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Abstract

Space deformation is an important tool in computer animation and shape design. In this paper we present a new local
deformation model based on generalized metaballs. The user speci"es a series of constraints, which can consist of points,
lines, surfaces and volumes, their e!ective radii and maximum displacements, and the deformation model creates
a generalized metaball for each constraint. Each generalized metaball is associated with a potential function centered on
the constraint. The value of the potential function drops from 1 on the constraint to 0 on the boundary de"ned by the
e!ective radius. This deformation model operates on the local space and is independent of the underlying representation
of the object to be deformed. The deformation can be "nely controlled by adjusting the parameters of the generalized
metaballs. We also present some extensions and the extended deformation model to include scale and rotation
constraints. Experiments show that this deformation model is e$cient and intuitive. It can deal with various constraints,
which is di$cult for traditional deformation models. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

E$cient and intuitive methods for three-dimensional
shape deformations play an important role in both geo-
metric modeling and computer animation. Although the
shape of an object can be "nely controlled by inter-
actively adjusting the positions of its vertices or control
vertices, to most users, this manipulation is tedious and
ine$cient. In the last decade, two e$cient techniques,
namely physically based modeling and spatial deforma-
tion, have been proposed to solve the problem.

Physically based modeling technique produces very
realistic deformations of the elastic objects by solving
complex di!erential equations [1}4]. After the users
specify the physical attributes (such as mass, friction,

external forces, etc.) of the objects, the technique auto-
matically generates the deformations and motions of the
objects without any user interaction. Although this tech-
nique is attractive, it su!ers from some drawbacks. First-
ly, the technique involves a large amount of computation.
As a result, it is very hard to be used as a real-time
interactive design tool. Secondly, the deformations pro-
duced by this technique are environment dependent.
Finally, as there is no user interaction during the simula-
tion, it is very di$cult to control the deformations of the
objects. These disadvantages have limited the application
of the technique in geometric modeling and computer
animation.

The idea behind the spatial deformation techniques is
to deform the whole space in which the objects are
embedded instead of directly manipulating the vertices or
control vertices of these objects. The "rst spatial defor-
mation model was proposed by Barr [5]. According to
Barr's method the transformation matrix is no longer
constant but a function depending on the position of the
individual points to which the transformation is applied.
Obviously, Barr's model is a global approach and hence
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di$cult to deform the objects arbitrarily. The most popu-
lar spatial deformation technique is the free-form defor-
mation (FFD) technique developed by Sederberg and
Parry [6]. FFD is typically conducted by embedding an
object to be deformed into a parametric space of a trivari-
ate Bezier volume whose control points are organized as
a lattice, the deformation of the object is obtained by
moving the control points of the trivariate Bezier vol-
umes. There have been many variants of FFD. Coquillart
et al. extended the FFD technique to allow composite
lattices in addition to parallelepiped [7]. Similar tech-
niques based on B-spline volumes or rational Bezier
volumes were also proposed by other authors [8,9]. Mac-
Craken et al. developed a new FFD technique, in which
the control points of the lattice can be arranged in arbit-
rary topology [10]. Wyvill et al. present a warping
method for CSG/Implicit models [11]. Compared with
FFD and its variants, axial deformation provides a more
compact deformation method by using an intuitive curve
which is easy to control [12,13]. By introducing domain
curves which de"ne the domain of deformation about an
object, Singh et al. present a new geometric deformation
technique which is related to axial deformation called
Wires [14]. This method can also be used in animating
"gures with #exible articulations, modeling wrinkled sur-
faces and stitching geometry together.

Although FFD-based methods can achieve a variety of
deformations, the user is forced to de"ne some control
points in the space to be deformed and then move these
control points. This indirect interface may be unnatural
for some applications. Hsu et al. addressed this problem
and proposed a direct interface that involves solving
a complex equation system [15], but its computational
cost is high. Borrel and Bechmann developed a general
deformation model in which the deformation is de"ned
by some user-speci"ed point displacement constraints
[16]. The desired deformation is obtained by selecting
a solution obeying the constraints. Nevertheless, the
shape of the resulting deformation in this method is not
strongly correlated to the constraints except that the
constraints are satis"ed. To overcome this problem,
Borrel and Rappoport introduced a local deformation
method which they term simple constrained deformation
(Scodef ) [17]. In Scodef, the user de"nes some constraint
points, each of which is associated with a user-de"ned
displacement and an e!ective radius. The displacement of
any point to be deformed is the blend of the local B-spline
basis functions determined by these constraint points.
Note that the deformation achieved by Scodef is both
local and intuitive and the constrained points can be
directly located on the boundary surface of the object to
be deformed. To extend the #exibility of the local defor-
mation, however, deformation models based on line,
surface, and volume constraints are desired. Borrel and
Rappoport pointed out that their model could not be
generalized to deal with these kinds of constraints.

Motivated by the concept of metaball, in this paper, we
present a new constrained deformation model based on
the special potential function distribution of generalized
metaballs. In our method, constraints are generalized to
include point constraints, line constraints, surface con-
straints and volume constraints. The user need only de-
"ne a set of constraints with desired displacements and
an e!ective radius associated with each constraint. A gen-
eralized metaball is then set up at each constraint with
a local potential function centered at the constraint fall-
ing to zero for points beyond the e!ective radius. The
displacement of any point within the metaballs is a blend
of these generalized metaballs. This deformation model
produces a local deformation and is independent of
representation of the underlying objects to be deformed.
The constraints generate some `bumpsa shapes over the
space based on the type of constraint and its associated
potential function, and in#uence the "nal shape of the
deformed object directly. The location and height of
a bump are de"ned by a constraint and its in#uence
space is determined by the constraint's e!ective radius.
This method is very intuitive as the user can easily predict
the deformed shape according to the constraints. For
most constraints, the computations required by the
technique can be achieved very e$ciently and the defor-
mations can be implemented in real-time on current SGI
workstations.

2. Constrained local deformation based on generalized
metaballs

Metaball modeling is regarded as a #exible technique
for implicit surface modeling. It is very convenient for
designing closed surfaces and provides simple solutions
for creating blends, rami"cations and advanced human
character design [18}24]. A good introduction of meta-
ball modeling and implicit surface can be found in [25].
According to the basic formulation proposed by Blinn
and Nishimura [18,19], a free-form surface is de"ned as
an isosurface of a scalar "eld which is generated from
some "eld generating points. The "eld value at any point
is determined by the distance to the generating points.
The parameters available for each metaball include
the position of the generating point, the potential
function, etc.

Later Bloomenthal et al. extended the original idea to
include other complex sources such as lines, surfaces and
volumes [23,24], which are termed as skeletons. The
skeleton-based model provides an intuitive way to de"ne
the desired shapes with implicit surfaces. Let C be the
skeleton, P(x, y, z) be a point in 3D space, r(P, C) be the
minimal distance from P(x, y, z) to the individual
points Q(u, v, w) on the skeleton C:

r(P, C)"inf
Q|C

EP!QE. (1)
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Then the potential function associated with skeleton
C can be de"ned as the composition of a potential func-
tion f (r, R) which maps R to R and a distance function
r(P, C) which maps R3to R [26]

F(r(P, C), R)"f (r, R) " r(P, C), (2)

where R is a speci"ed distance called e!ective radius.
Euclidean space is often adopted as the distance space for
calculating r(P, C) and

r(P, C)"inf
Q|C

J(x!u)2#(y!v)2#(z!w)2.

The "eld functions used for implicit surface modeling
include Blinn's exponential function, Nishimura's piece-
wise quadric polynomial, Murakami's degree four poly-
nomial and Wyvill's degree six polynomial [27]. In this
paper, we adopt Wyvill's degree six polynomial as the
"nite potential function because this function blends well
and can avoid the calculation of square root

f(r, R)"
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(3)

We extend the usage of metaball modeling to local space
deformation. The "eld value of any point of an object is
now de"ned as the weight of displacement from its orig-
inal position. By interactively specifying the constraints
and their e!ective radii, we can achieve various deforma-
tion e!ects. The constraints can either be points, lines,
surfaces or volumes.

Let C be a constraint skeleton, R be the e!ective
radius, and S be the corresponding distance surface

S"MP(x, y, z)3SDr(P, C)"RN. (4)

We de"ne tuple M"SS, f (r, R)T as a generalized meta-
ball based on skeleton C.

A general constrained deformation model based on
generalized metaballs can then be de"ned. Let
P"(x, y, z) be a point in R3, Deform(P): R3PR3 be a
deformation function which maps P to Deform(P). Let
C

i
be a constraint which consists of points, lines, surfaces

and volumes, *D
i
be its displacement, R

i
be the e!ective

radius of C
i
. Then the deformation function e!ected by

constraint C
i
is de"ned as

Deform(P)"P#*D
i
F(r(P, C

i
), R

i
). (5)

Deformation model (5) has some nice properties. For
∀P3C

i
, we have

Deform(P)"P#*D
i
F(0, R

i
)"P#*D

i
. (6)

If the distance from P to constraint C
i
is lager than R,

we have

Deform(P)"P#*D
i
F(R

i
, R

i
) " P. (7)

Therefore, deformation function Deform(P) yields a local
deformation which satis"es the constraint precisely in the
constraint C

i
, and does not a!ect the points outside the

e!ective radius of the constraint.
The above model can be easily extended to deal with

multiple constraints. The deformation function for n con-
straints is de"ned as

Deform(P)"P#

n
+
i/1

*D
i
F(r(P, C

i
), R

i
). (8)

The `bumpsa generated by the constraints are blended
by the potential function. By adjusting the constraints
and their e!ective radii, the required deformation can be
achieved. Careful study shows that one constraint may
sometimes impose deformation e!ect on other con-
straints although this does not prevent the application of
the model. We say two constraints are disjoint if neither
generalized metaball intersects the other constraint's
skeleton. A set of constraints is disjoint if they are pair-
wise disjoint. Therefore for a disjoint set of constraints
deformation model (8) can satisfy all the constraints.
Model (8) has the following intuitive implication: the
displacement of point P is the average of the displace-
ments of the constraints weighted by their corresponding
potential functions.

3. The computation of generalized metaballs

From Formula (1) we can see that the key for calculat-
ing the deformation function lies in the computation of
distance function r(P, C

i
). If C

i
is a point constraint,

r(P, C
i
) is just the distance from point P to C

i
, i.e.

r(P, C
i
)"EP!C

i
E. When C

i
is a line segment, a piece of

surface, or a volume, the computations involved become
complex. In the following, we give the computation
methods for some typical cases.

3.1. Line segment constraint

Let C
i
be a line segment determined by its end points

P
0
"(x

0
, y

0
, z

0
) and P

1
"(x

1
, y

1
, z

1
), its length is l. We

"rst transform this line segment into PI
0
PI
1

on the x-axis
by a transformation matrix ¹, where PI

0
"(0, 0, 0) and

PI
1
"(l, 0, 0). For any point P we apply the same trans-

formation ¹ and obtain PI "(x8 , y8 , z8 ). As the distance
function is independent of the coordinate system,

r(P, C
i
: P

0
P
1
) " r(PI , PI

0
PI
1
)
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Fig. 1. The corresponding generalized metaball of a line seg-
ment.

Fig. 2. Distance calculation for a circle line.

Fig. 3. Generalized metaball for a circle line.

i.e., the distance from P to C
i

is just the distance from
PI toPI

0
PI
1
, we have

r(PI , PI
0
PI
1
)"G

Jx8 2#y8 2#z8 2, x8 (0,

Jy8 2#z8 2, 0)x8 )l,

J(x8 !l)2#y8 2#z8 2, x8 'l.

In order to reduce the computation time, PI
0
PI
1

and
transformation ¹ can be precomputed. As the potential
function f is a function of r2, the square root computation
can be eliminated by computing r2(PI , PI

0
PI
1
) instead of r.

The corresponding generalized metaball of a line seg-
ment is a cylinder with two hemispheres at both ends as
illustrated in Fig. 1. If the constraint C

i
is a line, the

computation becomes much simpler as r(P, C
i
) is just the

distance from P to the line. The corresponding generaliz-
ed metaball of a line is a cylinder whose radius and height
are R

i
and R, respectively.

3.2. Polyline constraint

Let constraint C
i

be a polyline de"ned by
P
0
P
1
P
22

P
n
. For any line segment P

i~1
P
i

(i"1, 2,2, n), we can obtain r(P, P
i~1

P
i
) by the line

segment constraint method as described above. The dis-
tance between any space point P and C

i
is the minimum

of the obtained distances

r(P, C
i
: P

0
P
1
P
22

P
n
)" min

i|*1, n+

Mr(P, P
i~1

P
i
)N

3.3. Circle line constraint

Let C
i

be a circle line whose radius is R
C
. We "rst

transform the circle line onto the xz plane by transforma-
tion matrix ¹, and its center is transformed into the
origin. For any point P, we apply the same transforma-
tion matrix and obtain PI "(x8 , y8 , z8 ). From Fig. 2 we

know OB"R
C
, OPI "Jx8 2#y8 2#z8 2, thus

r2(P, C
i
)"R2

C
#x8 2#y8 2#z8 2!2R

C
Jx8 2#z8 2.

Its corresponding metaball is a torus whose major radius
equals R

C
#R

i
and minor radius equals R

C
!R

i
as

illustrated in Fig. 3.

3.4. n Degree Bezier curve constraint

Let C
i
be a Bezier curve R(u) of degree n. The minimal

distance from a space point P to C
i
either lies in its end

points, or lies in the points satisfying the equation:

(P!R(u)) 'R
6
(u)"0.

This equation can be converted into a Bezier curve of
degree 2n!1, then its roots can be solved by Bezier
Clipping [27}29]. The value of the distance function is
the minimum of the roots. It is easy to know the corre-
sponding metaball is a generalized cylinder.

3.5. Disk constraint

Let C
i
be a disk whose radius is R

C
. We "rst calculate

the distance r
1

from space point P"(x, y, z) to the plane
where the disk lies (see Fig. 4). If the perpendicular point
of P lies within the disk, r(P, C

i
)"r

1
; otherwise we

calculate the distance r
2

from P to the circle line, and set
r(P, C

i
)"r

2
. The shape of the corresponding generalized

metaball of a disk is shown in Fig. 5.

3.6. Planar polygon constraint

Let C
i
be a planar polygon P

0
P
1
P
22

P
n
P
0
, the plane

equation on which it lies is Ax#By#Cz#D"0. Then
the distance r

1
from a space point P to the plane is

r
1
"

DAx#By#Cz#DD

JA2#B2#C2
.
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Fig. 4. Disk constraint.

Fig. 5. The generalized metaball for a disk.

Fig. 6. The generalized metaball for a square.

Fig. 7. The generalized metaball for a sphere.

If the perpendicular point of point P lies inside the
polygon, r(P, C

i
)"r

1
; otherwise we calculate the dis-

tance r
2

from P to the polyline P
0
P
1
P
22

P
n
P
0
, and set

r(P, C
i
)"r

2
. Fig. 6 shows the shape of the generalized

metaball for a square.

3.7. Sphere constraint

Let C
i

be a sphere whose radius is R
C
, its center is

O(x
C
, y

C
, z

C
). Then the distance from space point P to the

sphere is

r(P, C
i
)"DJ(x!x

C
)2#(y!y

C
)2#(z!z

C
)2!R

C
D.

The cross section for its corresponding metaball is shown
in Fig. 7.

3.8. Cylinder constraint

Let C
i

be a cylinder whose radius is R
C

and whose
height is h. We "rst transform the cylinder so that its

bottom surface lies on the xz plane and its center line
coincides with z axis (see Fig. 8). By applying the trans-
formation ¹ to the space point P we obtain PI "(x8 , y8 , z8 ),
and

r(P, C
i
)" min(R

C
!Jx8 2#z8 2, y8 , h!y8 ),

Jx8 2#z8 2)R
C
&&0(y8 (h,

!y8 ,

Jx8 2#z8 2)R
C
&&y8 )0,

y8 !h,

Jx8 2#z8 2)R
C
&&y8 *h,

r(P, C
i
)" Jx8 2#z8 2!R

C
,

Jx8 2#z8 2'R
C
&&0(y8 (h,

JR2
C
#x8 2#y8 2#z8 2!2R

C
Jx8 2#z8 2,

Jx8 2#z8 2'R
C
&&y8 )0,

JR2
C
#x8 2#(y8 !h)2#z8 2!2R

C
Jx8 2#z8 2,

Jx8 2#z8 2'R
C
&&y8 *h.

G
The shape of outer surface of the generalized metaball for
a cylinder constraint is shown in Fig. 9.

3.9. Sphere volume constraint

Let C
i

be a sphere volume whose radius is R
C
, its

center be O(x
C
, y

C
, z

C
). Obviously r(P, C

i
) equals 0 if

a space point P lies inside the sphere volume, otherwise
the distance from P to the sphere volume is

r(P, C
i
)"J(x!x

C
)2#(y!y

C
)2#(z!z

C
)2!R

C
.

3.10. Cube volume constraint

Let C
i
be a cubic volume, whose edge length is 2a. We

"rst apply transformation¹ so that the center of the cube
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Fig. 8. Cylinder constraint.

Fig. 9. The outer surface of the generalized metaball for a cylin-
der constraint.

Fig. 10. Generalized metaball for a cube volume.

is at the origin, and its edges are parallel to the three
coordinate axes. After applying the same transforma-
tion ¹ to a space point P we get PI "(x8 , y8 , z8 ). If
Dx8 D)a&&Dy8 D)a&&Dz8 D)a, r(P, C

i
) equals to 0 as PI lies

inside the cube. Otherwise the point nearest to PI either
lies on the faces of the cube (6 cases), or lies on the edges
of the cube (12 cases), or lies on the vertices of the cube
(8 cases) according to the position of PI . In each case, the
distance can be calculated easily. The shape of the gener-
alized metaball for a cube volume is shown in Fig. 10.

For those constraints which are not listed above, their
distance functions can be calculated similarly. When the
deformation is applied to an object, the distance function
r(P, C

i
) must be calculated for any vertex P of the object,

and thus the e$ciency of the calculation of the distance
function determines that of the algorithm. Note that the
above deformation model is a local one. If the distance
from a point on the candidate object to the constraint is
larger than the e!ective radius of the constraint, this
point is not a!ected. Thus we can adopt the bounding
boxes or bounding spheres of the generalized metaballs
to improve the e$ciency of the algorithm. If a point does

not lie inside the bounding boxes of the generalized
metaball of a constraint, this constraint has no e!ect on
the point and hence its distance function calculation can
be eliminated.

4. Extensions

In the local deformation model discussed above we
adopt Wyvill's six-degree polynomial as the potential
function. This polynomial is in fact a special Bezier func-
tion. If we generalize the potential function to a Bezier
function, more control freedoms can be obtained. The
extended potential function can be rewritten as

f (r, R
i
)"Bez

i
(t)"

m
+
j/0

g
j
Bk
j
(t), t3[0, 1],

where g
0

is restricted to 1, g
m

is restricted to 0, t"r/R
i
,

t"1 if r'R
i
. A user can use the remaining m!1

control points Mg
j
Nm~1
j/1

to control the distribution of the
potential function. The purpose of the restrictions on
g
0

and g
m

is to make metaballs blend well. Of course
these restrictions can be removed if there is only one
constraint or a user does not have the well-blend require-
ment. Moreover, we can deform both the constraint and
its local area with distances less than R

U
to a user-de"ned

displacement *D
i
by adjusting the Bezier function as

f (r, R
i
)"G

1, r)R
U
,

Bez
iA

r!R
U

R!R
U
B, r'R

U
.

The shape of the reformed Bezier function is shown in
Fig. 11.

In the previous discussions the distance space we ad-
opted is Euclidean distance, which is also known as
spherical distance. The disadvantage of adopting such
a distance is that the appearance of the resultant defor-
mation is always of `bubble-shapea. To alleviate this
problem, other non-Euclidean metric spaces can be used
to extend the variety of shapes of deformation. If we
adopt n-norm metric space which is a straightforward
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Fig. 11. Reformed Bezier function.

generalization of the Euclidean distance,

r(P
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2
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))E
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2
!z
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Dn)1@n

many interesting results can be obtained. If n equals 2 we
obtain familiar Euclidean distance, the corresponding
metaball for a point constraint is a sphere. If n equals 1,

r(P
1
, P

2
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we obtain Manhattan distance, and the corresponding
metaball for a point constraint is a double pyramid. In
the extreme case when nPR, we have

r(P
1
, P

2
)"E((x

1
, y

1
, z

1
), (x

2
, y

2
, z

2
))E

=

"max(Dx
2
!x

1
D, Dy

2
!y

1
D, Dz

2
!z

1
D).

One obtains city block distance, the corresponding meta-
ball for a point constraint being a cube. By adopting
di!erent metric spaces, the in#uence range can be quite
di!erent. Therefore we can take n as an animatable
parameter to adjust the in#uence range of a constraint.
But adopting n as an animatable parameter usually re-
quires some costly computations in r(P

1
, P

2
). An alterna-

tive way is to linearly interpolate the Euclidean distance,
the Manhattan distance and the city block distance to
calculate other form distance in metric space. For
example, if we calculate the distance in the following way:

(1!u)E((x
1
, y

1
, z

1
), (x

2
, y

2
, z

2
))E

2

#uE((x
1
, y

1
, z

1
), (x

2
, y

2
, z

2
))E

=

then, by animating parameter u from 0 to 1, the in#uence
range will change from a sphere to a cube, but the
computation involved is quite small. Blanc even present-
ed some anisotropy distance functions such as axial dis-
tance function and radial distance function to control
precisely the shape of the resulting soft object [26]. Intro-
ducing the distance functions into our deformation

model can bring even more precise control of the in#u-
ence range.

In the previous discussions, each space coordinate is
treated symmetrically. To accommodate even "ner con-
trol of the in#uence range, we can treat each space
coordinate di!erently so as to provide asymmetric,
nonisotropic space deformation around the constraints.
For example, let R

ix
, R

iy
, R

iz
be the e!ective radii for

x, y, z axes, respectively, C
i
"(C

ix
, C

iy
, C

iz
), P"(x, y, z),

by rede"ning r/R
i
in formula (3) as

S
(x!C

ix
)2

R2
ix

#

(y!C
iy
)2

R2
iy

#

(z!C
iz
)2

R2
iz

we can achieve asymmetric space deformation.

5. Deformation by local rotation and scale

In Section 3, we discussed the shape deformation by
local displacement or translation. A natural extension is
to generalize the deformation model so that it can deal
with local rotation and scale. Both of these kinds of
deformations are of important use in computer anima-
tion. An intuitive interface can be set up by attaching
a local coordinate system to each constraint C

i
as illus-

trated in Fig. 12. Let the local coordinate system at C
i
be

o@x@y@z@, then a user moves, rotates and scales the coordi-
nate system until all the translation, rotation and scale
requirements are satis"ed. Let the destination coordinate
system be oAxAyAzA and the transformation matrix from
source coordinate system o@x@y@z@ to the destination coor-
dinate system oAxAyAzA be M. M is made up of translation
matrix T (D

x
, D

y
, D

z
), scale matrix S(S
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) and rota-

tion matrix R(h
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For any space point P to be deformed, we "rst transform
it into the local coordinate system o@x@y@z@ and obtain P@,
then multiply P@ with transformation matrix M) and
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Suppose the obtained point be PA. Finally we transform
PA back to the global coordinate system and obtained the
deformed image of point P. If there is only translation, i.e.
(hK

x
, hK

y
, hK

z
)"0 and (SK

x
, SK

y
, SI

z
)"(1, 1, 1), the result is the

same as the deformation model discussed in Section 3.
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Fig. 12. Local coordinate system for a constraint.

In the previous discussion, we use Euler angles
(hK

x
, hK

y
, hK

z
) to describe the rotation of the coordinate

system. However, Euler angle representation su!ers from
several disadvantages [30]. Firstly, Euler rotations must
be applied in a speci"ed order because they do not
commute. Secondly, it su!ers from non-uniformity.
A "xed change in Euler angles does not always yield the
same amount of rotation change. Thirdly, Euler angle
representation su!ers from `gimbal locka. An alternative
is to use quaternion instead of Euler angles [30]. Euler
angles (hK

x
, hK

y
, hK

z
) can be converted into a quaternion

q"Acos
h
2
, sin

h
2
nB"(w, x, y, z),

where h is the rotation angle and n is the unit rotation
axis. By converting quaternion q into rotation matrix
R(h), we get

R(h)

"C
1!2y2!2z2 2xy!2wz 2xz#2wy

2xy#2wz 1!2x2!2z2 2yz!2wx

2xz!2wy 2yz#2wx 1!2x2!2y2D.
In this case, the transformation matrix M) is re"ned as

M) "T(DK
x
, DK

y
, DK

z
)S(SK

x
, SK

y
, SK

z
)R) (hK ),

where

hK "hF(r(P, C
i
), R

i
).

As quaternions interpolate only one angle instead of
three Euler angles, it can generate smoother rotation
interpolation and hence more #uid deformation. Given
a set of quaternions, they can be spherically interpolated
using a general construction scheme [30].

6. The animation of the deformations

The above deformation model can be conveniently
applied to generate a deformation animation. We present
two ways to simulate the deformation process of an
object. The "rst is to apply a set of di!erent constraints to
the same object to obtain a sequence of deformed objects.
Since these objects possess the same number of vertices
and the same topology, we can blend them to generate
the intermediate shapes by interpolating the correspond-
ing vertices. The other method is to interpolate the corre-
sponding parameters of the keyframe constraints to gen-
erate the intermediate constraints. The intermediate con-
straints are then applied to produce the deformation of
the object for the intermediate frames. In fact, a con-
straint can be completely determined by parameter set ):

X"MC
i
, *D

i
, S

x
, S

y
, S

z
, h, R

ix
, R

iy
, R

iz
, g

1
, g

2
,2, g

m~1
N.

Given the parameter set of the keyframes, traditional
parametric key frame techniques can be used to generate
the intermediate parameter set of the constraint.

Since both methods are based on parametric key frame
techniques, which are provided by many animation sys-
tems, our deformation animation model can be conve-
niently incorporated into these animation systems.

7. Experiments

We implemented our algorithm on an SGI Indy Work-
station. Fig. 13 shows the potential function distribution
of the line constraint, disk constraint, square constraint,
polyline constraint, point constraint adopting Euclidean
distance and point constraint adopting Manhattan dis-
tance, respectively. All of them are obtained by applying
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Fig. 13. The potential function distribution for some constraints.

Fig. 14. The wireframe of an undeformed cow.

the corresponding constraints to a grid. Fig. 14 is the
wireframe of an undeformed cow, and Fig. 15 is the
deformed cow by locating a line constraint on its back.
Fig. 16(a) is an undeformed teapot. Fig. 16(b) is the
deformed teapot by applying two plane constraints, with
one put on its top and the other put on its left. Fig. 17
shows an undeformed cow and a plane constraint.
The constraint is put on the right of the cow with a 453
to the xy plane where the cow lies. Fig. 18 shows
the animation sequence obtained by animating the dis-
placement of a plane constraint. From the two examples
we can see that a plane constraint is like a magnet,
it attracts the points within the in#uence range.
Fig. 19 shows a `Za deformed from a grid. There
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Fig. 16. The deformation of a teapot; (a) before deformation; (b) deformed teapot by two plane constraint.

Fig. 15. Deformed cow by a line constraint.

Fig. 17. Undeformed cow and a plane constraint.
are 12 point constraints corresponding to 12 metaballs in
the environment. Compare this deformation with that in
Fig. 13(d). Fig. 20 shows the undeformed cow and
a sphere volume constraint, with the small sphere being
the constraint and the big sphere being the generalized
metaball indicating the in#uence range of the constraint.
The line shows the displacement *D. The 3D-morphing
sequence in Fig. 21 is achieved by animating *D of the
sphere volume constraint. We note that only the vertices
of the cow which lie within the big sphere are deformed
and other vertices are not a!ected at all. Fig. 22 shows
the animation sequence by animating the scale constraint
of a sphere volume constraint. All the points in the head
of the cow satisfy the constraint. The 3D-morphing se-
quence in Fig. 23 is achieved by animating the rotation of
the sphere volume constraint. The rotation constraint h is

!1203 around axis (J2/2, J2/2, 0). As the whole head
of the cow is within the sphere volume, all the points on
the head rotate !1203 and hence the head maintains the
same shape.

8. Conclusions

A general constrained deformation model is presented
in this paper. After a user speci"es a series of constraints
which can consist of points, lines, surfaces and volumes,
their e!ective radii and maximum displacements, the
deformation model creates a set of generalized metaballs
taking the constraints as the skeletons. Each metaball
determines a local in#uence region and is associated with
a local potential function. The potential function is
centered at the constraint and falls to zero for points
beyond the e!ective radius. We present our methods for
calculating the distance functions for some typical con-
straints such as point, line segment, disk, Bezier curve,
polygon, sphere volume, etc. One advantage of our defor-
mation model is that it is independent of the representa-
tion of the underlying objects and can apply to both
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Fig. 18. 3D morphing sequence by animating the displacement of a plane constraint.

Fig. 19. Z deformed from a plane.

Fig. 20. Undeformed cow and a sphere volume con-
straint.

polygon mesh and parametric surfaces. For most of the
useful constraints, the algorithm is of high e$ciency
because the calculation involved is simple, and
can be implemented interactively on current SGI
workstations. Compared with other deformation
methods, this deformation model has the following
features:

f Generality: This method cannot only deal with point
constraint but also line, surface and volume con-
straints, which are di$cult for traditional methods.
The scale constraint and rotation constraint can also
be dealt with in a systematic way.

f Intuition: For a speci"ed constraint, a user can easily
imagine the deformation e!ects caused by the con-
straint.

f Locality: Only points located in the local in#uence
range are a!ected. Therefore it provides a useful tool
for local shape adjustment.

f Compatibility: The deformation model can be
easily incorporated into most existing animation
systems.
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Fig. 21. 3D morphing by animating the displacement of a sphere volume constraint.

Fig. 22. 3D morphing by animating the scale of a sphere volume constraint.

Fig. 23. 3D morphing by animating the rotation of a sphere volume constraint.
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