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Abstract. Space deformation is an important tool in both computer animation and
shape design. In this paper, we present a new three-dimensional deformation method
using directional polar coordinates. The user specifies the source control object and
the destination control object which act as the embedded spaces. The source and the
destination control objects determine a three-dimensional volume morphing which
maps the space enclosed in the source control object to that of the destination control
object. By embedding the object to be deformed into the source control object, the
three-dimensional volume morphing determines the deformed object automatically
without the cumbersome moving of control points. Experiments show that this
deformation model is efficient and intuitive, and it can achieve some deformation
effects which are difficult with traditional methods.

1. Introduction

Space deformation plays an active role in both geometric modeling and com-
puter animation [Sederberg, Parry 86], [Coquillart 90], [MacCracken 96],
[Singh, Fiume 98], [Jin et al. 00]. Free-form Deformations (FFDs) deform
objects by embedding them in a control mesh, then moving the points of the
control mesh [Sederberg, Parry 86]. Essentially, changing the mesh defines a
morph of a volume of space, and the vertices of the model get carried along
with it. Although FFD-based methods are flexible, they require the user to
define and move control points, which can be cumbersome.
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Figure 1. The definition of directional polar coordinates for a star-shaped object.

In this paper, we describe an alternative way to define the spatial morph.
The user embeds the model in any star-shaped source object, and specifies
any other star-shaped target object. We use directional polar coordinates to
define a morph between any two star-shaped control objects. This morph is
similar to the work of Kent et al. in deforming polygonal objects [Kent et al.
92].

2. Volume Morph for Star-Shaped Objects

An object © is star-shaped (also known as star-convez) if it contains a “center
point” o such that any ray from the center point intersects the surface exactly
once. For convenience, we represent a star-shaped object as < 0,0 >. So,
for any point P inside the object, we can represent the point by (n,d): the
direction n of the ray to it from the origin, and the fraction d of its distance
along the ray to the surface (see Figure 1). We call (n,d) the directional polar
coordinates of point P. To transform the point P, we simply evaluate (n,d)
with respect to the target object; that is, we construct the point along the
direction n from the target center, and a fraction d along the ray to the target
surface.

Let < Og,0g > and < Op,Op > be the source and the destination control
star-shaped objects with center points Og and Op respectively (see Figure 2),
then for a given point P, the deformation algorithm is:

Compute direction n from Og to P;

Compute distance ls from Og to P;

Intersect ray from Og in direction n with source control surface,

to get a point Qg;

Compute distance Lg from Og to Qg;

Compute d =ls/Lg;

Intersect ray from Op in direction n with destination control surface,
to get a point Qp;
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Figure 2. (a) Source control star-shaped object. (b) Destination control star-
shaped object.

Compute distance Lp from Op to Qp;
Transform point P to P’ =Op + nxdx* Lp ;

A cylindrical star-shaped object © has an axis line C'L, and any perpendic-
ular cut along the line intersects the surface in a two-dimensional star-shaped
object. A cylindrical star-shaped object is represented as < ©,CL >. For
cylindrical star-shaped objects, we can represent a point using a triple (r,n, d),
where r is the fraction along the axis, n is the two-dimensional direction, and
d is the fraction of distance to surface (see Figure 3). The deformation al-
gorithm for cylindrical star-shaped objects is almost the same as above. To
transform the point P, we similarly evaluate (r,n, d) with respect to the tar-
get object. That is, we construct the point along the direction n from the
center point which is a fraction r along the target axis line, and a fraction d
along the ray to the target surface.

C. 0,

CL
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Figure 3. (a) Source cylindrical star-shaped object. (b) Destination cylindrical
star-shaped object.
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To animate the deformation from source to target shape, we interpolate the
representation between the source and target spaces. That is, for the spherical
objects,

P'=((1-t)%Os+t*Op)+nxdx((1—1t)*Ls+t*Lp)

and similarly for the cylindrical objects.

3. Computing the Intersection of the Ray with Each Surface

The key to the deformation model lies in the calculation of the ray—object
intersection. If the control object is a polyhedral object which is commonly
adopted in our implementation, the ray—object intersection can be acceler-
ated by the light buffer technique [Arvo, Kirk 89], [Haines, Greenberg 86].
Quadric, parametric, and implicit surfaces can be broken down into polygons
for unified processing. The light buffer, introduced by Haines et al. tries to
accelerate the calculation of shadows with respect to point light sources. In
our deformation model, the center point of the star-shaped object replaces the
position of the point light source in the light buffer technique. We first asso-
ciate a uniformly subdivided direction cube with the control object (see Figure
4), and generate the complete list of candidate polygons with each of the di-
rection cells. Each candidate list contains every polygon which can be seen
through the corresponding direction cell. The candidate lists are retrieved by
finding the direction cell pierced by each semi- infinite ray originated from the
center point of the control object. The polygons in the list are the only ones
which will intersect the semi-infinite ray. According to the definition of the
star-shaped object, a semi-infinite ray cast from the center point of the con-
trol object will intersect one and only one polygon of the control object. By
using this fact, it is easy to know that the length of the list in the light buffer
is usually very short, and the intersection calculation between a semi-infinite
ray and the candidate polygons in the candidate list can be terminated as

Polygon list

0 [Polygon No| = [Polygon No|

Figure 4. Accelerate ray—object intersection by direction cube with uniform sub-
division.
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soon as one intersection has been found. For the ray—polygon intersection, we
adopt the intersection algorithm introduced by Badouel [Badouel 90], [Moller,
Trumbore 97]. The direction cubes are constructed as a preprocessing step.
The candidate lists are created by projecting each polygon of the control ob-
ject onto the six faces of the direction cube, adding them to the candidate lists
of those direction cells which are partially or totally covered by the projec-
tion. This projection can be performed by a modified scan-line algorithm to
the projected edges. By adopting the direction cube, ray—object intersection
can be performed efficiently.

4. Examples

We implemented our algorithm on a PII-300 PC under OpenGL environment.
All the embedded objects are polygon meshes represented in Wavefront for-
mat. Figure 6 shows the deformation of a soccer ball using the control star-
shaped objects shown in Figure 5. By animating the deformation from source
to target shape, we obtain Figure 8. Figure 10 and Figure 11 are deformation
examples using control cylindrical star-shaped objects shown in Figure 9.

(¢) Cylinder (d) Revolution object

Figure 5. Source control star-shaped object (a) and destination ones (b), (¢), (d).

5. Discussion

The control objects can be any star-shaped objects: polyhedral, swept sur-
faces, surfaces of revolution, quadrics, blobs, parametric surfaces, and so forth.
For simple objects like spheres, cylinders, and cones, we use the algebraic
representation directly to perform the intersection [Hanrahan 89]. Many star-
shaped objects have more than one center point (or line). For example, any
interior point of a sphere can be used as the center. The user can control
the deformation by specifying the center point. As with other deformation
techniques, the user can of course apply the deformation to the entire object,
or to just a local region to generate bumps and dents, or select a collection of
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(a) Original soccer ball without defor- (b) Deformed soccer ball by sphere-to-
mation. cube morphing.

(¢) Deformed soccer ball by sphere-to-  (d) Deformed soccer ball by sphere-to-
cylinder morphing. revolution object morphing.

Figure 6. The deformation of a soccer ball.

points to define a cluster and apply the deformation only to the points in the
cluster.

This technique has an advantage over control-mesh-based FFD techniques
in that it lets the user specify the control shapes directly and intuitively, in-
stead of by moving control vertices and can achieve some deformations that are
difficult to express using other techniques. The disadvantage of the technique
is that it is of course limited to control objects that are star-shaped. It also
does not provide local control over the deformation, so it may be hard for users
to achieve a specific target model shape that they have in mind. Thus, this
technique complements rather than replaces other deformation techniques.
Finally, as with other techniques, for extreme deformations, such as control
shapes with sharp edges, the model will need to be adaptively subdivided to
avoid aliasing.
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Figure 8. By applying the control objects shown in Figure 7 and animating the
deformation model, we obtain this soccer-morphing sequence.
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Figure 9. Control cylindrical star-shaped objects.

Figure 10. Deformed soccer ball using cylinder-to-cube morphing.

(a) Original rotunda. (b) Deformed rotunda.

Figure 11. The deformation of a rotunda using cylinder-to-cube morphing.
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