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Abstract-A progressive radiosity algorithm based on piecewise polynomial intensity distribution is 
presented in the paper. Unlike the conventional radiosity method, raciosity across each patch is assumed 
to vary in a polynomial distribution. A generalized radiosity equation for scenes with non-diffuse surfaces 
is then set up and solved by adopting the progressive refinement technique. To improve the efficiency of 
the algorithm, an adaptive Monte Carlo algorithm incorporation with localization technique is employed 
to evaluate the form-factors from source patches to nodes. Experimental results demonstrate the potential 
advantage of our method for rendering complex scenes. ((‘1 1997 Elsevier Science Ltd 

1. INTRODUCTION 

The generation of global illumination effects caused 
by light interreflection between surrounding surfaces 
is one of the main issues for realistic image synthesis. 
The radiosity method, introduced into computer 
graphics from the field of radiative heat transfer, 
provides a powerful tool for simulating the propaga- 
tion of light within a closed environment. As its 
solution is view-independent, this method is very 
suitable for walkthrough of a diffuse environment. 

Since Goral et al. introduced the radiosity method 
into computer graphics in 1984 [1], this method has 
undergone rapid developments during the past 
10 years. The traditional radiosity method assumes 
that the surfaces in the environment are ideal diffuse 
and the radiosity across each local patch is constant. 
The light energy distribution across each surface is 
described as a piecewise constant and the whole 
surface is subdivided into a series of small patches, 
then the radiosity equation for ideal diffuse environ- 
ment is set up. Cohen and Greenberg employ a 
numerical technique called hemi-cube to calculate the 
form-factors between patches [2]. To provide useful 
results at an early stage, Cohen et al. proposed a 
progressive refinement radiosity approach [3]. Later, 
the original radiosity method was generalized to 
handle specular and transparency surfaces [4-81. 

Although the traditional radiosity method proves 
to be effective, recent research shows that the 
resultant light energy distribution strongly relies on 
the subdivision of the scenic surfaces. This problem 
will get more serious if the environment contains 
high curvature surfaces. There are two solutions to 
the problem. The first way is to subdivide these 
surfaces into smaller patches until the radiosity 
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across each patch is nearly constant. The second 
way is to approximate the radiosity across each 
patch with a high order polynomial function. It is 
easy to know that the first way cannot solve the 
approximation precision problem entirely, and it will 
bring serious storage burden. Now more and more 
attention is paid on the second method, research in 
this direction mainly include finite element method 
[8-l l] and radiosity approximation using other kinds 
of basis functions such as wavelet basis [12, 131. The 
methods based on linear approximation proposed by 
Bao and Max are two of the earliest approaches [S. 
91, they incorporate the interpolation function into 
the radiosity equation. and this makes it possible to 
obtain a more accurate radiosity solution with less 
patches. Moreover, Bao’s method is generalized to a 
non-diffuse environment. 

In this paper, we adopt piecewise polynomial to 
express the radiosity distribution across each patch. 
and the corre:;ponding radiosity equation is set up 
accordingly. This equation is generalized to handle 
non-diffuse environment which contains ideal spec- 
ular surfaces and transparency surfaces. As 2-degree 
approximatior. has the advantages of good approx- 
imation precision and less computation cost, a 
progressive refinement radiosity method based on 
2-degree polynomial interpolation is presented as an 
example. In order to improve the computation 
efficiency. an adaptive localization technique is 
adopted to accelerate the calculation of form-factors. 

2. RADIOSITY EQUATION BASED ON PIECEWISE 
POLYNOMIAL INTENSITY DISTRIBUTION 

In a closed environment, the radiant light energy 
of differential surface area &Y(s) containing sample 
point x is made up of its emitted energy and the 
reflected energy. That is, 

B(.Y)dA(.Y) = E(.u)dA(.x) + p(s)H(u) (1) 

281 



282 H. Bao, X. Jin and Q Peng 

where B(.u) is the radiosity of differential surface area 
&j(s), Lo is the area of dS(.u), p(.~) is the diffuse 
reflectivity at point x, H(.u) is the total incident light 
energy to &S(x), and E(x) is the self-emission 
raidiosity. I f  the surface where s lies is a light 
source, then E(x) > 0, otherwise E(x) = 0. 

By definition we know that H(x) is a function of 
radiosity B(x’) (.Y’#.Y) of the surrounding surfaces. 
Generally, only a part of the radiant energy leaving 
differential surface area dS(x’) can arrive at .Y, we use 
form-factor G(x,.u’) to represent the fraction of 
energy leaving differential surface area &is(Y) that 
arrives at differential surface area &S(x). Then the 
contribution of dS(x’) to dS(x) containing x is 
B(x’)G(s,.~‘)ciA(.~‘), and H(x) can be expressed as 

H(s) = 
1 

B(x’)G(s, .+4(.x’) (2) 
s 

By the definition of form-factor we know that 
G(r,s’) can be expressed as 

The relevant parameters are described in Fig. 1. 
V(&(x). clS(x’)) is the occlusion function. 

Combining Equations (l), (2) and (3). we obtain 
the radiosity equation for general diffuse environ- 
ment, 

B(x’)G(s, x’)rlA(s’) 

(4) 

The above system equation describes the energy 
distribution of the scenic surfaces for an ideal closed 
diffuse environment at its equilibrium status. If  the 
solution to the equation can be calculated, the 
environment can be rendered by any hidden surface 
removal algorithms. 

As the radiosity distribution in a scenic surface is a 
complex function, it is difficult to obtain its analytic 
expression. In order to solve this problem, the 

Fig. 1. Geometry of form-factor 

traditional radiosity method divides scenic surfaces 
into a series of patches and assumes the radiosity 
acros:s each patch is constant, thus a simple radiosity 
system equation is established. In this paper, we 
assume the environment is divided into N patches, 
the self-emission and the diffuse reflectivity of each 
patch are constant. but the radiosity across each 
patch is variant. We adopt piecewise polynomial to 
approximate the inner distribution of the radiosity 
function across each patch, then Equation (4) 
becomes 

B;(x’)G(s, .x’)dA,(.u’), 
r’E,y, 

i=l? N , -, “‘I 

(5) 

where &(N) is the radiosity of the ith patch Sj 
containing point s. The other parameters are defined 
similarly. the parameters with sub index i are related 
to patch S;. I f  the radiosity function B,(Y) of patch 
S, is approximated by a polynomial function &(.Y’), 
we have 

M-I 

B,(d) x B/(.X’) = C BCj/)N/(s’) (6) 
I=0 

where N,(Y) is the node basis function in polynomial 
function space, A4 is the number of nodes and it is 
relevant to the degree of polynomial function Bj(.v’). 
For example, if Nl(.v’) is a two dimensional linear 
function, M=4; if Ndx’) is a two dimensional 
quadric function, M= 8. 

As the radiosity function of patch Sj is determined 
by &,) (1=0,1,2.. , M- 1) completely, we can 
convert the unknown variables of Equation (5) into 
the radiosity functions at eight nodes of patch S,. 
Substituting Equation (6) into Equation (5) we 
obtain 

(7) 

where 

1 
F!$-i, = - J’ dA(k) r’tS, 

N,(x’)G(.u.s’)d4i(s’) (8) 

Obviously it is a set of system equations with n 
unknown variables and II equations (rz is the number 
of rodes in the scene), it can be solved by ordinary 
iterative approach. 

Equation (7) is only suited to ideal diffuse 
environment. For general non-diffuse environment, 
specular patches and transparency patches as the 
transfer media of diffuse radiosity should be incor- 
porated into the radiosity equation, then Equation 
(7) becomes 



i- 1.2 . . ..( N;k=O,l. . . . . M- 1 

where h!‘“” (x’) and b!‘)(” (x’) represent the indirect 
radiosit; contribution: to node ik of patch Sj from 
the differential patch dSp and patch dS,, respectively, 
after they are specularly reflected and regularly 
transmitted by patch dS(x’). As these two variables 
are determined by other specular and transparency 
surfaces in the environment, they are defined 
recursively. Their expressions are 
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the surrounding patches. This method reduces the 
storage requirement from O(N’) to O(N). Moreover. 
the environment of current status can be displayed 
after each :teration is finished, and this brings 

(9) convenience in interactive design. 
Since polynomial of degree 2 has good approx- 

imation precision and less computation cost. in the 
following di:icussion we restrict Nl(s’) to a poly- 
nomial of degree 2 (higher degree cases can be dealt 
with similarly). The simplest choice of polynomial 
basis function NAY) of degree 2 is: 1, U, V, UV. &, 

2 3 2 
u. u, l’, but this choice will bring trouble in 
subsequent processes. In this paper, we adopt the 
following method to construct basis function N,(.\-‘). 

Without 11~s of generality we assume all the 
patches in the environment are quadrilaterals 
(triangles can be handled similarly), and the four 
edges of each quadrilateral are iso-parameter lines 
(see Fig. 2). We choose four vertices and the 
midpoints of each edge as the eight nodes, each 
node corresponds to a basis function and N,(s’) 
satisfies 

/+“)““(x’) = ,I;” V(dSp, U’S(?)) i 

l 
I, 

N,(2) = 0, 
\ interpolating function of degree 2, 

when x’ is node I 

when X’ is other node 

others 

h;“‘“‘(d) = pj’) V(dSqr dS(x’)) 
(11) 

“) where p, and p:” represent the specular reflectivity 
and the regularly transparency reflectivity of patch S, 
respectively, the meanings of pi, ql, p2, q2 are similar 
to that of p.q. Detailed deduction can be found in 
reference [8]. By now, we have established the 
radiosity equation for general environment based 
on piecewise polynomial intensity distribution. 

3. SOLUTION TO THE RADIOSITY EQUATION 

The solution to system Equation (9) can be 
obtained by the ordinary Gauss-Siedel iterative 
approach, and the form-factors can be calculated 
by the traditional hemi-cube method [2] or raytracing 
algorithm [11]. But as the time complexity of the 
above equation is O(n’) and n > > N (n is the number 
of nodes. N is the number of patches), solving 
Equation (9) using the Gauss-Siedel approach 
requires a large amount of main memory. In order 
to alleviate the memory requirement, we adopt a 
refined progressive refinement radiosity approach. 

The progressive refinement radiosity algorithm 
provides the user with a useful approximative 
solution as early as possible and efficiently reduces 
the cost of storage. At each iterative step. a patch 
with greatest illumination effect to the environment is 
selected as the source patch which radiates energy to 

It is easy to prove that the constructed NAY) (I= 0, 
1, 2,. , M- 1) form a basis space. From the 
Lagrange interpolating theorem, the polynomial of 
degree 2 sat:sfying the above conditions can be 
expressed as 

I 
No@‘) =d(l -[)(l -a)(-;-?/- 1) 

N2(x’) = $ (1 + ()( 1 - r/)(< - ,I - 1) 

NJ@‘) =;(l +<)(l +s)(:+rl- 1) 

I N6(s’) =t(l -[)(l +r/)(-;+I!- 1) 

A’,(.Y’) =$(I -r/)(1 -<‘) 
(12) 

I n;(S’) = 4 (I + <)( 1 - ?I’) 

h’s(Y) =$(l +?j)(l -iZ) 

A+(.?) =i(l -<)(l -,I?) 

where 

Fig. 2. The parametric definition of a patch. 
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; _ 2(u - 4 ( r _ 2(v - h) , u, - uj+l + uj 

uji I - l”j Vj+l - v/ 2 

,, 
c 

= 21 + \i-’ 
-, 5’ = x’(u, v) 

2 

The basic idea to solve Equation (9) using 
progressive refinement radiosity method can be 
described as follows: at each iteration step, we select 
the patch Sj with greatest unshot energy, the 
algorithm then calculates the direct energy con- 
tribution from patch S’ to every node in the scene, 
thus the diffuse incremental radiosity (the second 
term of Equation (9)) is determined. Then we 
calculate the non-diffuse incremental radiosity (the 
third term of Equation (9)) transmitted to this node 
through all specular patches and transparency 
patches caused by the incremental radiosity of 
other patches. This finishes a whole iteration. In 
the following we will discuss the energy transmis- 
sion process in detail. 

From Equation (7) we know the incremental 
radiosity of each node in the scene due to the 
radiation of patch S, is 

ARad(i/,) = pi 2 B(il)f’k,-iL (13) 
I=0 

where ik is the kth node in patch Sj. Obviously, the 
key to the problem is how to calculate the form- 
factor Fi -i efficiently. 

It is worth pointing out that the above form-factor 
no longer possesses commutation, therefore it is 
impossible to calculate all the form-factor by 
establishing only a hemi-cube at the radiating source 
S,. Thus we adopt the Monte Carlo method to 
calculate F’s mi / I’ 

where ,Y; is the sample point in S,, m is the number 
of sample points, p(Y) is the random sample density 
function of patch Si. p(x’) may be defined in various 
ways. here we simply choose p(.u’)= l/A,. Sample 
point .Y,,’ can be located by the Jitter method and 
Poisson disk method. In the Jitter method, S, is 
firstly uniformly subdivided according to the number 
of sample points, m, then a random point xl!’ is 
generated at each differential patch eh. The number 
of sample points m is determined by the following 
formula 

m=max (El. k]) (14) 

where T,,,, Ts are prescribed solid angle and radiosity 
thresholds. B,,,, is the greatest radiosity contribution 
from patch S, to node in-, and it can be estimated 
according to Equation (14). Therefore 

FL = CIA(&) m h=, 
‘-L&$(X/$+,.Yh’) (15) 

Note that the occlusion test function v(?ih’, ik) in 
G(il,‘, ik) can be computed by intersecting the line 
connecting xh’ and ik with the scenic surfaces (not 
patches) directly. All the acceleration method for 
ray/scene intersection can be adopted in this 
process. 

The key to calculate the non-diffuse term lies in the 
calculation of bj”@’ and bl’)(‘). As bl’)” and 6/‘)(*) 
are d’efined recursively. we use raytracing to calculate 
them. From Equations (10) and (11) we know that 
they can be calculated by the following steps: (1) 
from the current node a ray is shot to the random 
sample point x,~’ of each micropatch e,,, of the 
shooting patch S,; (2) for each ray, the nearest points 
I,, and ,xy (lie in patches p and q, respectively) are 
calculated along the direction of reflected ray and 
refracted ray; (3) the diffuse incremental radiosities 
at points .Y~ and xy contributed by patches p and q 
are calculated using Equation (6), and the radiosity 
contributions to node ik from shooting patch are 
obtained by multiplying them with the corresponding 
specular reflectivity and regular transparency reflec- 
tivity; (4) the above steps continue until a ray hits an 
ideal diffuse surface or the ray trace level reaches the 
predefined maximum level. 

Note that in the above progressive radiosity 
procedure the patch with greatest unshot energy is 
always selected as the shooting source patch at each 
step. As the iteration continues, the unshot energy of 
the shooting patch is getting smaller and smaller, and 
the iaffected region of the shooting patch is getting 
less and less and finally tends to be none. This 
demonstrates that the shooting patch contributes 
only to a very small local region after some 
iterations, the energy contribution to the nodes 
outside of the local region can be neglected. As the 
local affected region can be determined with little 
cost, the efficiency of the above progressive radiosity 
can be greatly improved. 

For simplicity, we approximate the local affected 

region of the shooting patch with a sphere centered 
at the center of the patch. Obviously, the point on 
the sphere receiving the greatest radiosity contribu- 
tion from the shooting patch lies on the line along 
the normal of the patch at its center, the energy 
conribution is 

where &oI,Icc is the average unshot radiosity of the 
shooting patch, F is the form-factor from the 
shooting patch to this point and can be approxi- 
mated by (see Fig. 3) 

where r is the radius of the affected region of current 
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Fig. 3. The determination of the affected region 
shooting patch. 

of the 

shooting patch. it can be determined by the following 
formula 

where E is the prescribed threshold. 
From above discussion we know that if the 

distance from the center of the shooting patch to a 
node is greater than Y, the radiosity contribution to 
the node from the shooting patch can be neglected. 

As &our,, is getting smaller and smaller, so is Y, thus 
the above progressive refinement radiosity becomes 
more and more efficient. Because a shooting patch 
will shoot no energy to its back face, back-culling 
can be employed to improve the efficiency. 

The data structure of a node is 

structnode { 

float position [3], Normal [3];/*the po- 

sitionandnormalof anode*/ 

floatB;/*theradiosityofcurrentnode*/ 

floater;/* accumulatedunshotenergy*/ 

floatARad;/*incrementalradiosityafter 

eachiteration */ 

unsigned done;/* a flag indicates that a 

nodehasbeencomputed*/ 

> 

By now we can depict the progressive refinement 
radiosity algorithm for solving Equation (9). 

/*initialization*/ 

p=Cy=lpiAj/CY=INA, 

Ambient=,,C~=lE.A,/CY=,A, 

for (eachnodeikinthe environment){ 

set NodePtr (ik) as the pointer which 

pointstonodeik; 

NodePtl-(ik)-B=E,+piAmbient; 

NodePtl- ( ik) -AB=E,; 

) 
Untilconvergence{ 

select ,3atchS,withgreatestA,C:=oNodeP- 

trCik)kAB as the shootingpatch; 

calculate the square of the radius of its 

localaffectedreyionr'; 

for (eazhnodeikinthe environment){ 

NodePtr(ik)-ARad=O; 

if(the square of the distance between ik 

and center of the shootingpatch is less 

than r2 && ik lies in the positive half 

space o-!the shootingpatch) 

Fig. 4. A test environment of curved surface with diffuse energy distribution only. 
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Fig. 5. The same environment as Fig. 4 with indirect light energy transfer caused by specular reflections. 

NodePtr(ik)-done=FALSE; 
else 

NodePtr(ik)-done=TRUE; 
1 

for CeachpatchS, in the environment){ 
for (eachnodeik ofpatch Sj){ 

if(NodePtr(ik)+done=FALSE{ 
determinethenumber of samplepointsm 
in patch Sj according to equation (141, 
calculate each random sample point x'~ 
andnormaltothepoint, and computeall 
F;._,, il=O, 1, 2,..., 7); 
NodePtr(ik)+done=TRLJE; 
NodePtrr(ik)-ARad=/)iC:=OF~,~ikNode- 
Ptr(ik)-AB 

I 
for (each specular or transparency patch 

S,){ 
calculate sample points x'~,~ on patch Sj 
andthenormalsatthesepoints, calculate 
the a.reaofeachmicropatche,,t; 
setthedoneflaginnodedatastructurebe 
FALSE; 

SRad=O.O; 
for (eachnodeikinthe environment) { 

if(NodePtrr(ik)+done=FALSE) 
for (eachmicropatche,,, onpatchS,){ 

compute G(ik,x’,,t ) i 
startfromik,shootaraytopoint 
x'~,~ and trace into the environ- 
ment, determine ,j" (P) and 
bit' iq) . 

SRad=SRad+G(lk,x',,, J 
(bj" (P)+bjt) (9)) ; 

} 
NodePtr(ik)-done=TRUE; 
NodePtr(ik)-ARad+=piSRad; 
NodePtr(&-B+=piSRad; 

1 
for (eachnodeikinthe environment){ 

jVodePtr(ik)+AB+=NodePtr(ik-ARad; 
.VodePtr(ik)-B+=NodePtrr(ik)-ARad+pi- 
.AAmbient; 

1 
for(eachpatchSj in the environment){ 

AG+=(C&,NodePtr(ik)+ARad/8; 

Table 1. CPU time for generating Figs 4-6 

Iteration: 200 Environment subdivision Radiosity calculation Rendering Total time 

Fig. 4 9” 49’40” 9’50” 59’39” 
Fig. 5 9” 62’213” 9’50” 12’ 19” 
Fig. 6 33” 262’41” 24’15” 287’29” 



Progressive radiosity algorithm 287 

Fig. 6. Another test environment of curved surface with diffuse energy distribution only 

AAmbient=RAG,JJy=lAi; 

set the unshot radiosity of each node of 

shootinqpatchSjto0; 

4.IMPLEMENTATION 

The above algorithm has been implemented on an 
SGI 4D-35 workstation at the State Key Lab of 
CAD &CG. Zhejiang University. Figures 4 and 5 
adopt the same test environment. Figure 4 concerns 
only the diffuse energy distribution, in Fig. 5 indirect 
energy contribution via mirrors are taken into 
account. From the two pictures we can see the 
difference of energy distribution on the floor. Figure 
6 is another test scene rendered with our algorithm, 
the environment consists of 91 spheres, 9 planes and 
3 light sources. 200 iterations are used for progressive 
refinements. Ordinary ray tracing algorithm is 
adopted in the rendering phase and 2x2 super- 
sampling is employed to eliminate aliasing. The 
thresholds of solid angle and maximum energy is 
predefined as 0.001256(~,,) and 2.5( Ts), respectively. 
The CPU time for generating the three images are 
listed in Table 1. The resolution of the three images is 
1280x 1024. 

S.CONCLUSlON 

We have presented a new progressive radiosity 
algorithm which assumes that the radiosity across 
each patch varies in a polynomial distribution. A 
general radiosity equation for scenes with non-diffuse 
surfaces is then set up and solved by adopting a 
progressive refinement technique. Adaptive Monte 

Carlo random sampling technique is employed to 
calculate the form-factor from a patch to a node, and 
we have also developed the technique of light energy 
transfer localization, which successfully reduces the 
computationa. cost of solving the radiosity equation. 
With our method, the surfaces of the environment 
can be subdivided in a coarser manner than w-ith the 
traditional ra’diosity method while keeping the same 
precision and hence suitable for complex environ- 
ment rendering. 
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