
General Constrained Deformations Based on Generalized Metaballs

Xiaogang Jin✞, Y. F. Li✝ & Qunsheng Peng✞

✞State Key Lab of CAD&CG, Zhejiang University, Hangzhou, 310027
E-mail:zucad@public.hz.zj.cn

✝Department of Manufacturing Engineering and Engineering Management,
City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, HongKong

Abstract
Space deformation is an important tool in computer
animation and shape design. In this paper we propose a
new local deformation model based on generalized
metaballs. The user specifies a series of constraints,
which can be made up of points, lines, surfaces and
volumes, their effective radii and maximum
displacements, the deformation model creates a
generalized metaball for each constraint. Each
generalized metaball is associated with a potential
function centered on the constraint, the potential function
drops from 1 on the constraint to 0 on the effective radius.
This deformation model operates on the local space and
is independent of the underlining representation of the
object to be deformed. The deformation can be finely
controlled by adjusting the parameters of the generalized
metaballs. We also present some extensions and the
extended deformation model to include scale and rotation
constraints. Experiments show that this deformation
model is efficient and intuitive. It can deal with various
constraints, which is difficult for traditional deformation
model.
Keywords: Computer animation, Metaballs, Implicit
surface, Constrained deformation.

1. Introduction

 Efficient and intuitive methods for three-dimensional
shape deformations play an important role in both
geometric modeling and computer animation. Although
the shape of an object can be finely controlled by
interactively adjusting the positions of its vertices or
control vertices, to most users, this manipulation is tedious
and time-consuming. In this decade, two efficient
techniques, namely physically based modeling and spatial
deformation, have been proposed to solve the problem.
 Physically based modeling technique produces very
realistic deformations of the elastic objects by solving
complex differential equations [1,2,3,4]. After the users
specify the physical attributes (such as mass, friction,

external forces, etc.) of the objects, the technique
automatically generates the deformations and motions of
the objects without any interaction. Although the
technique is very powerful, it suffers from some
drawbacks. Firstly, the technique involves a large amount
of computation, it cannot be used as a real time interactive
design tool. Secondly, the deformations produced by this
technique are environment dependent. Finally, as there is
no interaction during the simulation, it is very difficult to
control the deformations of the objects. These
disadvantages greatly limit the application of the
technique in geometric modeling and computer animation.
 The idea behind the spatial deformation techniques is to
deform the whole space in which the objects are
embedded instead of directly manipulating the vertices or
control vertices of these objects. The first spatial
deformation model was proposed by Barr [5]. According
to Barr’s method the transformation matrix is no longer
constant but a function depending on the position of the
individual points to which the transformation is applied.
Obviously, Barr’s model is a global approach hence
difficult to deform the objects arbitrarily. The most
popular spatial deformation technique is the free-form
deformation (FFD) technique developed by Sederberg and
Parry [6]. FFD is typically conducted by embedding an
object to be deformed into a parametric space of a
trivariate Bezier volume whose control points are
organized as a lattice, the deformation of the object is
obtained by moving the control points of the trivariate
Bezier volumes. There have been many variant versions of
FFD. Coquillart et al extended the FFD technique
allowing composite lattices beside parallelepiped [7].
Similar techniques based on B-spline volumes or rational
Bezier volumes were also proposed by other authors [8,9].
MacCraken et al developed a new FFD technique, in
which the control points of the lattice can be arrayed in
arbitrary topology [10]. Wyvill et al present a warping
method for CSG/Implicit models [11].
 Although FFD based methods can achieve a very
variety of deformations, the user is forced to define some
control points around the space to be deformed and then
move these control points. This indirect interface may be

unnatural for some applications. Hsu et al addressed this
problem and proposed a direct interface that involves
solving a complex equation system [12], but its cost is
expensive. Borrel and Bechmann developed a general
deformation model in which the deformation is defined by
some user-specified point displacement constraints [13].
The desired deformation is obtained by selecting a
solution obeying the constraints. Nevertheless, the shape
of the resulting deformation in this method is not strongly
correlated with the constraints except the constraints are
satisfied. To overcome this problem, Borrel and
Rappoport introduced a local deformation method which
they term Simple Constrained Deformation (Scodef) [14].
In Scodef , the user defines some constraint points, each
of which is associated with a user-defined displacement
and an effective radius. The displacement of any point to
be deformed is the blend of the local B-spline basis
functions determined by these constraint points. Note that
the deformation achieved by Scodef is both local and
intuitive and the constrained points can be directly located
on the boundary surface of the object to be deformed. To
extend the flexibility of the local deformation, however,
deformation models based on line, surface, and volume
constraints are desired. Borrel and Rappoport pointed out
that their model could not be generalized to deal with
these kinds of constraints.
 Motivated by the metaball technique, in this paper, we
propose an innovative constrained deformation model
based on the special potential function distribution of
generalized metaballs. In our method, constraints are
generalized to include point constraints, line constraints,
surface constraints and volume constraints. The user need
only define a set of constraints with desired displacements
and an effective radius associated with each constraint. A
generalized metaball is then set up at each constraint with
a local potential function centered at the constraint falling
to zero for points beyond the effective radius. The
displacement of any point within the metaballs is a blend
of these generalized metaballs. This deformation model
produces a local deformation and is independent of
representation of the underlying objects to be deformed.
The constraints generate some “bumps” shapes over the
space based on the type of constraint and its associated
potential function, and they influence the final shape of
the deformed object directly. The location and height of a
bump are defined by a constraint and its influence space is
determined by the constraint’s effective radius. This
method is very intuitive as the user can easily predict the
deformed shape according to the constraints. For most
constraints the computations required by the technique
can be done very efficiently and the deformations can be
implemented in real-time on current workstations.

2. Constrained Local Deformation Based on
Generalized Metaballs

 Metaball modeling is regarded as a flexible technique
for implicit surface modeling. It is very convenient for
designing closed surfaces and provides simple solutions
for creating blends, ramifications and advanced human
character design [15, 16, 17, 18, 19, 20, 21]. A good
introduction of metaball modeling and implicit surface can
be found in [22]. According to the basic formulation
proposed by Blinn and Nishimura [15,16], a free-form
surface is defined as an isosurface of a scalar field which
is generated from some field generating points. The field
value at any point is determined by the distance to the
generating points. The parameters available for each
metaball include the position of the generating point, the
potential function etc.
 Later Bloomenthal et al extended the original idea to
include other complex sources such as lines, surfaces and
volumes [20,21], which are termed as skeletons. The
skeleton-based model provides an intuitive way to define
the desired shapes with implicit surfaces. Let C be the
skeleton,),,(zyxP be a point in 3D space,),(CPr be the

minimal distance from),,(zyxP to the individual points

),,(wvuQ on the skeleton C :

QPCPr
CQ

−=
∈

inf),((1)

Then the potential function associated with the skeleton
C can be defined as the composition of a potential
function),(Rrf which maps ℜ to ℜ and a distance

function),(CPr which maps 3ℜ to ℜ [23]:

),(),()),,((CPrRrfRCPrF �= (2)

where R is a specified distance called effective radius.
Euclidean space is often adopted as the distance space for
calculating),(CPr and

222)()()(inf),(wzvyuxCPr
CQ

−+−+−=
∈

The field functions used for implicit surface modeling
include Blinn’s exponential function, Nishimura’s
piecewise quadric polynomial, Murakami’s degree four
polynomial and Wyvill’s degree six polynomial[24]. In
this paper, we adopt Wyvill’s degree six polynomial as the
finite potential function because this function blends well
and can avoid the calculation of square root:







>

≤≤+−+−=
Rr

Rr
R

r

R

r

R

r
Rrf

 , 0

0 , 1)(
9

22
)(

9

17
)(

9

4
),(

246

(3)
 We extend the usage of metaball modeling to local
space deformation. The field value of any point of an
object is now defined as the weight of displacement from
its original position. By interactively specifying the

constraints and their effective radii, we can achieve
various deformation effects. The constraints can either be
points, lines, surfaces or volumes.
 Let C be a constraint skeleton, R be the effective
radius, and S be the corresponding distance surface:

{ }RCPrSzyxPS =∈=),(|),,((4)

We define tuple),(, RrfSM = as a generalized

metaball based on the skeleton C .
 A general constrained deformation model based on
generalized metaballs can then be defined as follows. Let

),,(zyxP = be a point in 3ℜ , 33:)(ℜ→ℜPDeform be

a deformation function which maps P to)(PDeform .

Let iC be a constraint which is made up of points, lines,

surfaces and volumes, iD∆ be its displacement, iR be the

effective radius of iC . Then the deformation function

effected by constraint iC is defined as:

)),,(()(ii RCPrFPPDeform iD∆+= (5)

Deformation model (5) has the following nice properties.
For iCP ∈∀ , we have

ii DD ∆+=∆+= PRFPPDeform i),0()((6)

If the distance from P to constraint iC is lager than R ,

we have
PRRFPPDeform ii =∆+=),()(iD (7)

Therefore, deformation function)(PDeform yields a

local deformation which satisfies the constraint precisely
in the constraint iC , and does not affect the points outside

the effective radius of the constraint.
 The above model can be easily extended to deal with
multiple constraints. The deformation function for n
constraints is defined as:

∑
=

∆+=
n

i

ii RCPrFPPDeform
1

)),,(()(iD (8)

 The “bumps” generated by the constraints are blended
by the potential function. By adjusting the constraints and
their effective radii, the required deformation can be
satisfied. Careful study shows that one constraint may
sometimes impose deformation effect on other constraints
although this does not prevent the application of the
model. We say two constraints are disjoint if neither
generalized metaball intersect the other constraint’s
skeleton. A set of constraints is disjoint if they are
pairwise disjoint. Therefore for a disjoint set of
constraints deformation model (8) can satisfy all the
constraints. Model (8) has the following intuitive
meaning: The displacement of point P is the average of
the displacements of the constraints weighted by their
corresponding potential functions.

3. The Computation of Generalized
Metaballs

 From Formula (1) we can see that the key for
calculating the deformation function lies in the
computation of distance function),(iCPr . If iC is a

point constraint,),(iCPr is just the distance from point P

to iC i.e. ii CPCPr −=),(. When iC is a line

segment, a piece of surface, or a volume, the involved
computations become complex. In the followings, we give
the computation methods for some typical cases.
 Line Segment Constraint: Let iC be a line segment

determined by its end points),,(0000 zyxP = and

),,(1111 zyxP = , its length is l . We first transform this line

segment into 10

~~
PP on the x axis by a transformation

matrix T , where)0,0,0(
~

0 =P)0,0,(
~

1 lP = . For any point

P we apply the same transformation T and obtain

)~,~,~(
~

zyxP = . As distance function is independent of the

coordinate system,

)
~~

,
~

():,(1010 PPPrPPCPr i =

l

iR iR iR

Figure 1. The corresponding generalized
metaball of a line segment

That is, the distance from P to iC is just the distance

from P
~

 to 10

~~
PP , therefore










>++−

≤≤+
<++

=

lxzylx

lxzy

xzyx

PPPr
~ ,~~)~(

~0 ,~~

0~ ,~~~

)
~~

,
~

(
222

22

222

10

In order to reduce the computation time, 10

~~
PP and

transformation T can be precomputed. As the potential

function f is a function of 2r , the square root

computation can be eliminated by computing)
~~

,
~

(10
2 PPPr

instead of r. The corresponding generalized metaball of a
line segment is a cylinder with two hemispheres in both
ends as illustrated in Figure 1. If the constraint iC is a

line, the computation becomes much simpler as),(iCPr

is just the distance from P to the line. The corresponding
generalized metaball of a line is a cylinder whose radius
and height are iR and ∞ respectively.

 Polyline Constraint: Let constraint iC be a polyline

defined by nPPPP �210 . For any line segment

),,2,1(1 niPP ii �=− , we can obtain),(1 ii PPPr − by the line

segment constraint method as described above. The
distance between any space point P and iC is the

minimum of the obtained distances:
{ }),(min):,(1

],1[
210 ii

ni
ni PPPrPPPPCPr −∈

=�

p~

O

A

B
x

y

z

θ

Figure 2. Distance calculation for a circle line

CR

iR

O

Figure 3. Generalized metaball for a circle line

 Circle Line Constraint: Let iC be a circle line whose

radius is CR . We first transform the circle line onto the

xz plane by transformation matrix T , and its center is
transformed into the origin. For any point P , we apply

the same transformation matrix and obtain)~,~,~(
~

zyxP = .

From Figure 2 we know CROB = , 222 ~~~~
zyxPO ++= ,

thus
2222222 ~~2~~~),(zxRzyxRCPr CCi +−+++=

Its corresponding metaball is a torus whose major radius
equals iC RR + and minor radius equals iC RR − as

illustrated in Figure 3.
 n Degree Bezier Curve Constraint: Let iC be a

Bezier curve)(uR of degree n. The minimal distance

from a space point P to iC either lies in its end points, or

lies in the points satisfying the equation:
0)())((=•− uu uRRP

This equation can be converted into a Bezier curve of
degree 12 −n , then its roots can be solved by Bezier
Clipping [24,25,26]. The value of the distance function is
the minimum of them. It is easy to know the
corresponding metaball is a generalized cylinder.
 Disk Constraint: Let iC be a disk whose radius is CR .

We first calculate the distance 1r from space point

),,(zyxP = to the plane where the disk lies (See Figure

4). If the perpendicular point of P lies within the disk,

1),(rCPr i = ; otherwise we calculate the distance 2r from

P to the circle line, and set),min(),(21 rrCPr i = . The

shape of the corresponding generalized metaball of a disk
is shown in Figure 5.

CR

P

1r

Figure 4. Disk constraint

Figure 5. The generalized metaball for a disk

 Planar Polygon Constraint: Let iC be a planar

polygon 0210 PPPPP n� , the plane equation it lies is

0=+++ DCzByAx . Then the distance 1r from a space

point P to the plane is

Figure 6. The generalized metaball for a square

222
1

CBA

DCzByAx
r

++

+++
=

If the perpendicular point of point P lies in the polygon,

1),(rCPr i = ; otherwise we calculate the distance 2r from

P to the polyline 0210 PPPPP n� , and set

),min(),(21 rrCPr i = . Figure 6 shows the shape of the

generalized metaball for a square.

CR
iR O

Figure 7. The generalized metaball for a sphere

 Sphere Constraint: Let iC be a sphere whose radius is

CR , its center is),,(CCC zyxO . Then the distance from

space point P to the sphere is

CCCCi RzzyyxxCPr −−+−+−= 222)()()(),(

The cross section for its corresponding metaball is shown
in Figure 7.

O x

y

z

CR h

Figure 8. Cylinder constraint

Figure 9. The outer surface of the generalized
metaball for a cylinder constraint

 Cylinder Constraint: Let iC be a cylinder whose

radius is CR and whose height is h . We first transform

the cylinder so that its bottom surface lies on the xz plane
and its center line coincides with z axis (See Figure 8). By
applying the transformation T to the space point P we

obtain)~,~,~(
~

zyxP = , then),(iCPr can be easily

determined. The shape of outer surface of the generalized
metaball for a cylinder constraint is shown in Figure 9.
 Sphere Volume Constraint: Let iC be a sphere

volume, whose radius is CR and its center is

),,(CCC zyxO . Obviously),(iCPr equals 0 if a space

point P lies inside the sphere volume, otherwise the
distance from P to the sphere volume is:

CCCCi RzzyyxxCPr −−+−+−= 222)()()(),(

Figure 10. Generalized metaball for a cube
volume

 Cube Volume Constraint: Let iC be a cubic volume,

whose edge length is 2a. We first apply transformation T
so that the center of the cube is located at the origin, and
its edges are parallel to the three coordinate axes. After
applying the same transformation T to a space point P we

get)~,~,~(
~

zyxP = . If azayax ≤≤≤ ~&&~&&~ ,

),(iCPr equals to 0 as p~ lies in the cube. Otherwise the

point nearest to p~ either lies in the faces of the cube (6

cases), or lies in the edges of the cube (12 cases), or lies
in the vertices of the cube(8 cases) according the position
of the p~ . For each case the distance can be calculated

easily. The shape of the generalized metaball for a cube
voulme is shown in Figure 10.
 For those constraints which are not listed above, their
distance functions can be calculated similarly. When the
deformation is applied to an object, the distance function

),(iCPr must be calculated for any vertex P of the object,

and thus the efficiency of the calculation of the distance
function determines that of the algorithm. Note that the
above deformation model is a local one. If the distance
from a point on the candidate object to the constraint is
larger than the effective radius of the constraint, this point
is not affected. Thus we can adopt the bounding boxes or
bounding spheres of the generalized metaballs to improve
the efficiency of the algorithm. If a point does not lie in
the bounding boxes of the generalized metaball of a
constraint, this constraint has no effect to the point and
hence its distance function calculation can be eliminated.

4. Extensions

 In the local deformation model discussed above we
adopt Wyvill’s degree six polynomial as the potential
function, this polynomial is in fact a special Bezier
function. If we generalize the potential function to a
Bezier function, more control freedoms can be obtained.
The extended potential function can be rewritten as:

]1,0[),()(),(
0

∈== ∑
=

ttBgtBezRrf k
j

m

j

jii

where 0g is restricted to 1, mg is restricted to 0,

iRrt = , 1=t if iRr > . A user can use the remaining

1−m control points { } 1

1

−
=

m

jjg to control the distribution of

the potential function. The purpose of the restrictions on

0g and mg is to make metaballs blend well. Of course

these restrictions can be removed if there is only one
constraint or a user does not has the well-blend
requirement. Moreover, we can deform both the constraint
and its local area with distances less than UR to a user-

defined displacement iD∆ by adjusting the Bezier

function as:







>
−
−

≤
=

U
U

U
i

U

i Rr
RR

Rr
Bez

Rr
Rrf),(

 ,1
),(

The shape of the reformed Bezier function is shown in
Figure 11.

1

0 iRUR

f

Figure 11. Reformed Bezier function

 In the previous discussions the distance space we
adopted is Euclidean distance, which is also known as
spherical distance. The disadvantage of adopting such a
distance is that the appearance of the resultant
deformation is always of “bubble-shape”. To weaken this
drawback, other non-Euclidean metric spaces can be used
to extend the variety of shapes of deformation. If we adopt
n-norm metric space which is a straightforward
generalization of the Euclidean distance,

nnnn

n

zzyyxx

zyxzyxPPr

/1
121212

22211121

)(

)),,(),,,((),(

−+−+−=

=

a lot of interesting results can be obtained. If n equals 2
we obtain familiar Euclidean distance, the corresponding
metaball for a point constraint is a sphere. If n equals 1,

)(

)),,(),,,((),(

121212

122211121

zzyyxx

zyxzyxPPr

−+−+−=

=

we obtain Manhattan distance, the corresponding metaball
for a point constraint is a double pyramid. At the limit
case (∞→n),

),,max(

)),,(),,,((),(

121212

22211121

zzyyxx

zyxzyxPPr

−−−=

=
∞

One obtains city block distance, the corresponding
metaball for a point constraint is a cube. By adopting
different metric space, the influence range can be quite
different. Therefore we can take n as an animatable
parameter to adjust the influence range of a constraint.
But adopting n as an animatable parameter usually
requires some costly computations in),(21 PPr , an

alternative way is to linearly interpolate the Euclidean
distance, the Manhattan distance and the city block
distance to calculate other form distance in metric space.
For example, if we calculate the distance in the following
way:

∞
+−)),,(),,,(()),,(),,,(()1(2221112222111 zyxzyxuzyxzyxu

Then, by animating parameter u from 0 to 1, the influence
range will change from a sphere to a cube, but the
involved computation is quite small. Blanc even presented
some anisotropy distance functions such as axial distance
function and radial distance function to control precisely

the shape of the resulting soft object [23]. Introducing
them into our deformation model can bring even more
precise control of the influence range.
 In the previous discussion, each space coordinate is
treated symmetrically. To accommodate even finer control
of the influence range, we can treat each space coordinate
differently so as to provide asymmetric, nonisotropic
space deformation around the constraints. For example, let

iziyix RRR ,, be the effective radii for zyx ,, axes

respectively,),,(iziyixi CCCC = ,),,(zyxP = , by

redefining iRr in formula (3) as:

2

2

2

2

2

2)()()(

iz

iz

iy

iy

ix

ix

R

Cz

R

Cy

R

Cx −+
−

+−

We can achieve asymmetric space deformation.

5. Deformation by Local Rotation and Scale

 In section 3, we discussed the shape deformation by
local displacement or translation. A natural extension is to
generalize the deformation model so that it can deal with
local rotation and scale. Both of these kinds of
deformations are of important use in computer animation.

y

z

iC iD

T

Global coordinate
Local coordinate

 x o

’’’’ zyxo """" zyxo

Figure 12. Local coordinate system for a
constraint

 An intuitive interface can be set up by attaching a local
coordinate system to each constraint iC as illustrated in

Figure 12. Let the local coordinate system at iC be

zyxo ′′′′ , then a user moves, rotates and scales the

coordinate system until all the translation, rotation and
scale requirements are satisfied. Let the destination
coordinate system be zyxo ′′′′′′′′ and the transformation

matrix from source coordinate system zyxo ′′′′ to the

destination coordinate system zyxo ′′′′′′′′ be M . M is

made up of translation matrix),,(zyx DDDT , scale matrix

),,(zyx SSSS and rotation matrix),,(zyx θθθR , i.e.,

),,(),,(),,(zyxzyxzyx SSSDDD θθθRSTM =
For any space point P to be deformed, we first transform it
into the local coordinate system zyxo ′′′′ and obtain P′ ,

then multiply P′ with transformation matrix M̂ and

)ˆ,ˆ,ˆ()ˆ,ˆ,ˆ()ˆ,ˆ,ˆ(ˆ
zyxzyxzyx SSSDDD θθθRSTM =

where

),,)(),,(()ˆ,ˆ,ˆ(zyxiizyx DDDRCPrFDDD = ,

),,)(),,(()ˆ,ˆ,ˆ(zyxiizyx RCPrF θθθθθθ = ,

)1,1,1)(),,(()1,1,1()ˆ,ˆ,ˆ(−−−+= zyxiizyx SSSRCPrFSSS

Suppose the obtained point be P ′′ . Finally we transform
P ′′ back to the global coordinate system and obtained the
deformed image of point P. If there is only translation, i.e.

0)ˆ,ˆ,ˆ(=zyx θθθ and)1,1,1()
~

,ˆ,ˆ(=zyx SSS , the result is the

same as the deformation model discussed in section 3.
 In the previous discussion, we use Euler angles

)ˆ,ˆ,ˆ(zyx θθθ to describe the rotation of the coordinate

system. However, Euler angle representation suffers from
several disadvantages [27]. Firstly, Euler rotations must
be applied in a particular order because they do not
commute. Secondly, it suffers from non-uniformity. A
fixed change in Euler angles does not always yield the
same amount of rotation change. Thirdly, Euler angle
representation suffers from “gimbal lock”. An alternative
is to use quaternion instead of Euler angles [27]. Euler

angles)ˆ,ˆ,ˆ(zyx θθθ can be converted into a quaternion

()zyxwq ,,,
2

sin,
2

cos =




= n

θθ

where θ is the rotation angle and n is the unit rotation
axis. By converting quaternion q into rotation matrix

)(θR , we get

















−−+−
−−−+
+−−−

=
22

22

22

2212222

2222122

2222221

)(

yxwxyzwyxz

wxyzzxwzxy

wyxzwzxyzy

θR

In this case, the transformation matrix M̂ is refined as:

)ˆ(ˆ)ˆ,ˆ,ˆ()ˆ,ˆ,ˆ(ˆ θRSTM zyxzyx SSSDDD=
where

)),,((ˆ
ii RCPrFθθ = .

As quaternions interpolate only one angle instead of three
Euler angles, it can generate smoother rotation
interpolation and hence more fluid deformation. Given a
set of quaternions, they can be spherical interpolated using
a general construction scheme [28].

6. The Animation of the Deformations

 The above deformation model can be conveniently
applied to generate a deformation animation. We present
two ways to simulate the deformation process of an object.
The first is to apply a set of the different constraints to the
same object to obtain a sequence of deformed objects.
Since these objects possess the same number of vertices
and the same topology, we can blend them to generate the

intermediate shape by interpolating the corresponding
vertices. The other method is to interpolate the
corresponding parameters of the keyframe constraints to
generate the intermediate constraints, the intermediate
constraints are then applied to produce the deformation of
the object for the intermediate frames. In fact, a constraint
can be completely determined by parameter set Ω :

},,,,,,,,,,,,{ 121 −∆=Ω miziyixzyxii gggRRRSSSC �θD

Given the parameter set of the keyframes, traditional
parametric key frame techniques can be used to generate
the intermediate parameter set of the constraint.
 Since both methods are based on parametric key frame
techniques, which are provided by many animation
systems, our deformation animation model can be
conveniently incorporated into these animation systems.

7. Experiments

 We implemented our algorithm on a SGI Indy
Workstation. Figure 13 shows the potential function
distribution of the line constraint, disk constraint, square
constraint, polyline constraint, point constraint adopting
Euclidean distance and point constraint adopting
Mahattan distance respectively, all of them are obtained
by applying corresponding constraints to a grid. Figure 14
is the wireframe of an undeformed cow, and Figure 15 is
the deformed cow by locating a line constraint on its back.
Figure 16(a) is an undeformed teapot, Figure 16(b) is the
deformed teapot by applying two plane constraints, one is
put on its top and the other is put on its left. Figure 17
shows an undeformed cow and a plane constraint, the

constraint is put on the right of the cow with a 045 to the
xy plane where the cow lies. Figure 18 shows the
animation sequence obtained by animating the
displacement of a plane constraint. From the two
examples we can see that a plane constraint is like a
magnet, it attracts the points within the influence range.
Figure 18 shows a “Z” deformed from a grid, there are 12
point constraints corresponding to 12 metaballs in the
environment. Please compare this deformation with that in
Figure 13(d). Figure 20 shows the undeformed cow and a
sphere volume constraint, the small sphere is the
constraint, the big sphere is the generalized metaball
indicating the influence range of the constraint and the
line shows the displacement D∆ . The 3D-morphing
sequence in Figure 21 is achieved by animating D∆ of
the sphere volume constraint. We note that only the
vertices of the cow which lie within the big sphere are
deformed and other vertices are not affected at all. Figure
22 shows the animation sequence by animating the scale
constraint of a sphere volume constraint, all the points in
the head of the cow satisfy the constraint. The 3D-
morphing sequence in Figure 23 is achieved by animating
the rotation of the sphere volume constraint, the rotation

constraint θ is 0120− around axis ()0,22,22 . As

the whole head of the cow is within the sphere volume, all

the points on the head rotate 0120− and hence the head
keeps the same shape.

(a) Line segment constraint

(b) Disk constraint

(c) Square constraint

(d) Polyline constraint

(e) Point constraint adopting Euclidean distance

 (f) Point constraint adopting Manhattan distance

Figure 13. The potential function distribution for
some constraints

Figure 14. The wireframe of an undeformed cow

Figure 15. Deformed cow by a line constraint

(a) Before deformation (b) Deformed teapot by
 two plane constraints

Figure 16. The deformation of a teapot

Figure 17. Undeformed cow and a plane
constraint

Figure 18. 3D-morphing sequence by animating
the displacement of a plane constraint

Figure 19. “Z” deformed from a plane

Figure 20. Undeformed cow and a sphere volume
constraint

Figure 21. 3D-morphing by animating the
displacement of a sphere volume constraint

Figure 22. 3D-morphing by animating the scale
of a sphere volume constraint

Figure 23. 3D-morphing by animating the
rotation of a sphere volume constraint

8. Conclusions

 A general constrained deformation model is presented
in this paper. After a user specifies a series of constraints
which can be made up of points, lines, surfaces and
volumes, their effective radii and maximum
displacements, the deformation model creates a set of
generalized metaballs taking the constraints as the
skeletons. Each metaball determines a local influence
region and is associated with a local potential function.
The potential function centered at the constraint and
falling to zero for points beyond the effective radius. We
present methods for calculating the distance functions for
some typical constraints such as point, line segment, disk,
Bezier curve, polygon, sphere volume etc. One advantage
of our deformation model is that it is independent of the

representation of the underlying objects and can apply to
both polygon mesh and parametric surfaces. For most of
the useful constraints, the algorithm is of high efficiency
because the calculation involved is simple, and can be
implemented interactively in current workstations.
Compared with other deformation method, this
deformation model has following features: (1). Generality.
This method can not only deal with point constraint but
also line, surface and volume constraints, which are
difficult for traditional methods. The scale constraint and
rotation constraint can be dealt with too in a systematic
way. (2). Intuition. for a specified constraint, a user can
easily imagine the deformation effects aroused by the
constraint. (3) Locality. Only points located in the local
influence range are affected, therefore it provides a useful
tool for local shape adjustment. (4). Compatibility. The
deformation model can be easily incorporated into most
existing animation systems.

Acknowledgements The authors are grateful to Dr.
Jieqing Feng, Prof. Hujun Bao and the anonymous
reviewers for their constructive suggestions. This work is
supported by National Natural Science Foundation of
China and Natural Science Foundation of Zhejiang
Province.

References

[1] D. Terzopoulos, J. Platt, A. H. Barr and K. Fleischer,
“Elastically Deformation Models”, Computer Graphics,
Vol. 21, No. 4, 1988, pp. 205-214

[2] J. Platt, and A. H. Barr, “Constraints Methods for Flexible
Models”, Computer Graphics, Vol.22, No.4, 1988, pp.279-
288.

[3] D. Terzopoulos, and K. Fleischer, “Modeling Inelastic
Deformation: Viscoelasticity, Plasticity, Fracture”,
Computer Graphics, Vol. 22, No.4, 1988, pp.269-278.

[4] D. Terzopoulos, and A. Witkin, “Physically-based Methods
with Rigid and Deformable Components”, IEEE Computer
Graphics & Applications, Vol. 8, 1988, pp.41-51.

[5] A. H. Barr, “Global and Local Deformation of Solid
Primitives”, Computer Graphics, Vol. 18, No.3, 1984, pp.
21-30.

[6] T. W. Sederberg, and S. R. Parry, “Free-Form Deformation
of Solid Geometric Models”, Computer Graphics, Vol. 20,
No.4, 1986, pp. 537-541.

[7] S. Coquillart, “Extended Free-Form Deformation: A
Sculpturing Tool for 3D Geometric Modeling”, Computer
Graphics, Vol. 24, No.4, 1990, pp.187-193.

[8] P. Kalar, A. Mangli, M. Thalmann and D. Thalmann,
“Simulation of Facial Muscle Actions Based on Rational
Free-Form Deformations”, Computer Graphic Forum, Vol.
11, 1992, pp. 59-69.

[9] H. J. Lamousin, W. N., Waggenspack, “NURBS-based
Free-form Deformations”, IEEE Computer Graphics &
Applications, Vol.14, No.9, 1994, pp. 59-65.

[10] R. MacCracken and K. I. Joy, “Free-Form Deformations
with Lattices of Arbitrary Topology”, Computer Graphics,
Vol. 26, No.3, 1996, pp. 181-188.

[11] B. Wyvill and K. V. Overveld, “Warping as a Modelling
Tool for CSG/Implicit Models”, Proc. Of Shape Modeling
International’97, University of Aizu, Japan, IEEE
Computer Society Press, 1997, pp. 205-214.

[12] W. Hsu, J. Hughes, and H. Kaufmann, “Direct
Manipulations of Free-Form Deformations”, Computer
Graphics, Vol. 26, No.2, 1992, pp. 177-184.

[13] P. Borrel, D. Bechmann, “Deformation of N-dimensional
Objects”, International Journal of Computational
Geometry & Applications, Vol.1 No.4, 1991, pp.427-453.

[14] P. Borrel, A. Rappoport, “Simple Constrained
Deformations for Geometric Modeling and Interactive
Design”, ACM Transactions on Graphics, Vol.13, No.2,
1994, pp.137-155.

[15] J. F. Blinn, “A Generalization of Algebraic Surface
Drawing”, ACM Transactions on Graphics, Vol. 1, No.3,
1982, pp. 235-256.

[16] H. Nishimura, M. Hirai, and T. Kawai, “Object Modeling
by Distribution Function and a Method of Image
Generation”, Transactions on IECE, Vol.68-D, No.4, 1985,
pp.718~725,

[17] G. Wyvill, C. McPheeters and B. Wyvill, “Data Structure
for Soft Objects”, The Visual Computer, Vol.2, 1986,
pp.227-234,

[18] B. Wyvill, G. Wyvill, “Field Functions for Implicit
Surfaces”, The Visual Computer, Vol. 5, 1989, pp.75~82.

[19] J. Shen, D. Thalmann, “Interactive Shape Design Using
Metaballs and Splines”, Proc. of Implicit Surfaces’95,
Edited by Brian Wyvill and Marie-Paule Gascuel,
Grenoble, France, 1995, pp.187-196.

[20] J. Bloomenthal, B. Wyvill, “Interactive Techniques for
Implicit Modeling”, Computer Graphics, Vol.24, No.2,
1990, pp.109~116.

[21] J. Bloomenthal, and K. Shoemake, “Convolution Surfaces”,
Computer Graphics, Vol.25, No.4, 1991, pp.251-256.

[22] J. Bloomenthal, C. Bajaj, J. Blinn, M. Cani-Gascuel, A.
Rockwood, B. Wyvill, and G. Wyvill, An Introduction to
Implicit Surfaces, Morgan Kaufmann Publishers, 1997.

[23] C. Blanc and C. Schlick, “Extended Field Functions for
Soft Objects”, Implicit Surfaces’95 Workshop, Editors:
M.P. Gascuel & B. Wyvill, 1995, pp. 21-32.

[24] T. Nishita and E. Nakamae, “A Method for Displaying
Metaballs by Using Bezier Clipping”, Computer Graphics
Forum, Vol.13, No.3, 1994, pp.271-280.

[25] P. J. Schneider, “Solving the Nearest-point-on-curve
Problem”, in Graphics Gems I, A.S. Glassner(Ed),
Academic Press, 1990, pp.607-611.

[26] J. C. Hart, “Sphere Tracing: A Geometric Method for the
Antialiased Ray Tracing of Implicit Surfaces”, The Visual
Computer, Vol.12, 1996, pp.527-545.

[27] K. Shoemake, “Animating Rotation with Quaternion
Curves”, Computer Graphics, Vol.19, No.3, 1985, pp.245-
254.

[28] M. J. Kim, M.S. Kim and S.Y. Shin, “A General
Construction Scheme for Unit Quaternion Curves with
Simple High Order Derivatives”, Computer Graphics,
Vol.29, No.3, 1995, pp.369-376.

