dt

=
SpanNum∑

j=1

3∑
i=0

{
q′

i

c0

R4

t2 j∫
t2 j−1

(
a4t4 +a3t3 +a2t2

+a1t +a0
)2√

(t − c1)
2 + cdt

}

=
SpanNum∑

j=1

{
q′

0 jF
1
curve(P)+q′

1 jF
t
curve(P)

+q′
2 jF

t2

curve(P)+q′
3 jF

t3

curve(P)

}
, (37)

where

q′
0 = q0, q′

1 = −3q0 +3q1,

q′
2 = 3q0 −6q1 +3q2, q′

3 = −q0 +3q1 −3q2 +q3,

and jFti

curve(P), i = 0, 1, 2, 3 are the field functions of
the quadratic curve for span j with weight distribu-
tion ti defined by

jF
ti

curve(P) = c0

R4

t2 j∫
t2 j−1

ti
(
a4t4 +a3t3 +a2t2

+a1t +a0
)2√

(t − c1)
2 + cdt. (38)

For the first effective span [t1, t2], we obtain

F1
curve(P) = c0

R4

t2∫
t1

(
a4t4 +a3t3 +a2t2 +a1t +a0

)2
×
√

(t − c1)
2 + cdt

= C
8∑

i=0

Ai


 t2−c1∫

t1−c1

ti
√

t2 + cdt


 , (39)

where

C = c0

R4
,

A8 = a2
4,

A7 = 0,

A6 = −12a2
4c2

1 +2a4a2,

A5 = −16a2
4c3

1 +4a4a2c1 +2a4a1,

A4 = 30a2
4c4

1 −10a4a2c2
1 +2a4a1c1 + (a2

2 +2a4a0),

A3 = 96a2
4c5

1 −40a4a2c3
1 −12a4a1c2

1

+4a2
2c1 +2a2a1,

A2 = 100a2
4c6

1 −50a4a2c4
1 −28a4a1c3

1

+6(a2
2 −2a4a0)c

2
1 +6a2a1c1 + (a2

1 +2a2a0),

A1 = 48a2
4c7

1 −28a4a2c5
1 −22a4a1c4

1

+4(a2
2 −4a4a0)c

3
1 +6a2a1c2

1

+2(a2
1 +2a2a0)c1 +2a1a0,

A0 = 9a2
4c8

1 −6a4a2c6
1 −6a4a1c5

1 + (a2
2 −6a4a0)c

4
1

+2a2a1c3
1 + (a2

1 +2a2a0)c
2
1 +2a1a0c1 +a2

0.

Let l1 = t1 − c, l2 = t2 − c, and

In =
l2∫

l1

tn
√

t2 + cdt,
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then we obtain

F1
curve(P) = C

8∑
i=0

Ai Ii, (40)

Ft
curve(P) = C

{
8∑

i=0

Ai Ii+1 + c1

8∑
i=0

Ai Ii

}
, (41)

Ft2

curve(P)dt = C

{
8∑

i=0

Ai Ii+2 +2c1

8∑
i=0

Ai Ii+1

+ c2
1

8∑
i=0

Ai Ii

}
, (42)

Ft3

curve(P) = C

{
8∑

i=0

Ai Ii+3 +3c1

8∑
i=0

Ai Ii+2

+3c2
1

8∑
i=0

Ai Ii+1 + c3
1

8∑
i=0

Ai Ii

}
. (43)

Let

J =
l2∫

l1

dt√
t2 + c

.

By applying integration techniques, we obtain

J = ln

∣∣∣∣∣∣
l2 +
√

l2
2 + c

l1 +
√

l2
1 + c

∣∣∣∣∣∣ , (44)

I0 =
l2∫

l1

√
t2 + cdt

= 1

2

(
l2

√
l2
2 + c− l1

√
l2
1 + c

)
+ 1

2
cJ, (45)

I1 =
l2∫

l1

t
√

t2 + cdt

= 1

3

[
(l2

2 + c)
√

l2
2 + c− (l2

1 + c)
√

l2
1 + c

]
. (46)

When n ≥ 2, since we have

In =
l2∫

l1

tn−2(t2 + c)
√

t2 + cdt − c

l2∫
l1

tn−2
√

t2 + cdt

= 1

n −1

l2∫
l1

(t2 + c)
√

t2 + cdtn−1 − cIn−2

= tn−1

n −1
(t2 + c)

√
t2 + c

∣∣∣∣ l2
l1

− 3

n −1

∫
tn
√

t2 + cdt − cIn−2

= 1

n −1

[
ln−1
2 (l2

2 + c)
√

l2
2 + c

−ln−1
1 (l2

1 + c)
√

l2
1 + c

]
− 3

n −1
In − cIn−2,

we obtain the following recursive formula:

In = 1

n +2

[
ln−1
2 (l2

2 + c)
√

l2
2 + c

−ln−1
1 (l2

1 + c)
√

l2
1 + c

]
− n −1

n +2
cIn−2.

(47)

From I0, I1, we can recursively calculate the values
of I2, I3, . . . , I11, and compute F1

curve(P), Ft
curve(P),

Ft2

curve(P) and Ft3

curve(P).
As the arc length function s(t) is not linear in t,
the presented model is not ideal. However, our ex-
periments show that this model still produces good
results.

5.3 Field computation for quadratic spline
curves

Without loss of generality, let the quadratic spline
curve be a B-spline curve. B-spline is a versatile tool
for designing curves with local control. It is a vector-
valued piecewise polynomial function of the form

C(t) =
L+1∑
i=0

Pi N
p
i (t), (48)

where L is the number of polynomial segments in the
curve, Pi are the control points, and N p

i are the nor-
malized B-spline basis function of degree p defined
over the knot vector {t0, t1, · · · , tL+2p} (Piegl 1999).
We assume a clamped knot vector so that the curve
interpolates the endpoints.
Since a quadratic B-spline curve is in fact a piece-
wise quadratic curve, we can convert each quadratic
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curve segment into the form in Eq. (32). We first
convert the B-spline curve into the Bezier form, and
then compute the following for each quadratic Bezier
curve with control points P0, P1, P2:

Q0 = (P0 −2P1 + P2), Q1 = 2(P1 − P0), Q2 = P0.

To compute the control points of the weight distribu-
tion curve for each quadratic curve segment, we need
the arc length at the junction points of the B-spline
curve. The arc length of a quadratic curve segment
is

l = c0

1.0−c1∫
−c1

√
t2 + cdt

= 1

2
c0

[
(1− c1)

√
(1− c1)2 + c+ c1

√
c2

1 + c

]

+ 1

2
c0c ln

∣∣∣∣∣∣
(1− c1)

√
(1− c1)

2 + c

−c1 +
√

c2
1 + c

∣∣∣∣∣∣ . (49)

Let li, i = 0, 1, · · · , L − 1 denote the arc length of
the ith quadratic segment, then the normalized cu-
mulative arc lengths are

u0 = 0, ui = ui−1 +

 i−1∑

j=0

l j

/
L−1∑
j=0

l j


 .

The control points of the weight distribution curve
for the ith quadratic segment can then be computed
using the Bezier subdivision algorithm over interval
[ui, ui+1].

6 Field computation for planar
higher-degree polynomial spline
curves

We have presented analytical convolution models
for line segments, arcs, and quadratic spline curves;
we now consider planar higher-degree polynomial
spline curves. Motivated by research on biarc curve
fitting, we employ an optimization approach to ap-
proximate any given planar polynomial parametric
curves, represented in Bezier, B-spline, NURBS,
or other parametric form, by an arc spline with

fewest segments and within a prescribed tolerance.
An arc spline is a GC1 continuous curve consisting
of arcs and line segments. Since the field function
of an arc and a line segment can be derived ana-
lytically, the field function for the arc spline can
be obtained by summing the potential functions of
all skeletal primitives. As most well-behaved pla-
nar spline curves can be approximated by only a few
arcs and line segments, our algorithm runs quite
efficiently.
To approximate a planar parametric spline by an
arc spline, we adopt the method proposed by Yang
(2000), which constructs an arc spline via optimiz-
ing a biarc spline that interpolates sample points on
the given curve. That is, his scheme consists of two
steps:
First, sample and interpolate the given spline curve
by biarcs to within a tolerance τ1, which is usually
smaller than 10−6 and is insignificant.
Iteratively merge consecutive arc splines into opti-
mal arc splines with fewest segments and within tol-
erance τ2. The total deviation is τ1 + τ2.
The method has several advantages over other ex-
isting arc spline approximation methods. Firstly,
it can approximate any type of planar paramet-
ric curves. Secondly, constructing the interpolat-
ing biarcs by sampling the original curve is effi-
cient and the error is controllable. Finally, the num-
ber of segments is smaller compared with other
existing methods and is proven to be near op-
timal within the prescribed tolerance. Since the
arc length of each arc can be calculated trivially,
the control points of the weight distribution curve
for each arc can be calculated by Bezier subdi-
vision algorithm using the normalized arc length
parameter.

7 Results

We have implemented our algorithm on a Pentium III
400E PC with 128 M main memory. When calculat-
ing the fields, optimizations have been performed to
reduce the amount of computation. For example, for
the arc primitive, after sin θ and cos θ have been cal-
culated, sin 2θ and cos 2θ are computed using only
multiplication, addition, and subtraction operations
based on trigonometric principles. We show some
rendered modeling examples to demonstrate the ca-
pabilities of our method. For uniform processing,
all the convolution models are first polygonized into
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8a 8b

9a

9b

Fig. 8a,b. Blending tori: a control skeleton; b convolution surface
Fig. 9a,b. Chinese old weapon “ji”: a control skeleton; b convolution surface

polygon meshes (Bloomenthal 1988; Bloomenthal
1994), which are then ray-traced.
Figures 8–10 are examples of convolution surfaces
using only line segments and arcs as the skeletons,
and Figs. 11–14 are examples that include quadratic
B-spline curves (in addition to line segments and
arcs) in their skeletons. The number of line segments,
arcs, and quadratic curve segments in these exam-
ples are listed in Table 1. The table also shows the
field computation cost for polygonizing each convo-
lution surface; specifically, it gives the time cost for
each type of skeletal primitive, the total field com-

putation time, and the number of triangles generated
in the implicitization. The results show that the field
for these skeletal primitives can be competitively
computed.
As an example of modeling with planar cubic spline
curves, we model the characters “CAD&CG” in
Fig. 15. The letter A uses four line segments, and the
other letters use planar cubic NURBS curves which
are converted to arc splines. The numbers of arcs
and line segments in the approximate arc splines are
shown in Table 2, together with the field computation
timing results.
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a b

Fig. 10a,b. The red-bird logo of Hong Kong University of Science and Technology: a control skeleton; b convolution surface

Model Lines Arcs Quadratic curves Total Number of
No. Time (s) No. Time (s) No. Time (s) time (s) Triangles

Blending tori – – 3 2.304 – – 2.304 132 144
“ji” weapon 5 0.922 2 1.223 – – 2.145 140 220

Red-bird logo – – 4 3.373 – – 3.373 132 888
Art shape – – 1 1.121 11 16.273 17.394 138 048

Gourd shape 2 1.422 – – 5 7.683 9.105 148 620
Dinosaur 15 1.741 – – 6 9.627 11.368 158 796
Enforcer 12 1.432 – – 10 15.639 17.071 156 132

Table 1. Field computa-
tion time for polygonizing
the convolution surfaces in
Figs. 8–14

8 Conclusions and future work

Curve-skeleton-based convolution surfaces are use-
ful for modeling many objects, such as plants, logo
characters, and sea-life forms. We have presented
some efficient analytical convolution surface mod-
els for arc and quadratic spline curves skeletons
with polynomial-weighted distributions. For pla-
nar higher-degree parametric spline curves, rather
than directly calculating the convolution surface in-
tegral for the curve skeleton, we construct an ap-
proximate GC1 arc spline by optimizing a biarc
spline that interpolates sample points on the given
curve. The field of each arc or line segment in the

arc spline can then be calculated analytically and
summed. Since non-uniform tapering effects and
varying-radius tubular shapes are prevalent in many
organic shapes, the exact evaluation of our model
provides an effective solution to model these shapes.
Although the span computation requires lots of ef-
forts for the finite-support polynomial kernel, our
study shows that such computation is worthwhile
as the closed-form solutions for arcs and quadratic
curves using varying infinite-support kernels seems
impossible.
Since curve skeletons are good abstractions for
a wide variety of natural forms, our method is con-
siderably general in its applicability. Experimen-
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11a 11b

12a 12b

13a 13b

Fig. 11a,b. An art shape: a control skeleton; b convolution surface
Fig. 12a,b. A gourd shape: a control skeleton; b convolution surface
Fig. 13a,b. A dinosaur: a control skeleton; b convolution surface

tal results demonstrate that our method can create
many aesthetically pleasing branching effects and
possesses potential applications in both geometric
modeling and computer animation.

The analytical solutions for higher-degree polyno-
mial curves without using arc spline approximation
still remains an open problem. Our attempts do not
produce closed-form solutions. To find an efficient
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14a 14b

15a

15b

Fig. 14a,b. An enforcer: a control skeleton; b convolution surface
Fig. 15a,b. Characters “CAD&CG”: a control skeleton; b convolution surface

Model Arc spline Lines Arcs Total Number of
approximation time (s) No. Time (s) No. Time (s) time (s) Triangles

C 0.102 – – 11 2.114 2.114 36 456
A – 4 0.420 – – 0.42 36 504
D 0.085 1 0.190 7 1.472 1.662 42 540
& 0.121 2 0.040 14 2.520 2.560 42 828
G 0.109 2 0.201 8 1.761 1.962 44 028

Table 2. Field computation
timing results for “CAD&CG”

method to approximate an arbitrary space polyno-
mial curve by an arc spline to within a prescribed
tolerance appears to be an interesting future research
direction. The possibility of using degree reduction
algorithms to convert high-degree B-spline curves
to quadratic B-spline curves within prescribed toler-

ance for field computation may be another interest-
ing alternative.
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