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Abstract

We present a video-based approach to learn the specific driving characteristics of drivers in the video for advanced traffic control.
Each vehicle’s specific driving characteristics are calculated with an offline learning process. Given each vehicle’s initial status
and the personalized parameters as input, our approach can vividly reproduce the traffic flow in the sample video with a high
accuracy. The learned characteristics can also be applied to any agent-based traffic simulation systems. We then introduce a new
traffic animation method that attempts to animate each vehicle with its real driving habits and show its adaptation to the surrounding
traffic situation. Our results are compared to existing traffic animation methods to demonstrate the effectiveness of our presented
approach.
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1. Introduction

With the popularity of vehicles and the dramatically increas-
ing demand on transportation, road transport has brought about
more and more serious negative effects— traffic congestion,
traffic accident, and environmental pollution. Traffic manage-
ment has been a global challenge with its direct impact on
economy, environment, and energy. Meanwhile, traffic simu-
lation has found its wide use in computer animation, computer
game, and virtual reality [1] [2]. Some methods try to simulate
each vehicle’s behaviors while others aim to capture high-level
flow appearance. However, the simulated results usually do not
correlate to each driver’s personalized driving behavior. More-
over, with better vehicle detection and tracking technology and
more software tools for viewing road network, such as Open-
StreetMap and GPS, there is a growing need to present realistic
traffic scenarios in a virtual environment based on real-world
vehicle trajectory data.

In the real world, drivers’ driving behaviors vary significantly
depending on time, place, personality trait, and many other
social factors. These variations in driving behaviors are of-
ten characterized by observable factors such as driver’s speed
choice, gap acceptance, preferred rate of acceleration or decel-
eration, environmental adaptation factor, and so on. Estimating
such characteristics is an important task if we want to recon-
struct the traffic flow correlating to an input real traffic. How-
ever, existing traffic simulators set these parameters as random
values around the average of empirical values, which are hard
to reflect drivers’ personalized driving behaviors in a specific
environment. Moreover, little attention has been paid to this
problem in existing traffic simulation methods.
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Figure 1: One frame in the traffic sample video (a) and our reconstruction result
(b).

In this paper, we propose a data-driven method to simulate
virtual traffic flows that exhibit driving behaviors imitating real
traffic flows. We record the motion of vehicles from an aerial
view using a camcorder, extract the two-dimensional moving
strategies of each vehicle in the video, and then learn the spe-
cific driving characteristics from the observed trajectories.

Learning driving behavior from videos is a challenging prob-
lem because the motion of each driver is influenced by not only
the local road traffic condition, but also the driver’s personality
and social factors, which can not be directly seen in the captured
video. We choose a short clip from the input video as the learn-
ing sample, and use a microscopic traffic model to approximate
each vehicle’s behavior. Since 1940s, lots of traffic simulation
models have been proposed, tested and evaluated for calibra-
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tion. Among them, the intelligent driver model (IDM) [3] was
proven to be one of the best approximation models and it con-
forms to our daily driving habits. The intelligent driver model
with memory (IDMM) [4] is an expansion of IDM which in-
troduces memory effects to describe drivers’ adaption to the
congested traffic. In this work, we revise the original IDMM
model to describe the adaptation of drivers to the surrounding
traffic situation (not limited to congested traffic).

We present a mapping between the low-level IDMM param-
eters and high-level driving characteristics. Inspired by the the-
ory on the car-following model calibration [3], we utilize a non-
linear optimization scheme to compute each vehicle’s optimal
parameter set of IDMM. Different from previous model cali-
bration methods, we develop an adaptive genetic algorithm to
better fit for traffic animation.

The main contribution of the paper is that we introduce a
novel method to estimate vehicles’ personalized driving char-
acteristics based on training data from an input video. These
parameters are then employed to reconstruct the traffic flow
conforming to the video. We also present a new traffic ani-
mation method using IDMM to show drivers’ adaptation to the
surrounding traffic situation. In addition, we propose an offline
learning approach combining IDMM with an adaptive genetic
algorithm, which outperforms existing methods for model cal-
ibration. Our approach can reproduce new traffic scenarios ex-
hibiting similar driving behaviors with the sample video. Fig. 1
shows a reconstructed scenario using our method.

The rest of the paper is organized as follows. Section 2 de-
scribes the related work on traffic animation and model cali-
bration. Section 3 presents an overview of our approach and
Section 4 gives a detailed description of the algorithm. The
performance analysis and simulation results are shown in Sec-
tion 5. Finally, we conclude the paper and discuss the future
work in Section 6.

2. RELATED WORK

In this section, we give a brief review of prior work in traffic
animation and crowd behavior learning. Model calibrations and
genetic algorithms are also reviewed as they will be employed
in our framework.

2.1. Traffic Animation and Crowd Behavior Learning
The growing ubiquity of vehicle traffic in everyday life has

attracted considerable interest in traffic behavior modeling and
traffic visualization techniques. In computer graphics, much of
the research on traffic has focused on two hot topics: the classi-
cal problem of traffic simulation, and traffic reconstruction [1].
The classical problem of traffic simulation is mainly about traf-
fic behavior model. Given a road network, a proposed behav-
ior model, and initial car states, how does the traffic evolve?
In general, there are two popular classes of traffic simulation
techniques: the continuum-based macroscopic and agent-based
microscopic techniques.

In macroscopic simulation, traffic is treated as a kind of con-
tinuum whose evolution in time is described by partial differ-
ential equations. A famous macroscopic model was developed

by Lighthill, Whitham and Richards in 1955 [5] called LWR
model. It can fully describe the basic traffic-related phenom-
ena: traffic jams and evacuation. In the 70s, Payne [6] and
Whitham [7] introduced the momentum conservation equation
to the original LWR model and simulated some more compli-
cated cases using their PW model. This model was further re-
vised by Aw, Rascle [8] and Zhang [9] to eliminate the non-
physical behavior, referred as ARZ model. In computer graph-
ics, Sewall [10] extended the ARZ model to correctly handle
lane changes, merges, and traffic behaviors due to changes in
speed limit.

The agent-based microscopic methods treat each vehicle
as a discrete autonomous agent with specific rules govern-
ing their behavior. Gerlough [11] summarized a set of car-
following rules in his dissertation about traffic simulation in
1955. Through a variety of expansion, it has formed some
new models, such as the optimal velocity model [12], the in-
telligent driving model (IDM) [13], and the intelligent driving
model with memory [4]. In computer graphics, Shen et al. [14]
proposed a new agent-based model by combining IDM with a
flexible lane-changing model mainly for vivid traffic animation
purpose. Sewall et al. [2] presented a hybrid traffic model in-
tegrating continuum and agent-based methods for large-scale
traffic animation.

In this paper, we focus on the efficient traffic reconstruction
with realistic and various driving characteristics extracted from
real-world discrete spatio-temporal data. The aim is to approx-
imate the real-world data as much as possible, and finally re-
produce the real-world traffic scenarios. Compared to the clas-
sical problems of traffic simulation, this topic is less studied.
Sewall et al. [1] presented a novel concept of Virtualized Traf-
fic, in which traffic is reconstructed from discrete data obtained
by sensors placed alongside the road. Their approach can re-
construct plausible trajectories for each car using priority-based
motion planning techniques. The limitation of their approach is
that they do not take the personalized behaviors of drivers into
consideration.

There are some research work on data-driven behavior learn-
ing in crowd simulation. Some methods train new behavior
models for crowd based on input video data. For example, Lee
et al. [15] used data-driven methods to match recorded motion
from videos by training a group behavior model. Ju et al. [16]
proposed a data-driven method which blended existing crowd
data to generate a new crowd animation. Other approaches sim-
ulate heterogeneous crowd behaviors based on perceptual data
or observed personality in a crowd. For example, Guy et al. [17]
derived a linear mapping between crowd simulation parameters
and the personality model based on adopting results from user
studies. As vehicle traffic has more strict rules than pedestrian
crowds, the behavior learning methods are different.

2.2. Microscopic Car-Following Model Calibration
Microscopic car-following models provide us powerful tools

to simulate the behavior for each driver, and thus they can be
used to study the macroscopic traffic phenomena. The objec-
tive of model calibration is to assess the performance of car-
following models using real trajectory data. The performance
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Figure 2: The framework of our system. Trajectory data acquisition and driving habits learning procedures are both implemented in an offline module.

of car-following models greatly relies on the parameter set they
use to describe and control the vehicle’s motion.

In the model calibration process, the car-following model
parameters need to be adjusted until an acceptable match is
found between the simulated model dynamics and the ob-
served drivers’ behavior. Engineering judgment and trial-and-
error methods are still widely used especially in the indus-
try [18]. More systematic approaches, including the gradient
method [19] and the genetic algorithm [20], address the model
calibration procedure as an optimization problem: a combina-
tion of parameter values is searched that an objective function
(error term) is minimized. Kesting and Triber calibrated and
compared IDM and Optimal Velocity model with Bosch GmbH
dataset using the genetic algorithm method ( [3], [21]). The re-
sult shows that IDM is an acceptable approximation to our daily
driving habits, and usually has smaller tracking gap error than
other models.

There exists a vast amount of literature on calibrating models
in the field of traffic. However, in computer graphics, no prior
work exists in utilizing model calibration to estimate personal-
ized driving behaviors that are critical for detailed realistic traf-
fic animations. Our approach focuses on estimating the optimal
parameter set for each vehicle to produce high-quality traffic
reconstruction and realistic simulation.

2.3. Genetic Algorithm (GA)

Genetic algorithms (GAs) are robust search and optimiza-
tion techniques based on principles of evolution and natural
selection. These algorithms convert the problem in a specific
domain into a model using a chromosome-like data structure.
They evolve the chromosomes using selection, recombination,
and mutation operators. The great benefits of GAs are that they
are efficient, concurrent, and can adaptively control the search
process to reach the globally optimal solution. In fact, GAs
were successfully used in many aspects of traffic field, such as
optimal traffic signal control [22], traffic assignment [23], and
traffic model calibration ( [20], [3], [21]). In traffic model cal-
ibration, genetic algorithms are superior to the gradient tech-
niques as the search is not biased towards the locally optimal
solution. More details on GA can be found in [24], [25].

3. Method

In this section, we briefly present an overview of our ap-
proach and discuss the microscopic car-following model we
have employed for traffic simulation.

3.1. Overview of methodology

Our system aims to learn and apply drivers’ individual driv-
ing characteristics from the video sample. The system frame-
work is shown in Fig. 2. The main process can be divided into
three phases: the acquisition of each vehicle’s trajectory data,
the learning of each vehicle’s unique driving habits, and the on-
line traffic animation (reconstruction or simulation). The first
two phases are both manipulated in an offline module.

Since we are interested in learning each driver’s driving char-
acteristics in the input video, data acquisition from video sam-
ples is not the focus of this paper. We simply use the NGSIM-
VIDEO software [26] to preprocess video images, and then ex-
tract the vehicle trajectories in each frame. More details about
NGSIM-VIDEO can be found in [26].

Learning drivers’specific driving characteristics from videos
is a challenging problem because each vehicle’s behavior is in-
fluenced by both the driver’s preferences and local road traffic
situations. In this work, we assume that each vehicle’s motion
is controlled by its driver’s personality, features of the environ-
ment, and the motion of nearby individuals. We use the in-
telligent driver model with memory (IDMM) as the underlying
behavior control model to describe the decision making process
of each individual vehicle. Accordingly, we formulate the esti-
mation of each vehicle’s unique driving habits as a problem to
find its specific optimal parameter set of a microscopic driving
model. In the following, we will describe the basic simulation
techniques of IDMM.

3.2. Intelligent Driver Model with Memory (IDMM)

IDMM is a microscopic car-following model extended from
IDM [13]. We first give a short introduction to IDM. The traffic
state at a given time in IDM is characterized by the positions,
velocities, and the lane indexes of all vehicles. The driver’s
decision of accelerating or braking depends on its current driv-
ing speed, the relative speed and position to its leader (that is,
the vehicle in front of it on the same lane). The relationship

3



gap: s
LF

v

Figure 3: The relationship between the involved vehicles: the Leader (L), the
Follower (F) and their gap (s).

between the involved vehicles is shown in Fig. 3. The follow-
ing driver is modeled to take actions as response towards the
surrounding traffic condition, for purpose of maintaining a safe
gap to the leading vehicle while seeking for its desired velocity
during driving.

IDM defines the vehicle’s acceleration as a function of the ve-
hicle’s velocity v, gap distance s, and relative velocity ∆v [13]:

aidm (s,v,∆v) = a

[
1−

(
v
v0

)4

−
(

s∗(v,∆v)
s

)2
]

(1)

s∗ (v,∆v) = s0 + vT +
v∆v

2
√

ab
(2)

As shown in Eq. (1), the acceleration can be divided into

two parts: the first part aacc = a
[

1−
(

v
v0

)4
]

indicates free ac-

celeration towards a desired velocity v0, while the latter part

adec = −a
(

s∗
s

)2
represents a braking deceleration strategy ac-

cording to the current gap s and the desired minimum gap to
the preceding vehicle s∗. The acceleration on a free road de-
creases smoothly from the initial maximum acceleration a to
zero when approaching the desired velocity v0. IDM shows a
stable crash-free dynamics with an intelligent braking strategy.

IDMM introduces an additional environmental adaptation
factor β to the IDM to describe the adaptation of drivers to the
surrounding traffic situation during the past few minutes [4].
We model this by varying the IDM acceleration in the range
between aidm (habitual acceleration) and βaidm (adapted accel-
eration):

aidmm =
v
v0

aidm +(1− v
v0

)βaidm

= aidm[β +(1−β )
v
v0

]
(3)

Eq. (3) is an environmental adaptation term which adaptively
adjusts the vehicle’s acceleration according to the current ve-
locity. v

v0
reflects the efficiency of movement from the driver’s

point of view. v
v0

= 1 means zero hindrance, corresponding to
the acceleration aidm in a free traffic; v

v0
= 0 indicates maximum

hindrance, corresponding to the acceleration βaidm in a traffic
jam. Different drivers and different traffic situation mean dif-
ferent values of β . In the parameter learning process, Eq. (3)

can be viewed as an error correction term. We modify β value
based on the current learning error and try to learn an average
β value which most reflects the memory effect for this vehicle
in this traffic scene. For example, when aidm is smaller than its
real value, β is greater than 1 which makes aidmm vary in the
range between aidm and βaidm. When aidm is larger than its real
value, β is less than 1, making aidmm change between βaidm
and aidm. In the special case β = 1, the IDMM reverts to the
original IDM. Since β is a constant for each vehicle, which re-
flects the overall adaption to the environment, v

v0
dynamically

adjusts the instantaneous acceleration between aidm and βaidm
to approximate its real value.

Notice that in [4], β is coupled to the IDM parameters, such
as the safety time headway T , the comfortable deceleration b,
or the desired velocity v0, using the analogous equations. In our
experiments, we found that coupling β into the final aidm leads
to better adaptation than coupling it into a specific parameter.
In addition, our IDMM can describe drivers’ adaption in any
traffic environment, while IDMM in [4] is mainly designed for
congested traffic.

In this paper, the personalized driving behavior of each intel-
ligent vehicle is mainly controlled by the driver’s personality
trait and environmental factors, which are specifically repre-
sented by the intuitive parameters (v0,T,a,b,s0,β ) in IDMM.
All these parameters have meaningful interpretations:

T is the desired safety time headway;
a is maximum acceleration;
b is comfortable braking deceleration;
s0 is jam space headway;
v0 is desired free-flow velocity;
β is the adaptation factor.

These parameters are usually initialized to empirical values
for all vehicles, adding some random fluctuations to reflect in-
dividual diversity in locomotion. Obviously, this assignment
method cannot adequately reflect the real-world traffic. In gen-
eral, each “driver-vehicle unit” can be equipped with its indi-
vidual parameter value settings for following reasons,

1) Different types of vehicles have diverse performance, for
example, trucks are characterized by relatively low values of v0,
a, and b than cars.

2) Drivers with different personality trait own various driving
habits, such as, careful drivers used to driving with a high safety
time headway T, while aggressive drivers are characterized by
a low T.

3) Different road conditions in different country areas set
varying traffic rules, which leads to distinct values of v0 and
s0 for the same vehicle.

4) Different drivers obviously have different adaptation to the
surrounding traffic situation, which means different values of β
in the IDMM.

Taking these factors into consideration, we are supposed to
find each vehicle’s exclusive parameter set (v0,T,a,b,s0,β ) of
IDMM in accord with the local environmental conditions and
driver’s personality characteristics.
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4. Vehicles’ Personalized Parameters Learning

As explained in Section 3, the task is to determine the optimal
model parameter set (v0,T,a,b,s0,β ) that best fits the given
data. The training data for each specific vehicle includes two
parts: the first N frames of its trajectory, and the velocity and
position of its leader in these frames. Each vehicle’s parameters
are learned independently. Inspired by the model calibration
method in [3], we formulate the learning process as an opti-
mization problem. The main differences between our approach
and the model calibration are as follows: (1). The objective of
our paper is to learn each vehicle’s personalized driving param-
eters for realistic animation, while the model calibration mainly
focuses on evaluating the accuracy of the model. (2). We effec-
tively improve the simple genetic algorithm (SGA) in [3] and
propose a new adaptive genetic algorithm (AGA) which shows
better performance than the existing methods for model calibra-
tion.

4.1. Objective Functions
For the optimization, an objective function is needed as a

quantitative measure of the error between the simulated and
observed behaviors. Basically, the error measure can be any
quantity that is not fixed in the simulation, such as the veloc-
ity, the acceleration, or the vehicle gap. In our implementation,
we adopt the difference between simulated gap ssim and real
gap sdata as the error measure for the following reasons: when
optimizing with respect to s, the average velocity errors are au-
tomatically reduced. However, when optimizing with respect
to differences in velocity or acceleration, the errors in the dis-
tance may incrementally grow. Our intensive tests also show
that the objective function with s is optimal. The integration of
v and a to the function does not help improve the accuracy of
the calibration.

In general, many error measures can serve as the objective
function, such as absolute error and relative error. Since the
absolute error measure systematically overestimates errors for
large gaps at high velocities while the relative error measure
is more sensitive to small distances s than to large distances,
the mixed error measure is more robust. It can be seen as a
combination of absolute error and relative error. As Kesting
and Treiber did in [3], a mixed error measure is used in this
paper:

Fmix [ssim] =

√√√√ 1
⟨|sdata|⟩

⟨
(ssim− sdata)

2

|sdata|

⟩
(4)

here ⟨.⟩ denotes the temporal average of a time series of dura-
tion (1∼N frames in our problem). That is,

⟨s⟩= 1
N

N

∑
i=1

si (5)

sdata is the real gap between the subject vehicle and the vehicle
in front, which can be obtained from the dataset. ssim is the
simulated gap, computed using the equation below:

ssim (t) = xl
data (t)− xsim (t) (6)

xl
data means the leading car’s real trajectory. The IDMM

is used here to compute the following vehicle’s simulated ac-
celeration, which is then used to calculate its simulated tra-
jectory xsim (t) by using Eqs. (11), (12). Each vehicle’s initial
state is assigned as vsim (t = 0) = vdata (t = 0) and ssim (t = 0) =
sdata (t = 0), using the random values within the empirical
range of parameters a,b,T,s0,v0,β .

4.2. Optimization with Adaptive Genetic Algorithm
Obviously, it is a nonlinear optimization problem to find a

set of optimal IDMM parameters according to the given data
set. Hence, conventional linear optimization methods cannot
be directly applied here. Instead, a genetic algorithm (GA)
is applied as a search heuristic to approximate the solution to
the nonlinear optimization problem. SGA shows good perfor-
mance in model calibration. However, its invariable parameters
will conflict with the dynamic adaptation of GA. Usually, SGA
converges fast to the sub-domain that contains the global opti-
mum, and after that, it will probably become time consuming
to locate the global optimum in local searching process. This is
unsuitable for our situation as its computation would be heavy
enough to require an offline fitting process. In this work, an
adaptive GA is developed from simple GA and optimized for
solving our multi-parameter optimization problem.

The improvements of AGA over SGA are as follows: (a).
The constant crossover/mutation rate in the traditional GA is
modified into an adaptive one in AGA, which may avoid the
premature convergence of GA to a local optimum. (b). In or-
der to accelerate the convergence speed, the elitist strategy is
introduced in AGA after a round of selection, crossover and
mutation operation.

The algorithm can be implemented as an iterative procedure
that consists of a constant-size population of individuals. Each
individual in the population represents a possible solution to the
given problem. The genetic algorithm attempts to find the best
solution to the problem by genetically breeding the population
of individuals. The pseudo-code description of AGA is given in
Algorithm 1.

Our adaptive genetic algorithm consists of the following
steps:

1. Generation of initial population P[0]: This step is to set the
initial points of searching and iteration. Suppose there are N in-
dividuals per population. Each individual represents a potential
solution to the problem, i.e., a value set of (v0,T,a,b,s0,β ).
They are all produced by adding random fluctuations to the em-
pirical values. The individual should be encoded into the form
that genetic algorithm can identify. One common approach is
to encode solutions as binary strings: sequences of 1’s and 0’s,
where the digit at each position represents the value of some as-
pect of the solution. Each binary string is called a chromosome
in GA.

2. Fitness computing: As mentioned in Section 2.3, GA
mimics the survival-of-the-fittest principle of nature to make
a search process. The individuals with higher fitness value will
have higher probability of being selected as candidates for fur-
ther examination. Fitness represents the superiority or inferi-
ority of an individual and Fitness function Ff itness serves as the
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Algorithm 1 Adaptive Genetic Algorithm
1: gen← 1
2: Initialize the genetic parameters: Basicgen, N
3: P[gen]← GenerateInitialPopulation (N)
4: while terminating conditions are not met do
5: Evaluate the fitness of each individual in P[gen]
6: S[gen]← RWLSelection(P[gen])
7: while |S[gen]|≤ N do
8: Select two individuals in S[gen]
9: Compute the crossover rate Pc

10: CM[gen]← crossover (S[gen], pc)
11: Compute the mutation rate Pm
12: CM[gen]←Mutate (CM[gen], pm)
13: P[gen+1]← ElitistSelect(P[gen], CM[gen])
14: endwhile
15: gen← gen+1
16: endwhile
17: return the optimal parameter set

criterion of selection and elimination between generations. In
our work, the optimization problem is stated in terms of min-
imization. In order to reflect the relative fitness of individual
string, it is necessary to map the underlying natural objection
function to fitness function. The adopted fitness mapping is
presented as:

Ff itness =
1

1+Fmix
(7)

The equation ensures that fitness is non-negative and has a
finite value for every error Fmix. The smaller the error Fmix is,
the larger the fitness Ff itness will be, which means chromosomes
with larger fitness values possess larger probabilities to be se-
lected.

3. Selection: Selection is the population improvement or
“survival of the fittest” operator. Basically, it duplicates chro-
mosomes with higher fitness and eliminates chromosomes with
lower fitness. Roulette Wheel Selection Algorithm is a com-
monly used method to decide the quantity each individual du-
plicates itself to the next generation. The ith string in the pop-
ulation is selected with a probability proportional to its fitness
F i

f itness. Specifically, the probability for selecting the ith string
is

Pi =
F i

f itness

∑N
i=1 F i

f itness
(8)

This could be imagined as a game of Roulette. Fig. 4 il-
lustrates a roulette-wheel for each individual having different
fitness values. The third individual has a higher probability of
selection than any other. This roulette wheel selection scheme
can be simulated easily. We then calculate the cumulative prob-
ability range CPR of each individual using Eq. (9).

CPRi =
{

[0,Pi] i = 1
CPRi−1 +(Pi−1,Pi] Otherwise. (9)
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Figure 4: A roulette-wheel marked for five individuals according to their fitness
values.

In order to choose n strings, n random numbers between ze-
ros to one are created. The string whose cumulative probabil-
ity range contains the random number is chosen to the matting
pool. In this way, the individual with a higher fitness value
will represent a larger range in the cumulative probability val-
ues and therefore has a higher probability of being copied into
the matting pool.

4. Crossover and mutation: Crossover is a genetic opera-
tor that combines two chromosomes (parents) to produce a new
chromosome (offspring), with the possibility that good solu-
tions can generate better ones. Crossover occurs only with a
user-definable probability pc (called the crossover probability).
Here we use Two-Point crossover method. The operator ran-
domly selects two crossover points within a chromosome, and
then interchanges the two parent chromosomes between these
points to produce two new offspring. An illustration of the two-
Point crossover operator is shown in Fig. 5.

After a crossover is performed, a mutation will take place.
The mutation operator is used to maintain genetic diversity
from one generation to the next. It alters one or more gene-bit
values in a chromosome from its initial state. Mutation, simi-
lar to crossover, occurs according to a user-definable mutation
probability pm. Fig. 6 shows a schematic illustration of muta-
tion. Mutation helps to prevent the population from stagnating
at any local optima.

The power of genetic algorithm arises primarily from
crossover and mutation. The choice of pc and pm critically
affects the behavior and performance of GA. pc controls the
capacity of GA to converge near the global optimum after lo-
cating the region containing the optimum, and pm controls the
capacity of GA to explore new regions of the solution space in
search of the global optimum. In the classic genetic algorithm,
crossover and mutation work at a priori, constant probability.
This can result in premature convergence of the GA to a local
optimum. Therefore, it is essential to design an adaptive ge-
netic algorithm that adapts itself to the appropriate crossover
and mutation rates. Different crossover and mutation rate can
traverse different search directions in the state space, thus af-
fecting the performance of the applied genetic algorithm. In
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1 1 0 1Parent 1 1 0 0 1 1 1 0 1 0 0 0 1

0 1 1 0Parent 2 0 1 0 0 1 0 1 0 1 1 0 0

Offspring 1

Offspring 2

1 1 0 1 0 1 0 0 1 0 1 1 0 0 0 1

0 1 1 0 1 0 0 1 1 1 0 0 1 1 0 0

Figure 5: An illustration of Two-Point crossover.

1 1 0 1 1 0 0 1 1 1 0 1 0 0 0 1Original offspring 1

0 1 1 0 0 1 0 0 1 0 1 0 1 1 0 0Original offspring 2

1 1 0 0 1 0 0 1 1 1 0 1 0 0 0 1Mutated offspring 1

0 1 1 0 0 1 0 1 1 0 1 0 1 1 1 0Mutated offspring 2

Figure 6: An illustration of mutation. The mutation operator simply inverts the
value of the chosen gene-bits (0 goes to 1, and 1 goes to 0).

general, the rule should be: for high fitness solutions, lower val-
ues are assigned to pc and pm and higher values of pc and pm
for low fitness solutions [25]. The expressions for pc and pm
we adopted are given as:

pc =

{
pc1−

(pc1−pc2)( f ′− favg)
fmax− favg

f ′ > favg

pc1 f ′ ≤ favg

pm =

{
pm1−

(pm1−pm2)( f− favg)
fmax− favg

f > favg

pm1 f ≤ favg
(10)

where fmax is the maximum fitness value in the population, and
favg is the average fitness value in the population. fmax− favg is
used to identify whether the GA is converging to an optimum
or not. f ′ is the bigger fitness value in the two crossover indi-
viduals, and similarly, f is the fitness value of the individual to
be mutated. [pc2, pc1] and [pm2, pm1] are respectively the valid
ranges of crossover probability and mutation probability speci-
fied by users.

5. The elitist strategy: After a round of selection, crossover
and mutation operation, a new generation will be built. How-
ever, because of the randomness of these genetic manipulations,
it is likely that the best adaptive individuals in the current gen-
eration are destroyed later, which has a considerable impact on
the operating efficiency and convergence of the genetic algo-
rithm. So it is important to prevent promising individuals from
being eliminated from the population between generations. To
ensure the best individual is preserved, we introduce the eli-
tist strategy. As shown in Fig. 7, we first retain the best half
individuals (A, B) from parent generation, and then do selec-
tion, crossover and mutation to produce a new population. We
choose the best individual E from the new population. If the
fitness value of E is higher than A’s, it suggests that the pop-
ulation has already been evolved toward the optimal solution.
Otherwise, we will replace the worst half individuals (G, H)

with the best half individuals in the parent generation (A, B).
The implementation of the elitist strategy not only can guar-
antee that the optimal individuals will not be damaged by the
genetic operators such as crossover and mutation, but also can
guarantee the global convergence of genetic algorithm.

A B C D E F G H

E F G H

A B E F

Selection

Crossover

Mutation

FE
>
FA

F
E ≤
F
A

Figure 7: A process schematic diagram of the elitist strategy. The individual
with bigger size represents owing the bigger fitness value.

6. Repeat 2,3,4,5 until the predetermined terminal crite-
rions are satisfied. The termination criterion is implemented
as a two-step process. Initially, a fixed number of generations
(called Basicgen) is iterated, which prevents the algorithm from
returning a local optima. Then, the evolution terminated after
convergence, which is specified by a fixed error for at least a
given number of generations.

5. On-line Reconstruction and Simulation

Up to now, each vehicle’s best-fit parameter set of IDMM
has been found in the offline module by applying the described
optimization method. The parameter set represents the driver’s
specific driving characteristics. Taking these learned variables,
each car’s initial state (position p and velocity v), and the tra-
jectory data of the first vehicle in each lane as input, we can
reproduce the traffic scene in the whole video (both the period
used for training and the rest). In the simulation, each vehicle’s
acceleration can be calculated using Eqs. (1), (2), (3).

In each time step (∆T ), we update the vehicle’s velocity ac-
cording to kinematic principles:

v(t +1) = v(t)+aidmm∆T (11)

and then update its position as following:

p(t +1) = p(t)+ v(t +1)∆T (12)

In our implementation, we set ∆T = 1/30s (30
frames/second). We use the semi-implicit Euler integra-
tion to update the vehicle’s velocity and position. All the
simulations and experiments have shown that it can lead to
stable results since the vehicle’s acceleration value is indepen-
dent of its position. The acceleration is calculated based on
the vehicle’s relative speed, acceleration and gap to its leading
vehicle.

What’s more, the driver’s characteristics learned from the
training data can be easily integrated into current large-scale
traffic simulation systems based on microscopic models (in our
experiment, the IDMM). There exist many research activities
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focused on planning an optimal trajectory strategy for each in-
dividual based on some optimization criteria, such as the min-
imum amount of (de-)acceleration, and the maximum distance
to other cars to obtain safe and smooth motions, which are all
too idealistic to reflect the real driving situations.

In this paper, we propose a new idea for traffic simulation,
that is, sample-based traffic simulation. Instead of finding each
vehicle’s optimal trajectory, the goal of our approach is to re-
flect the most realistic traffic scene. According to each vehicle’s
trajectory data in the sample video, we get their real driving
characteristics using the previously described approach. Tak-
ing these vehicles with personalized parameters as our example
vehicles, we can build a vivid simulation scene in arbitrary size
and duration based on the IDMM (see the simulation result in
6.2). In conclusion, traffic reconstruction is a scene reproduc-
tion of the sample video, and at a deeper level, our sample-
based traffic simulation can be viewed as a scene extension in
time and space.

6. Results

We have implemented and tested our method on a desktop
PC equipped with Intel Core(TM)2 CPU 6320@1.86GHz, 4GB
main memory (3.5GB available) and NVIDIA GetForce 8800
GTS graphics card.

6.1. Performance Analysis
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Figure 8: The learning error distribution of our algorithm (The total number of
tested vehicles is 300).

The video we used to test is provided by NGSIM, cap-
tured from U.S. Highway 101 (Hollywood Freeway) in the
Universal City neighborhood of Los Angeles, California, dur-
ing 08:20AM-08:35AM. Each vehicle’s trajectory data were
recorded using NGSIM-VIDEO with the frequency of 10
frames per second. Since different roads in different areas
may have different speed limits, it will result in different value
ranges of a0 and v0 in our model. The local traffic rules and

Table 1: Personalized vehicle parameters of IDM and error rate.

vehicle 88 vehicle 772

Error [%] 1.83 5.91
v0 [m/s] 31.82 19.55
T [s] 1.28 1.19
s0 [m] 4.47 2.52
a
[
m/s2

]
0.54 0.61

b
[
m/s2

]
2.45 3.31

β 2.50 2.77

general driving habits are also influencing factors of the param-
eters’ value range. A set of overall parameters’ value range may
lead to giant error when applied in some specific road sections.
Thus, we choose to determine each parameter range for each
road respectively. To U.S. Highway 101, the desired velocity
v0 is restricted to the interval [15,40], the desired time gap T to
[1,5], the minimum distance s0 to [2,7], the maximum accelera-
tion a to [1.5,5], the comfortable deceleration b to [0.1,3.5] and
the adaptation factor β to (0,3]. We set the parameters of GAs
with crossover probability range as [0.5,0.9], mutation proba-
bility range as [0.01,0.1].

We randomly select 300 vehicles to test the performance of
our algorithm and set the basic number of generations to 300,
with 40 individuals per generation. Here we define the con-
vergence as maintaining within a fixed error for at least 150
generations. The learning period is set as the first 300 frames
of each car’s trajectory data. By applying the optimization
method described in Section 4, and measuring the difference
between measured gap and simulated gap calculated from the
calibrated parameters by the mixed error (Eq. (4)), we have
found the best-fit parameters of IDMM to each vehicle’s real
trajectory data. Fig. 8 shows the resulting error distribution of
our approach. Here the obtained error is defined in the range of
[0,30%], which is consistent with typical error ranges obtained
in the previous studies of model calibration ( [3], [27]).

As is illustrated in Fig. 8, among the 300 tested vehicles, 269
of them result in the error rate less than 30%, whereas only 31
tested vehicles lead to the error larger than 30%. This shows
that the simulated behaviors of most vehicles are approximate
to the real trajectory at an acceptable error rate, which implies
that our algorithm is a convincing method to learn each vehi-
cle’s specific driving habits and further produce realistic traf-
fic simulation scenes. We note that the obtained data from
NGSIM-VIDEO has noise because of some objective and sub-
jective influence factors in the data-acquisition procedure. This
is a factor which may lead to notable errors in our learning re-
sults. Another factor for the fit error may come from the non-
constant driving style of drivers.

For detailed illustration, we show the learning results of Ve-
hicle 88 and Vehicle 772 in Table 1, and compare our recon-
struction result with the real data of these two cars respectively
in Fig. 9. For both the two datasets, we take 0∼300th frames
of the trajectory data as the learning sample. The GA heuris-
tic has found the best match between the recorded measures
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Figure 9: Comparison of simulated and observed trajectories of vehicle 88 (the top three images) and vehicle 772 (the bottom three images). The observed
trajectories are all extracted from the video sample. The red line represents the real data. For comparison, the blue and black lines respectively represent the training
and the predicting period with the IDMM. The greens show the simulated results using IDM.

and the simulated ones for the parameter values presented in
Table 1. The corresponding mixed errors are 1.83% for Ve-
hicle 88 and 5.91% for Vehicle 772 separately. As shown in
Table 1, the resulting model parameters vary from one vehicle
to another because of the different driving situations and driv-
ing habits. The comfortable deceleration of Vehicle 772 is 3.31
m/s2, larger than Vehicle 88’s 2.45 m/s2 deceleration value,
which means Driver 772 is likely to brake sharply, while Driver
88 is much more careful. On the other hand, this also leads to
Vehicle 772’s shorter reaction time than Vehicle 88, which is
just in accordance with our learning result for T .

Fig. 9 compares these two vehicles’ dynamics resulting from
the computed parameters in Table 1 with their empirically mea-
sured values. It plotted all the 0∼600th frames measured and
simulated data. The red lines represent the measured data, cov-
ering the entire timeline, and the blue and black lines both stand
for the simulated data using IDMM. Selecting each vehicle’s
0th to 300th frame data as learning sample, the assessments of
learning results are shown in the blue parts. Fig. 9(a) and (d)
show the comparison on the gap to the leading vehicle. It can be
seen that the blue part is basically close to the red part, which
proves that our proper chosen objective function works well.
The green lines show the learning results using IDM. It fur-
ther indicates IDMM is acceptable to approximate drivers’ real
driving behaviors, and our GA-based optimization approach is
suitable to find the best match between the measured trajectory
and the microscopic traffic model.

We use the resulting credible personalized parameters to sim-
ulate vehicles’ behaviors in the subsequent frames, and the rel-
evant data of 300th to 600th frames is plotted in the black line
part of Fig. 9. we can see 301 to 600 simulation results are
still basically in accordance with the real data, indicating that
our approach can be highly predictive for each vehicle’s driving
behavior. Since the error measure is chosen as the vehicle gap
when constructing the objective function, the accumulated error
of our algorithm is suppressed to some extent. Fig. 9(b) and (e)
respectively show Vehicle 88 and Vehicle 772’s comparison re-
sults of momentary velocity. We can see from these two figures
that the velocity error has been automatically reduced while op-
timizing with respect to distance. Moreover, in order to better
reflect the performance of our approach, Fig. 9(c) and (f) intu-
itively plot the two cars’ position comparison results. Overall,
the tests in Fig. 9 have thoroughly validated that our method
is accurate enough to be applied in traffic reconstruction and
sample-based traffic simulation.

Adaptation to the environment: As shown in Fig. 9(a) and
(d), the blue and black lines show the learning results using
IDMM, while the green lines show the learning results with
IDM. It is not hard to see that, without considering the adap-
tation factor to the surroundings, IDM has lower performance
than IDMM. The introduction of β successfully reduces the
learning error and makes the driving model better adapt to the
real-world data. IDM can reflect the vehicle’s basic driving
habits, but is unable to show the respond to the changes in the
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Figure 10: Impact of Basicgen on the performance of AGA.

(a) 500th frames (b) 1500th frames (c) 3000th frames

Figure 11: The representative frames of the original data and the reconstruction data. (a) 500th frames (b) 1500th frames (c) 3000th frames. In all pictures, the top
road shows the real traffic flow while the below one shows our reconstruction result.

environment in a timely manner. This comparison, on the other
hand, shows the adaptation factor β is not a negligible factor to
keep in accordance with the real driving behavior.

Convergence of AGA: For the 300 vehicles we tested, Ta-
ble 2 presents the average performance of the our adaptive ge-
netic algorithm, and compares it with the simple genetic al-
gorithm. It can be seen that, using our AGA, all vehicles are
all perfectly converged within 300 generations on average, and
the total iterative generations are below 400 generations. In
contrast, the simple genetic algorithm has a poor performance
for our specified convergence rules. The search can last more
than 1000 generations and the convergence percent is only 14%.
The employment of static pc and pm is part of the reason that
SGA fails to promise convergence speed or even convergence in
some cases. In addition, the randomness of crossover and mu-
tation also impacts the operating efficiency and convergence of
the genetic algorithm. On the contrary, in our adaptive genetic
algorithm, the adaptive crossover and mutation rate and elitist
strategy greatly accelerate the convergence speed and improve
the overall search capabilities. It is unlikely to result in a local
optimal solution, and the convergence speed is much faster than
that in SGA. All the tests show that AGA can achieve a much
higher accuracy than SGA.

Impact of Basicgen: Fig. 10 shows the Basicgen’s impact on
the performance of AGA. In Fig. 10(a), we can see that, with
the increasing of Basicgen, the convergence generations main-
tain in the same level. The total running generation numbers
maintain in the range of [300, 400] when Basicgen is set be-

Table 2: Performance comparison between our AGA and Simple GA.

Our AGA Simple GA

converge gens per car 217 1000+
total gens per car 388 1000+
convergence percent 100% 14%
calculate time per car 3.76s 34.01s

low 300 whereas it grows linearly when Basicgen is set bigger
than 300. The similar rule of the running time can be found
in Fig. 10(b). Fig. 10(c) proves that, for our terminal criteria,
simply increasing Basicgen has no effect on the learning error.
It also gives grounds for our setting of the Basicgen as 300 in
the above tests.

Timing performance: Because the personalized driving be-
havior learning is computed offline, our method adds no over-
head to the overall simulation runtime. Our offline training time
is equal to the convergence time of AGA. Table 2 shows the tim-
ing performance of our offline training. For 300 tested vehicles,
the average training time is 3.76 seconds. Such a time is accept-
able for offline processing and much shorter than that required
with SGA (34.01 seconds shown in Table 2). In Fig. 10(b), we
plot the average training time as a function of the iteration Ba-
sicgen. Note that our aim is to learn personalized driving char-
acteristics from an input video instead of reconstructing traffic
flows in real time from the input video.
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(a) (b)

(c) (d)

Figure 12: a) Original I-80 vehicle trajectory data. b) Reconstructed I-80 vehicles using Sewall’s approach [1]. c) Original US-101 vehicle trajectory. d) Recon-
structed US-101 vehicles using our approach.

417th frames 607th frames 807th frames 1207th frames

(a)

10th frames 200th frames 400th frames 800th frames

(b)

Figure 13: Snapshots of a single car’s (in red rectangle) behavior in the sample video (a) and our simulation scenario (b). The car’s 10∼800th frame behaviors in
our simulation are similar with the marked car’s 417∼1207th frame behaviors in the video.

(a) sim1 (b) sim2 (c) sim3

Figure 14: Some traffic simulation scenarios generated using our sample-based method.
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6.2. Simulation Results
We have built a typical highway road network and visualized

the various traffic scenarios using our approach. Our system
can simulate each vehicle intelligently as if a real driver was in
it.

Representative frames of the reconstructed traffic flows are
shown in Fig. 11. It can be seen that our reconstruction is a
high approximation to the real traffic flows, and some of the
vehicles even have the same behaviors as the real ones. On the
other hand, it proves that the cumulative error of our approach
is always maintained in an acceptable scope over time. To the
best of our knowledge, in computer graphics, Sewall’s virtual-
ized traffic [1] is currently the only work on traffic reconstruc-
tion, we compare our visualized result to Sewall’s in Fig. 12.
As the main goal of our system is to reflect each driver’s char-
acteristic driving habits, which is totally different from Sewall’s
reconstructing traffic flows from discrete data obtained by sen-
sors placed alongside a road, we only make a visual compari-
son on the reconstruction accuracy of real-world traffic flows.
Fig. 12(a) and (b) are Sewall’s results which are provided in
their article [1]. Fig. 12(c) and (d) show our results. Our benefit
mainly lies in three points:

1) Our approach can achieve a high degree of accuracy in a
smaller range of reconstruction while Sewall’s approach is only
accurate in a coarse level. Their reconstruction has the same ve-
hicle position with the original data at every sensor point (200
to 400 meters apart).

2) Our video-based method has wider applications than Se-
wall’s sensor-based approach. Our learned driving character-
istics can be applied to other scenarios, regardless of time and
space. In this sense, our method is more flexible in applications.

3) What’s more, our video-based method is more cost-
effective and convenient to use than Sewall’s sensor-based
method. Although traffic sensors can access data from monitor-
ing sites directly, they are unsuitable for an ordinary user due
to the high expense and hard maneuverability on a long road.
In contrast, our video-based method provides a much cheaper
solution with less but acceptable accuracy.

In addition, Fig. 14 shows some traffic simulation scenarios
generated using our sample-based method. For the selection
of model variables, our sample-based method provides a theo-
retical basis and has more practical guiding significance, com-
paring with the previous simulation method. By applying the
vehicle’s specific driving characteristics learned from the sam-
ple video in other traffic environments, our approach can sim-
ulate a realistic traffic scenario with various driving behaviors
that look like those in the sample video. In contrast, in the pre-
vious method, the vehicle’s driving behaviors are determined
by randomly generated parameters. In order to show variety,
they just enlarge the range of random values without any real-
istic reference. Also, in order to achieve realistic results around
the stop-and-go road regions, they have to spend many efforts
on regulating individual vehicle’s parameters manually. This
further indicates that our approach has a great realistic signif-
icance and reference value on assessment and improvement of
traffic networks. Fig. 13 shows some comparison snapshots of
the behavior for an individual driver in the sample video and

our simulation scenario. Personalized driving characteristics
are obvious in Fig. 13 although they cannot be easily found in
the accompanying demo.

7. Conclusions and Future Work

This paper presents a new approach for traffic reconstruction
and sample-based simulation, in which each vehicle’s specific
driving characteristics are learned from the trajectory data ex-
acted from the video sample provided by users. We introduce
an adaptive genetic algorithm to search for each vehicle’s op-
timal parameter set of IDMM. Our adaptive genetic algorithm
outperforms existing methods for model calibration. The adap-
tive crossover and mutation rate and elitist strategy greatly ac-
celerate the convergence speed and improve the overall search
capabilities. What’s more, because of the use of IDMM, our
system can describe the adaption of drivers to the surrounding
traffic situation.

To the best of our knowledge, in the computer graphics com-
munity, this is the first attempt at presenting each vehicle’s real
specific driving characteristics and simulating a virtual traffic
flow that behaves similarly to the real traffic in the input video.

Besides the AGA, other nonlinear optimization methods,
such as PSO, are suitable candidates for the offline learning as
well. Our offline training process can be further accelerated be-
cause each driver’s driving characteristics can be calculated in
parallel with the input video available. In our current imple-
mentation, the vehicle trajectory data is obtained using the soft-
ware NGSIM-VIDEO. The defects of the software itself and the
shortcomings in manual operations both may bring about the
noise in data. We are now developing our own system on vehi-
cle detection and tracking. In addition, we mainly focus on the
de-acceleration strategy learning. Little work has been done to
lane-changing behaviors because of its complex nature. In our
future work, an extension would be to learn each vehicle’s lane
changing habits to overcome the limitation, which will lead to
a more vivid traffic reconstruction and simulation.
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