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Abstract

Convolution surface has the advantage of being crease-free and bulge-free over other kinds of implicit surfaces.

Among the various types of skeletal elements, line segments can be considered one of the most fundamental as they can

approximate curve skeletons. This paper presents analytical solutions for convolving line segments with varying kernels

modulated by polynomial weighted functions. We derive the closed-form formulae for most classical kernel functions,

namely Gaussian, inverse linear, inverse squared, Cauchy, and quartic functions, and compare their computational

complexity. These analytical solutions can be incorporated into existing implicit surface modeling systems for more

convenient modeling of generalized cylindrical shapes. We demonstrate their high potentials for modeling and

animating branching and tubular organic objects with some examples. We also propose a new competitive kernel

function that has a smoothness control parameter. r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Geometric objects are often modeled using parametric

surfaces and polygon meshes; however, many smooth

deformable objects with complex and time-varying

topology are more conveniently modeled as field-based

implicit surfaces. Examples of such objects are liquids,

clouds, tree branches and other organic shapes. Conse-

quently, implicit surfaces have gained acceptance in

shape morphing, surface reconstruction, natural phe-

nomena simulation, and space deformation [1–7].

Metaballs, distance surfaces, convolution surfaces,

and variational surfaces are some well-known types of

implicit surfaces. Metaballs (or blobs, soft objects) [8–

11] are defined in terms of point fields, and are widely

implemented in commercial modeling packages (e.g.,

Softimage, 3D Studio Max) and supported by many ray-

tracing software (e.g., Rayshade, POV-Ray). Never-

theless, point-based field surfaces suffer from some

drawbacks: flat surfaces have to be approximated by

many closely packed metaballs to avoid bumps, causing

expensive computation; curve skeletons, which naturally

abstract many shapes, have to be converted to points,

causing incompact representations. Distance surface

offers a solution to this problem by generalizing point-

based skeletons to higher dimensional ones [12–13].

Unfortunately, distance surfaces have a major weakness;

wherever a skeleton is not convex, the surface may have

bulges, creases and curvature discontinuity [14].

Bloomenthal and Shoemake presented convolution

surfaces [15] (Fig. 1) as a natural and powerful extension

to point-based field surfaces to include line segments,

curves, polygons as skeletal elements. By convolving

these skeletons with a three-dimensional (3D) low-pass

Gaussian filter kernel, convolution surfaces overcome

the problem of bulges and curvature discontinuity in

distance surfaces. Their other desirable advantages

include intuitive shape design, well-behaved blending

and fluid topology changes in accordance with the

underlying skeleton. Computer vision research has

shown that any 3D object can be defined entirely from
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a geometric skeleton [16]; that is, skeletons are natural

abstractions for 3D objects. Convolution surfaces also

offer a means of controlling the shape of an underlying

modeling object by controlling its skeleton, which is

easier to manipulate due to its lower dimension.

While the modeling potentials of convolution surfaces

are very attractive, their mathematical formulations still

pose some open problems, stemming from the fact

that convolution integrals seldom yield closed-form

solutions. There are limited choices of kernel

functions and skeletal primitives that can be convolved

together analytically. By using the superposition prop-

erty of convolution surface and separable property of

the Gaussian filter, Bloomenthal and Shoemake calcu-

lated the field function numerically based on point-

sampling method [15], which unfortunately suffers

from potential under-sampling artifacts and large

storage. The existence of closed-form solutions depends

on both the skeletal element and the kernel function.

By employing a kernel function called Cauchy

function McCormack and Sherstyuk deduced analytical

solutions for points, line segments, polygons, arcs and

planes [17–19].

In convolution surface modeling, line segments can be

viewed as one of the most fundamental ones because

many objects can be abstracted into curve skeletons, and

curve skeletons can in turn be subdivided into line

segments. The analytical model for line-segment primi-

tive derived by McCormack and Sherstyuk treats the

weight distribution along the skeleton uniformly, thus

modeling tapering or generalized cylindrical shapes

requires specifying multiple line segments. Unlike

generalized cylindrical distance surfaces, which can be

produced by simply varying the distance in the field

computation, this approach fails for generalized cylind-

rical convolution surfaces [20].

In an earlier work, we have presented an analytical

solution for line-segment skeletons convolved with the

Cauchy function modulated by polynomial weighted

distributions [21]. This paper further proves that

analytical solutions for line-segment skeletons with

polynomial weighted distributions can be derived for

most other classical kernel functions, namely Gaussian,

inverse linear, inverse squared, inverse cubic, inverse

quintic, and quartic polynomial functions. In addition,

we propose a new competitive kernel function that has a

smoothness control parameter and derive the corre-

sponding analytical solutions. Our model can also be

applied to curve skeletons by subdividing the skeletons

into polylines as well as subdividing the given poly-

nomial weighted distribution. With the analytical for-

mulae derived for all the commonly used kernel

functions of implicit surfaces, our method can be

incorporated into any software.

Fig. 1. Convolution surface modeling examples: (a) the trunk of a potted plant, (b) a cactus.
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2. Convolution surfaces

A convolution surface is determined by a skeleton

consisting of 3D points, each of which contributes to the

field function according to its distance to a space point

in question. Let Pðx; y; zÞ be a space point in R3; and let

g : R3-R be a tri-variate geometry function that

represents a modeling skeleton V :

gðPÞ ¼
1; PAskeleton V ;

0 otherwise:

(

Let f : R3-R be a potential function that describes the

field generated by a single point in the skeleton, and Q

be a point in the skeleton V ; then the total field

contributed by the skeleton at a point P is the

convolution of functions f and g; as defined by

McCormack and Sherstyuk [17]

F ðPÞ ¼
Z

V

gðQÞf ðP�QÞ dV :

Thus, f is also called the convolution kernel. The

geometry function gives the distribution of the skeleton,

and the field function describes the potential of the

skeleton at a specific position.

One of the most important properties of convolution

surfaces is superposition, which means summing the

convolution surfaces generated by two separate skele-

tons yields the same surface as that generated by their

combined skeleton. Therefore, when designing a con-

volution surface, the user only has to be concerned with

the shape of the skeleton; the independent evaluation

property ensures that the skeletons can be arbitrarily

subdivided and the field function of the sub-skeletons

can be simply summed to evaluate the final convolution

surface.

3. Polynomial field computation for line segments

with various kernel functions

A line segment LðtÞ of length l; with start point b and

unit direction n, can be represented parametrically as

LðtÞ ¼ bþ tn; 0ptpl:

The squared distance from a point P to a point on the

line LðtÞ is then

r2ðtÞ ¼ d2 þ t2 � 2tddn ¼ ðt � hÞ2 þ ðd2 � h2Þ;

where d ¼ P� Lð0Þ; d ¼ jjdjj; and h ¼ ddn:
The idea of using weight functions in defining

convolution surfaces was introduced in [15], but no

closed-form solutions were developed. Our primary

purpose is to develop analytical convolution surface

solutions for line-segment skeletons with polynomial

weighted distributions. Let Fti

lineðPÞ denote the field

function of the line segment LðtÞ with weight distribu-

tion ti: For i ¼ 0; 1; 2; 3; we can obtain the following:

F1
lineðPÞ ¼

Z l

0

f ðrÞ dt; Ft
lineðPÞ ¼

Z l

0

tf ðrÞ dt

Ft2

lineðPÞ ¼
Z l

0

t2f ðrÞ dt; Ft3

lineðPÞ ¼
Z l

0

t3f ðrÞ dt:

3.1. Gaussian function

Gaussian function is one of the earliest used field

functions in implicit surface modeling. It is given by

f ðrÞ ¼ e�a2r2

; r > 0;

where the parameter a is related to the standard

deviation of the function and is used to control the

degree of decay of the field function. Gaussian function

is attributed to Jim Blinn [8], and was used as the kernel

function of convolution surfaces by Bloomenthal and

Shoemake [15]. It is also used by Muraki to fit simple

blobby primitives to the range data [22]. From the point

of view of signal processing, Gaussian function is a low-

pass filter imposing on skeletons.

To obtain the field function of a line segment with

constant distribution, we substitute r2ðtÞ into F1
lineðPÞ

and integrate

F1
lineðPÞ ¼

1

a
e�a2ðd2�h2Þ

Z aðl�hÞ

�ah

e�t2 dt

¼

ffiffiffi
p

p
2a

e�a2ðd2�h2Þ sgnðl � hÞerfðajl � hjÞ½

þsgnðhÞerfðajhjÞ�;

where erfðxÞ returns the error function integrated

between 0 and x;

erfðxÞ ¼
2ffiffiffi
p

p Z x

0

e�t2 dt; x > 0;

and sgnðxÞ is a sign function defined as

sgnðxÞ ¼

1;

0;

�1;

x > 0;

x ¼ 0;

xo0:

8><
>:

Similarly, by applying integration techniques, we can

deduce the following formulae for line segments with

weight distributions t; t2; and t3; respectively:

Ft
lineðPÞ ¼ hF1

lineðPÞ þ
1

2a2
e�a2ðd2�h2Þ½e�a2h2

� e�a2ðl�hÞ2 �;

Ft2

lineðPÞ ¼ 2hFt
lineðPÞ þ

1

2a2
� h2

	 

F1

lineðPÞ

�
1

2a2
e�a2ðd2�h2Þ½ðl � hÞe�a2ðl�hÞ2 þ he�a2h2

�;
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Ft3

lineðPÞ ¼ 3hFt2

lineðPÞ � 3h2Ft
lineðPÞ þ h3F1

lineðPÞ

�
1

2a4
e�a2ðd2�h2Þ½ða2ðl � hÞ2 þ 1Þe�a2ðl�hÞ2

� ða2h2 þ 1Þe�a2h2

�:

3.2. Inverse linear function

The inverse linear function is given by

f ðrÞ ¼ 1=r; r > 0

and was used in implicit surface modeling by Wyvill and

van Overveld [23].

When modeling implicit surfaces using the inverse

type of functions, the point at r ¼ 0 causes the division-

by-zero error. In order to clip the singular point, we

calculate the squared distance from the point P to the

closest point on the line segment LðtÞ as follows:

r2 ¼

d2; ho0;

ðd� hnÞdðd� hnÞ; 0phpl;

ðd� lnÞdðd� lnÞ; h > l:

8><
>:

If r2oe; where e is a specified small number ðe ¼ 10�6Þ;
we set the potential function of the point P to be a very

large value.

Let m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 2hl þ l2

p
; the field functions due to the

line segment with 1; t; t2; t3 weight distributions can be

integrated to

F1
lineðPÞ ¼ ln

m þ ðl � hÞ
d � h

	 

;

Ft
lineðPÞ ¼ hF1

lineðPÞ þ ðm � dÞ;

Ft2

lineðPÞ ¼ 2hFt
lineðPÞ � h2F1

lineðPÞ þ
1

2
ððl � hÞm þ hdÞ

�
d2 � h2

2
ln

m þ ðl � hÞ
d � h

	 

;

Ft3

lineðPÞ ¼ 3hFt2

lineðPÞ � 3h2Ft
lineðPÞ þ h3F1

lineðPÞ

þ ðl � hÞ2m � h2d �
2

3
m3 þ

2

3
d3:

3.3. Inverse squared function

For the inverse squared function

f ðrÞ ¼ 1=r2;

after the integration, we obtain

F1
lineðPÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � h2

p arctan
l � hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � h2

p þ arctan
hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2 � h2
p

 !
;

Ft
lineðPÞ ¼ hF1

lineðPÞ þ
1

2
ln

d2 � 2hl þ l2

d2
;

Ft2

lineðPÞ ¼ 2hFt
lineðPÞ � d2F1

lineðPÞ þ l;

Ft3

lineðPÞ ¼ 3hFt2

lineðPÞ � ð2h2 þ d2ÞFt
lineðPÞ

þ h3F1
lineðPÞ þ

l2

2
� lh:

3.4. Inverse cubic function

The inverse cubic function f ðrÞ ¼ 1=r3 was introduced

by Marie-Paule Cani et al. for fast convolution

computation, and was successfully used for subdivision

curve skeletons in implicit surface modeling [24]. The

analytical fields for line segments with weight distribu-

tions tiði ¼ 0; 1; 2; 3Þ are:

F1
lineðPÞ ¼

1

d2 � h2

l � h

m
þ

h

d

	 

;

Ft
lineðPÞ ¼ hF1

lineðPÞ þ
1

d
�

1

m
;

Ft2

lineðPÞ ¼ 2hFt
lineðPÞ � h2F1

lineðPÞ

þ ln
l � h þ m

d � h

	 

�

l � h

m
þ

h

d

	 

;

Ft3

lineðPÞ ¼ 3hFt2

lineðPÞ � 3h2Ft
lineðPÞ

þ h3F1
lineðPÞ þ m � d þ ðd2 � h2Þ

1

m
�

1

d

	 

:

3.5. Inverse 2n+1 degree function

From the derivation for the inverse cubic function, the

log function in the analytical fields can be avoided by

using higher degree inverse functions. For the inverse

2n þ 1 degree function f ðrÞ ¼ 1=rð2nþ1Þ; nX2; we have

F1
lineðPÞ ¼

1

ðd2 � h2Þn
Xn�1

k¼0

ð�1Þk

2k þ 1

n � 1

k

 !

	
t2kþ1

ðt2 þ ðd2 � h2ÞÞð2kþ1Þ=2

����� l � h

�h
;

Ft
lineðPÞ ¼ hF1

lineðPÞ

�
1

ð2n � 1Þðt2 þ ðd2 � h2ÞÞð2n�1Þ=2

����� l � h

�h
;

Ft2

lineðPÞ ¼ 2hFt
lineðPÞ � h2F1

lineðPÞ

þ
1

ðd2 � h2Þn�1

Xn�2

k¼0

ð�1Þk

2k þ 3

n � 2

k

 !

	
t2Kþ3

ðt2 þ ðd2 � h2ÞÞð2Kþ3Þ=2

����� l � h

�h
;
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Ft3

lineðPÞ ¼ 3hFt2

lineðPÞ � 3h2Ft
lineðPÞ þ h3F1

lineðPÞ

�
1

ð2n � 3Þðt2 þ ðd2 � h2ÞÞð2n�3Þ=2

����� l � h

�h

þ
d2 � h2

ð2n � 1Þðt2 þ ðd2 � h2ÞÞð2n�1Þ=2

����� l � h

�h
;

which does not require log computation. When n equals

2, we have the simplest inverse quintic function f ðrÞ ¼
1=r5; and obtain

F1
lineðPÞ ¼

1

ðd2 � h2Þ2
l � h

m
þ

h

d
�
ðl � hÞ3

3m3
�

h3

3d3

	 

;

Ft
lineðPÞ ¼ hF1

lineðPÞ �
1

3

1

m3
�

1

d3

	 

;

Ft2

lineðPÞ ¼ 2hFt
lineðPÞ � h2F1

lineðPÞ

þ
1

3ðd2 � h2Þ
ðl � hÞ3

m3
þ

h3

d3

	 

;

Ft3

lineðPÞ ¼ 3hFt2

lineðPÞ � 3h2Ft
lineðPÞ þ h3F1

lineðPÞ

�
1

m
�

1

d

	 

þ

d2 � h2

3

1

m3
�

1

d3

	 

:

3.6. Blended inverse function

A disadvantage of the above inverse type of kernel

functions is that it does not provide any control

parameter. Since the field decays slowly for the inverse

linear function, and faster for the inverse quintic

function, we propose a new kernel function by forming

a weighted average of them as follows:

f ðrÞ ¼
1 � s4

r
þ

s4

r5
; 0psp1;

where s is a smoothness control parameter. We call it the

blended inverse function. We use s4; instead of s; so as to

compensate for the different decaying rates such that

when s equals 0.5, the resulting convolution surface is

about a half-way blend between the surfaces generated

by the two inverse functions. Fig. 2 illustrates the effect

of different s values on some convolution surfaces,

which have two crossed line segments as their underlying

skeleton.

The analytical field formulae for line segments with

weight distributions tiði ¼ 0; 1; 2; 3Þ are

F1
lineðPÞ ¼ ð1 � s4Þln

l � h þ m

d � h

	 


þ
s4

ðd2 � h2Þ2
l � h

m
þ

h

d
�

ðl � hÞ3

3m3
�

h3

3d3

	 

;

Ft
lineðPÞ ¼ hF1

lineðPÞ þ ð1 � s4Þ m � dð Þ �
s4

3

1

m3
�

1

d3

	 

;

Ft2

lineðPÞ ¼ 2hFt
lineðPÞ � h2F1

lineðPÞ þ
1 � s4

2
ððl � hÞm þ hdÞ

� ð1 � s4Þ
d2 � h2

2
ln

m þ ðl � hÞ
d � h

	 


þ
s4

3ðd2 � h2Þ
ðl � hÞ3

m3
þ

h3

d3

	 

;

Ft3

lineðPÞ ¼ 3hFt2

lineðPÞ � 3h2Ft
lineðPÞ þ h3F1

lineðPÞ

þ ð1 � s4Þ ðl � hÞ2m � h2d �
2

3
m3 þ

2

3
d3

� �

� s4 1

m
�

1

d

	 

þ

s4ðd2 � h2Þ
3

1

m3
�

1

d3

	 

:

3.7. Cauchy function

Cauchy function was first introduced to implicit

surface modeling as a convolution kernel by McCor-

mack and Sherstyuk [17],

f ðrÞ ¼
1

ð1 þ s2r2Þ2
; r > 0;

where s is a parameter used to control the width of the

kernel. The main advantage of this kernel is that it can

produce closed-form solutions for the most number of

skeletal primitives, namely points, line segments, poly-

gons, arcs and planes. We have presented the analytical

solution for line-segment skeleton with polynomial

weight distribution for Cauchy kernel function and its

performance in [21].

3.8. Quartic polynomial

Several polynomial potential functions have been

adopted in implicit surface modeling; for example, the

Fig. 2. Convolution surfaces with blended inverse kernel and various s values: (a) s ¼ 0; (b) s ¼ 0:25; (c) s ¼ 0:5; (d) s ¼ 0:75; (e)

s ¼ 1:0:
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piecewise quadratic polynomials used in metaball [9], the

six-degree polynomials used in soft object modeling [10],

and the quartic polynomial used in ray-tracing

software such as Rayshade and POV-Ray. Among

these polynomials, the quartic polynomial is the

simplest, thus we consider it here; the analytical

formulae for the other polynomial potential functions

can be analogously deduced, albeit with more computa-

tion cost.

The quartic polynomial kernel is represented by

f ðrÞ ¼
1 �

r2

R2

	 
2

; rpR;

0; r > R;

8><
>:

where R is the effective radius of the kernel. Due to the

kernel’s finite support, for any point on the skeletal line

segment whose distance to a point P is larger than R; its
field contribution to P is zero. Thus when calculating the

field at the point P; we must use a sphere centered at P

with radius R to clip the line segment to find the sub-

line-segment that contributes to the field function

(Fig. 3).

The equation of the sphere centered at P with radius

R is

ðX� PÞ2 ¼ R2:

Substituting LðtÞ into the sphere equation gives

ðt � hÞ2 ¼ R2 � d2 þ h2:

If the discriminant D ¼ R2 � d2 þ h2o0; there is no

intersection between LðtÞ and the sphere, and the field

contribution from the line segment to P is zero;

otherwise, i.e., DX0; the intersection points between

the line and the sphere are

t1 ¼ h �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � d2 þ h2

p
; t2 ¼ h þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � d2 þ h2

p
:

If t2o0 or t1 > l; then there is no valid intersections

between LðtÞ and the sphere, and the line segment

contributes zero field to P: Otherwise, the sub-line-

segment of LðtÞ that contributes positive field to P is

½l1; l2�; where l1 ¼ maxð0; t1Þ and l2 ¼ minðl; t2Þ:
By integrating in domain ½l1; l2�; we can obtain the

analytical field formulae for LðtÞ with weight distribu-

tions tiði ¼ 0; 1; 2; 3Þ as follows:

F1
lineðPÞ ¼

1

R4

1

5
ðl52 � l51 Þ � ðl42 � l41 Þh þ

2

3
ðl32 � l31 Þ

	
	 ð2h2 � ðR2 � d2ÞÞ þ 2ðl22 � l21 ÞhðR

2 � d2Þ

þ l2 � l1ð ÞðR2 � d2Þ2
�
;

Ft
lineðPÞ ¼

1

R4

1

6
ðl62 � l61 Þ �

4

5
ðl52 � l51 Þh þ

1

2
ðl42 � l41 Þ

	

	 ð2h2 � ðR2 � d2ÞÞ þ
4

3
ðl32 � l31 ÞhðR

2 � d2Þ

þ
1

2
ðl22 � l21 ÞðR

2 � d2Þ2Þ;

Ft2

lineðPÞ ¼
1

R4

1

7
ðl72 � l71 Þ �

2

3
ðl62 � l61 Þh þ

2

5
ðl52 � l51 Þ

	
	 ð2h2 � ðR2 � d2ÞÞ þ ðl42 � l41 ÞhðR

2 � d2Þ

þ
1

3
ðl32 � l31 ÞðR

2 � d2Þ2


;

Ft3

lineðPÞ ¼
1

R4

1

8
ðl82 � l81 Þ �

4

7
ðl72 � l71 Þh þ

1

3
ðl62 � l61 Þ

	

	 ð2h2 � ðR2 � d2ÞÞ þ
4

5
ðl52 � l51 ÞhðR

2 � d2Þ

þ
1

4
ðl42 � l41 ÞðR

2 � d2Þ2


:

4. Weight distribution control with cubic profile curves

As it is difficult to imagine the shape of a polynomial

curve only from its coefficients, we present an intuitive

interface for defining a cubic spline curve to control the

weight distribution along a line-segment skeleton. The

idea of this cubic control curve is similar to that of

Kochanek et al’s interpolating splines [25], which are

widely used for designing keyframe animation in

commercial animation software such as Softimage,

Alias|Wavefront, and Maya.

A degree n Bezier curve qðuÞ with control points

ði=n; qiÞ; i ¼ 0; 1; 2;?; n is given by

qðuÞ ¼
Xn

i¼0

i

n
; qi

	 

Bi;nðuÞ;

where Bi;nðuÞ are the Bernstein polynomials. From the

following identity

Xn

i¼0

i

n
Bi;nðuÞ ¼ u½ð1 � uÞ þ u�n ¼ u;

it is clear that the abscissa of any point qðuÞ on the curve

equals u; and thus the curve can be rewritten as qðuÞ ¼Pn
i¼0 qiBi;nðuÞ: This special type of Bezier curve is called

non-parametric Bezier curve [26] and is an intuitive and

computationally efficient shape control tool.

z

y

x

b

L(t)

n

P

R

Fig. 3. Calculating the integration domain for a line segment.
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Fig. 4 shows our interface. Those points marked as

solid squares (q0; q3; q6) are the points to be interpolated,

which can be added or removed freely according to

user’s requirement. The control points between two

adjacent interpolated points (e.g., q1 and q2) are

automatically added for locally controlling the shape

of the curve. They are restricted to move vertically and

maintain geometric continuity at the interpolated points.

Clearly, a user may break the slopes to introduce

discontinuity in the weight distribution.

In order to calculate the field function of the entire

line-segment skeleton, the profile curve is subdivided at

the interpolated points and the field functions of

individual sub-line-segments are summed. The correct-

ness is guaranteed by the superposition property of

convolution surfaces. Take the first span of the curve in

Fig. 4 as an example. Let the length of the sub-line-

segment between q0 and q3 be l0; and let u ¼ t=l0; then

the weight at parameter t is

q0ðtÞ ¼ qðuÞ ¼
X3

i¼0

qiBi;3ðuÞ ¼
X3

i¼0

q0it
i;

where

q00 ¼ q0;

q01 ¼ 1=l0ð�3q0 þ 3q1Þ;

q02 ¼ 1=l20 ð3q0 � 6q1 þ 3q2Þ;

q03 ¼ 1=l30 ð�q0 þ 3q1 � 3q2 þ q3Þ;

thus the field function for this sub-line-segment is

FlineðPÞ ¼ q00F1
lineðPÞ þ q01Ft

lineðPÞ

þ q02Ft2

lineðPÞ þ q03Ft3

lineðPÞ:

The total field can be obtained by summing the fields of

all sub-line-segments.

5. NURBS curve skeletons

Many natural objects can be abstracted as curves.

Since NURBS curve is a standard for representing

freeform curves, we now consider generating convolu-

tion surfaces from NURBS curve skeletons. The

NURBS curves are assumed to be cubic with clamped

knot vectors (i.e., the curves interpolate the two end

control points). By specifying a dense parameter that

controls the number of points into which each poly-

nomial segment is to be divided [26], and applying the

deBoor algorithm, we can approximate the NURBS

curve into a polyline P0P1?Pn:
To compute the control points of the Bezier

weight distribution curve for each sub-line-segment

in the polyline, we need the arc-length parametri-

zation of the polyline. Let the length of the ith segment

PiPiþ1 of the polyline be li ¼ jjPiþ1 � Pi jj; i ¼
0; 1;?; n � 1: By using the chord length parametriza-

tion, we obtain the following parameters at the joints of

the polyline:

u0 ¼ 0; ui ¼ ui�1 þ
Xi�1

j¼0

lj=
Xn�1

j¼0

lj

 !
:

For each sub-line-segment PiPiþ1; i ¼ 0; 1; 2;?; n � 1;
we apply the de Casteljau algorithm [26] to subdivide the

profile curve qðuÞ to compute the control points of the

weight distribution curve over interval ½ui; uiþ1�: The field

for the entire NURBS curve is then evaluated by

summing the fields of all sub-line-segments.

6. Computational efficiency and results

We have implemented our algorithm on a Pentium III

400E PC with 128M main memory. To analyze the

computational complexity of the various kernels, we use

a skeleton consisting of two line segments: from (�4,0,0)

to (4,0,0), and from (0,�4,0) to (0,4,0). The space

volume is organized into a uniform grid of 150 	 150 	
150 nodes, yielding 3.375 million function evaluations.

The time taken to evaluate the skeleton with cubic

polynomial distribution and the various kernels is given

in Table 1. When evaluating the field functions, we make

full use of previously calculated results with optimiza-

tions to reduce the number of operations. The kernels

are ranked according to their evaluation time, and the

ranking is found to be close to Sherstyuk’s speed ratings

for line segments with uniform distributions [19]. Table 1

also lists the special functions needed, which can be

regarded as a rough indication of the kernel’s perfor-

mance.

The results show that polynomial kernel function is

still the most efficient. One reason is that polynomial

kernel involves the least number of special functions;

only one square root is needed. Another reason is that

polynomial function has finite support: the field of any

point further from the line segment than the effective

radius is zero, and thus further computations can be

eliminated. Obviously, when choosing a kernel function,

computational cost is not the only factor to consider.

0

q0
q1

q2

q3

q4

q5

q6

t

q

Fig. 4. A cubic control curve for defining a weight distribution.
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Compatibility between kernels and primitives, and the

controllability of the resulting surface, should also be

taken into account. From the table, our proposed

blended inverse kernel appears as a competitive one

compared with the Cauchy kernel. For the inverse type

of kernels, the field of any point in the skeleton is

infinite; this feature guarantees that the skeleton is

always preserved regardless of the threshold chosen,

which can be regarded as an advantage. For other kernel

functions, such as polynomial, Cauchy and Gaussian

kernels, improperly chosen threshold may ‘‘eat away’’

part of the skeleton, which may be annoying for

designing a shape using one-dimensional skeletons.

We have rendered several modeling examples to

demonstrate the modeling capabilities of our method.

For the sake of uniform processing, all the convolution

models are first polygonized into polygon meshes using

Bloomenthal’s polygonizer algorithm [27,28], and a ray-

tracing algorithm is then employed to render the

polygon meshes with solid or projective texture map-

ping. The trunk of the potted plant shown in Fig. 1(a) is

convolved with 1 NURBS curve and 5 line segments.

The cactus shown in Fig. 1(b) is convolved with 8 line

segments. Fig. 5 is a virtual alien plant; its skeleton is

made up of 24 line segments. The joshua tree trunk in

Fig. 6 is modeled with 20 line segments, while the

cartoon enforcer in Fig. 7 with 32 line segments. Fig. 8 is

an example of a willow tree, with the stem and the main

Table 1

Time taken and speed ranking

Kernel function Special functions Time (s) Rating

Quartic polynomial 1 sqrt 2.390 1

Inverse linear 2 sqrt, 1 log 5.378 2

Inverse cubic 2 sqrt, 1 log 6.764 3

Inverse quintic 2 sqrt 7.734 4

Inverse squared 1 sqrt, 2 atan, 1 log 7.913 5

Blended inverse 2 sqrt, 1 log 9.552 6

Cauchy 1 sqrt, 1 log, 2 atan 10.332 7

Gauss 2 erf, 3 exp 13.432 8

Fig. 5. An alien plant.

Fig. 6. The trunk of a joshua tree.

Fig. 7. A cartoon enforcer.

Fig. 8. A willow tree.
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branches modeled with convolution surfaces, and the

twigs and leaves modeled with traditional modeling

methods. These examples show that the convolution

surfaces with non-uniform density distributions can be

used to model tapering effects conveniently and

efficiently.

7. Conclusions

Convolution surfaces have the advantage of produ-

cing pleasing crease-free and bulge-free features over

other kinds of implicit surfaces. One drawback that

prevents its more extensive use is the expensive

computation and high memory cost incurred by

numerical methods if closed-form solution does not

exist for calculating the field function. In this paper, we

present the closed-form solutions for line-segment

skeletons with polynomial weighted distributions for

most of the commonly used kernel functions. The

polynomial distribution along a line-segment skeleton

can be intuitively specified using a cubic Bezier spline

curve. The skeletons may also be NURBS curves, in

which case they are automatically subdivided into line

segments. Since tapering effects and tubular shapes of

varying radius are prevalent in organic shapes, our exact

evaluation formulae provide an effective solution to

model these shapes. We also propose a new competitive

kernel that has a smoothness control parameter. Finally,

we examine the performance of the various kernels for

modeling convolution surfaces with 1D skeletons.

Implicit surface is an increasingly popular approach

for modeling smooth and complex topology objects,

which may be difficult to model with parametric or

mesh-based geometric methods. Since curve skeletons are

good abstractions for a wide variety of natural forms,

and curve skeletons can be approximated by polylines,

our method can be used to model and animate a wide

variety of complex organic objects. This method can also

be used in skeleton-based space deformation and shape

morphing. Experimental results demonstrate that our

method can create many aesthetically pleasing branching

effects and possesses many potential applications in both

geometric modeling and computer animation.

Acknowledgements

Part of this research work was conducted while the

first author was a visiting researcher at the Hong Kong

University of Science and Technology. We are grateful

to Andrei Sherstyuk for his help on convolution surfaces

and to anonymous reviewers for their constructive

suggestions. This work received support from Hong

Kong Research Grant Council (HKUST6215/99E),

National Natural Science Foundation of China (Grant

No. 69973040), Zhejiang Provincial Natural Science

Foundation (Grant No. 698022), and Innovative Re-

search Groups (60021201).

References

[1] Bloomenthal J, Bajaj C, Blinn J, Cani M, Rockwood A,

Wyvill B, Wyvill G. An introduction to implicit surfaces.

Los Altos, CA: Morgan Kaufmann Publishers, 1997.

[2] Dobashi Y, Kaneda K, Yamashita H, Okita T, Nishita T.

A simple, efficient method for realistic animation of

clouds. Proceedings of SIGGRAPH’00, 2000. p. 19–28.

[3] Cani-Gascuel M, Desbrun M. Animation of deformable

models using implicit surfaces. IEEE Transactions on

Visualization and Computer Graphics 1997;3(1):39–50.

[4] Nishita T, Iwasaki H, Dobashi Y, Nakamae E. A

modeling and rendering method for snow by using

metaballs. Computer Graphics Forum 1997;16(3):357–64.

[5] Jin X, Li Y, Peng Q. General constrained deformation

based on generalized metaballs. Computers & Graphics

2000;24(2):219–31.

[6] Savchenko V, Pasko A, Okunev O, Kunii T. Function

representation of solids reconstructed from scattered

surface points and contours. Computer Graphics Forum

1995;14(4):181–8.

[7] Turk G, O’Brien J. Shape transformation using variational

implicit functions. Proceedings of SIGGRAPH’99, 1999.

p. 335–42.

[8] Blinn J. A generalization of algebraic surface drawing.

ACM Transactions on Graphics 1982;1(3):235–56.

[9] Nishimura H, Hirai M, Kawai T. Object modeling by

distribution function and a method of image generation.

Transactions on IECE 1985;68-D(4):718–25.

[10] Wyvill G, McPheeters C, Wyvill B. Data structure for soft

objects. The Visual Computer 1986;2(4):227–34.

[11] Wyvill B, Wyvill G. Field functions for implicit surfaces.

The Visual Computer 1989;5(1/2):75–82.

[12] Bloomenthal J, Wyvill B. Interactive techniques for

implicit modeling. Computer Graphics 1990;24(2):

109–16.

[13] Bloomenthal J. Skeletal design of natural forms, Ph.D.

dissertation, University of Calgary, Department of Com-

puter Science, 1995.

[14] Bloomenthal J. Bulge elimination in convolution surfaces.

Computer Graphics Forum 1997;16(1):31–41.

[15] Bloomenthal J, Shoemake K. Convolution surfaces.

Computer Graphics 1991;25(4):251–6.

[16] Attali D, Montanvert A. Computing and simplifying 2d

and 3d semi-continuous skeletons of 2d and 3d shapes.

Computer Vision and Image Understanding 1997;67(3):

261–73.

[17] McCormack J, Sherstyuk A. Creating and rendering

convolution surfaces. Computer Graphics Forum 1998;

17(2):113–20.

[18] Sherstyuk A. Convolution surfaces in computer graphics.

Ph.D. dissertations, Monash University, Australia, 1999.

[19] Sherstyuk A. Kernel functions in convolution surfaces:

a comparative analysis. The Visual Computer 1999;

15(4):171–82.

X. Jin, C.-L. Tai / Computers & Graphics 26 (2002) 437–447 445



[20] Ferley E, Cani M, Attali D. Skeletal reconstruction

of branching shapes. Computer Graphics Forum

1997;16(5):283–93.

[21] Jin X, Tai CL, Feng J, Peng Q. An analytical con-

volution surface model for line skeletons with polynomial

weighted distributions. Journal of Graphics Tools

2001;6(3):1–12.

[22] Muraki S. Volumetric shape description of range data

using blobby model. Computer Graphics 1991;25(4):

227–35.

[23] Wyvill B, van Overveld K. Tiling techniques for implicit

skeletal models. SIGGRAPH Course Notes 1996;11:1–26.

[24] Cani M, Hornus S. Subdivision curve primitives: a new

solution for interactive implicit modeling. Proceedings of

the Shape Modeling International’01, IEEE Computer

Society, Geneva, Italy, 2001.

[25] Kochanek DH, Bartels R. Interpolating splines with local

tension, continuity and basis Control. Computer Graphics

1984;18(3):33–41.

[26] Farin G. Curves and surfaces for computer aided

geometric design: a practical guide, 4th ed. New York:

Academic Press, 1997.

[27] Bloomenthal J. Polygonization of implicit surfaces. Com-

puter Aided Geometric Design 1988;5(4):341–55.

[28] Bloomenthal J. An implicit surface polygonizer. In:

Graphics gems IV. New York: Academic Press, 1994.

p. 324–49.

X. Jin, C.-L. Tai / Computers & Graphics 26 (2002) 437–447446



Xiaogang Jin

CURRICULUM VITAE

Chiew-Lan Tai

CURRICULUM VITAE

Xiaogang Jin is a professor of the State Key Lab of CAD&CG, Zhejiang University, People’s Republic of China. He

received his B.Sc. degree in Computer Science in 1989, M.Sc. and Ph.D. degrees in Applied Mathematics in 1992 and

1995, all from Zhejiang University. His research interests include implicit surface modeling, space deformation,

computer animation and realistic image synthesis.

Chiew-Lan Tai is an Assistant Professor in the Department of Computer Science, Hong Kong University of Science

& Technology. She received her B.Sc. and M.Sc. in Mathematics from the University of Malaya, and her M.Sc. in

Computer and Information Sciences from the National University of Singapore. She earned her D.Sc. in Information

Science from the University of Tokyo in 1997. Her research interests include geometric modeling, computer graphics,

digital Chinese art, and interpretation of engineering drawings.

X. Jin, C.-L. Tai / Computers & Graphics 26 (2002) 437–447 447


	Analytical methods for polynomial weighted convolution surfaces with various kernels
	Introduction
	Convolution surfaces
	Polynomial field computation for line segments with various kernel functions
	Gaussian function
	Inverse linear function
	Inverse squared function
	Inverse cubic function
	Inverse 2n+1 degree function
	Blended inverse function
	Cauchy function
	Quartic polynomial

	Weight distribution control with cubic profile curves
	NURBS curve skeletons
	Computational efficiency and results
	Conclusions
	Acknowledgements
	References


