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Abstract A crowd simulator that generates realistic
crowds with various movement patterns and environ-
mental adaptability is urgently desired but underde-
veloped for the applications of video games, urban vi-
sualization, autonomous driving, and robot navigation
test. In this work, we present a novel velocity-based
framework based on data-driven optimization to build
dynamic crowd simulation that allows interactive con-
trol of global navigation, local collision avoidance, and
group formation. An agent’s adaptive decision-making
regarding its goals and dynamic local environment is
formulated as an optimization problem which is solved
by finding an optimal velocity from the real-world
crowd velocity dataset. Each component that affects
an agent’s movement is integrated into a velocity-
based crowd energy metric to measure the similarity
between the agent’s required simulated velocity and
a given velocity sample. The proposed model can
simulate thousands of agents at interactive rates. In
addition, the framework is general and scalable to
be integrated with various crowd simulation methods
to meet the requirements of various kinds of robot
navigation test. We validate our approach through
simulation experiments in robot navigation scenarios,
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as well as comparisons to real-world crowd data and
popular crowd simulation methods.
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1 Introduction

Incorporating realistic crowds into virtual environ-
ments has received increasing attention from a variety
of research communities in recent years, including, but
not limited to computer graphics, visual reality, urban
planning, emergency simulation, virtual robotic naviga-
tion test, and behavioral science. Human crowds exhibit
highly complex behaviors driven by adaptive individual
decisions of agents with respect to their goals, environ-
mental obstacles, and other nearby agents. Simulating
such unconsciously self-organized crowd movement in a
dynamically changing environment is highly desired.

A number of crowd simulation methods, including
macroscopic [35,25], and microscopic approaches [11,
37,34], have been developed to model and simulate
crowd dynamics. However, these methods focus on
modeling the individual behaviors without referring
to real-world crowd trajectory data, which results in
simulations that may not realistically resemble real-
world crowd scenarios.

To date, several data-driven approaches have been
proposed to enhance the realism of crowd movements in
simulations. These methods [17,12,9,20,21,16] mainly
train models for specific scenarios and apply them to
similar scenarios, usually resulting in poor scenario
adaptability. To address this problem, deep learning-
based methods [18,36] have been proposed for scene-
agnostic crowd simulation. However, convincing simu-
lation results require large amounts of real-world data
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Fig. 1 Examples of various virtual crowds with different movement patterns simulated by our framework: walking on zebra
crossing (the first), aggregation and queuing at the building entrance (the second) , indoor evacuation (the third), and army
formation transform (the fourth).

from multiple scenarios, and model training is compu-
tationally expensive. More recently, Ren et al.[32] pro-
posed a data-driven optimization method to generate
plausible behaviors for heterogeneous multi-agent sce-
narios. Since the model simulates the general behavior
of different types of individuals by using basic collision
avoidance and simple global navigation mechanisms,
it cannot be applied to crowd simulations in complex
dynamic environments and to simulate versatile crowd
movements, such as indoor evacuation, gathering, queu-
ing, zoo/museum tours, and square walks.

In order to generate realistic crowds with various
movement patterns and environmental adaptability,
the movement of virtual pedestrians in a crowded
environment needs to consider several constraints, in-
cluding global navigation towards the target, local
collision avoidance with surrounding pedestrians and
static obstacles, and social interactions that lead to
self-organization and emergent phenomena in crowds.
In this paper, we present a novel velocity-based crowd
simulation framework through data-driven optimiza-
tion by taking all the constraints for making decision
into account.

Specifically, the decision-making process of each
agent is formulated as an optimization problem, which
can be solved by selecting a velocity from the real-
world crowd dataset that tends to minimize a newly
defined crowd energy metric. Several essential energy
terms are developed in the crowd energy formula. These
terms consider the agent’s movement continuity, global
navigation, collision avoidance, and group formation
control simultaneously. Each energy term is defined as
a factor related to a local optimal velocity, and the
agent’s decision-making is to weigh these local optimal
velocities. In order to make individual behavior in the
simulation as realistic as that in real crowd, we calibrate
the model parameters using real-world crowd data.
Fig. 1 shows several crowd examples generated by our
approach, including walking on zebra crossing, queuing
and aggregation in front of the building gate, indoor
evacuation, and army formation transform.

The main contributions of this work are as follows:

– A novel, unified, and calibrated approach based on
data-driven optimization to simulate versatile crowd
movements with environmental adaptability.

– A velocity-based crowd energy metric for similarity
measurement, by considering movement continuity,
global navigation, local collision avoidance, and
group formation control.

– A group formation control mechanism based on
mean-shift clustering to guide the self-organized
crowd movement in a dynamically changing envi-
ronment.

2 Related Work

2.1 Crowd Simulation Models

In crowd simulation, there are two kinds of widely
used crowd control models according to the expressive
level of simulation details: fluid-based macroscopic and
agent-based microscopic methods. Macroscopic models
[35,25] use an analogy with fluid or gas dynamics
to describe how crowd density and velocity change
over time using partial differential equations. They are
ignore detail of crowd, so these kind of methods are
not suitable for low-density crowds. In contrast, the
microscopic model treats each person in the crowd as
an intelligent agent with its own properties and goals.
Each agent makes a decision individually from its neigh-
borhood information for every time-step. Researchers
have developed a variety of microscopic control models,
including force-based [10] and velocity-based [26,8,2]
models.

In a force-based model, each agent receives virtual
forces generated from the spatial or social relationship
between the agent and its neighbors. Helbing et al. [11,
10] proposed the Social Force Model (SFM) for normal
and panic situations. Pelechano et al. [29] proposed an
individual control in dense environments. Karamouzas
et al. [14] defined a time-to-collision dependent po-
tential energy whose derivatives generate forces. An-
other stream of researchers proposed the velocity-
based model, where each agent selects a velocity that
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Fig. 2 The pipeline of our approach. In the initialization stage (left), we create a velocity dataset based on real data. For a
virtual scene, we initialize the positions of agents of a crowd and calculate the direction field according to the scene geometry.
In the simulation stage (right), we simulate crowds with various movement patterns in diverse environments. The decision-
making of each agent is formulated as an optimization problem (see the data-driven optimization stage, middle), whose energy
function considers velocity similarity, velocity consistency, velocity expectation, movement direction, collision avoidance, and
group formation jointly. Our approach can control crowd patterns, such as queue, aggregation, and walking in tows in the
same framework.

minimizes a given cost function [2]. The velocity-based
model is usually less sensitive to parameter choice and
more stable in a large time-step than the force-based
model.

2.2 Data-Driven Multi-Agent Simulation

To enhance the visual realism of crowd simula-
tion, there have been several attempts to introduce
real captured crowd data into multi-agent simulation.
These methods try to simulate virtual crowds by
learning behavior patterns from real-world samples
[17,12]. Seemingly natural crowd behaviors can be
produced by directly coping the real-world trajectories
or pre-computed patches [21,16,15]. Although these
methods can generate crowd movements similar to
those observed in crowd samples, they lack consider-
ation of scene adaptability. Ren et al. [32] simulated
the heterogeneous multi-agent systems by combining
data-driven with physics-based simulation methods.
Due to the model versatility for different agent types,
the model only uses parameters to adjust crowd. It is
difficult to simulate frequently changing crowds.

Recently, techniques based on neural networks have
received increasing attention in the crowd simulation
community. [18] presented an agent-based deep re-
inforcement learning approach for crowd navigation,
which learns a single unified policy that can adapt all
the scenarios. Generative Adversarial Networks can be

used to learn the properties of real-world crowd datasets
[1] and generate new trajectories with matching pat-
terns. However, convincing simulation results rely on a
large quantity of real-world crowd data.

2.3 Group simulation

A group in a crowd is defined as a subset of agents
which desire to move together [33,13]. Musse et al.
[23] simulated the emergent group behavior with the
consideration of the relationship between groups, and
later presented a hierarchical model to control groups
with different degrees of autonomy [24]. The Social
Force Model [11] was extended to simulate groups
by adding several attractive forces [28] or including
social interactions among people walking in groups [22].
The Velocity Obstacle approach can also be extended
to model group behaviors in crowd simulation [9,33].
In addition, some common human behaviors, such as
leader-follower behaviors [31] and following behaviors
[19] were explored and simulated through experimental
studies.

3 Method Overview

The pipeline of our approach is illustrated in Fig.
2. In the initialization stage, we preprocess different
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types of real-world crowd datasets by uniformly con-
verting them into velocity representations and dividing
the velocity set into several subsets according to the
magnitude of the velocity. We establish an underlying
goal-directed direction field over the free space in
an environment, which could be used for directing
agents in a simulation. Each agent is initialized by
randomly setting an initial position and randomly
selecting an initial velocity from the velocity dataset.
In each step of the simulation, we treat the motion
decision-making or local navigation process of each
agent as an optimization problem, which can be solved
by selecting a velocity from the dataset that tends to
minimize a newly defined crowd energy metric. The
energy metric is defined based on the locomotion and
dynamics rules of agents, including velocity continuity
and consistency, velocity expectation, collision avoid-
ance, movement direction control, and group formation
in the surrounding environment for group formation
control. The influence of each energy term is modeled
as a local optimal velocity, and the final individual’s
decision-making is a trade-off among different local
optimal velocities.

3.1 Initialization

Velocity Set Preparation: From the real-world
crowd trajectories, we calculate the velocity of each
agent in each frame and obtain the velocity set V =
{vi,t, vi,t−1}, where vi,t is the velocity of an arbitrary
agent i at frame t, and vi,t−1 is the velocity in the
previous frame. Considering that the velocity between
two adjacent frames can only change within a small
range due to the temporal continuity of human move-
ment, we therefore sort the set V in ascending order
according to velocity magnitude |vi,t|, and divide it
into several velocity subsets. In each search process,
only the subset where vi,t is located and its adjacent
subsets are searched, which can greatly improve the
search efficiency of the algorithm.

In our implementation, the real-world crowd dataset
for data-driven optimization is provided by the ETH
[30] and UCY Pedestrian datasets [20], which contain
more than 1,600 pedestrian trajectories in five scenes
(ETH, Hotel, Univ, Zara1 and Zara2). We divide the
velocity set V containing 61,995 individual velocities
into 100 subsets, and in each search, the search range
is 6 adjacent subsets.

Direction Field Computation: Our method com-
putes the direction field for each distinct group of agents
based on the static description of the environment
and specified goal positions. These direction fields are
smooth with no local minima, and used to guide
agents to their corresponding goals. Similar to [27,

Fig. 3 Illustration of the direction field for the agent’s global
navigation. The black dot represents the agents’ movement
target and the gray grids denotes the static obstacles in the
environment.

5], the computation of the direction field requires a
discretization of free space in the environment. Here,
we use regular grids (Fig. 3), in which each cell of
the grid stores a vector representing the ideal moving
direction, the distance from the current grid to the
target, and the crowd density information in the current
grid. Then, we use a variant of Dijkstra’s algorithm
to propagate costs throughout the grid, starting with
zero costs associated with the goal position. At each
instance of the computation, the path cost at a given
cell is evaluated through a linear combination of the
calculated path costs of two neighboring cells. In this
way, keeping track of the direction of the optimal path
taken at each grid cell yields a smooth navigation vector
field over the entire free space in the environment. For
more implementation details, we refer to [27]. It is worth
noting that the direction field will not be recomputed
at each time step of the simulation, but only when the
goal position changes.

3.2 Data-driven Optimization

At each time step of the simulation, the velocity
of an agent is updated by finding the velocity in the
input velocity sample sets that is most similar to its
state in the synthesized crowd. Formally, let vi,j denote
the velocity of agent i at frame j to be updated in
simulation, and vr,k denote the velocity candidate in
dataset V , indicating the velocity of agent r at frame
k, its crowd energy E is defined as follows:

E = wvEv +wpEp +weEe +wcEc +wdEd +wgEg, (1)

where the velocity similarity term Ev measures the cur-
rent velocity similarity between the agent i and r, the
velocity consistency term Ep measures the similarity
between the two agents’ velocities at their respective
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previous frames, the velocity expectation energy term
Ee measures the similarity between vr,k and the desired
velocity of the agent i, the collision avoidance energy
term Ec is introduced to preserve the agent i’s safe
distance with its neighbors and static obstacles during
movement, the movement direction energy term Ed
measures the similarity between the direction of vr,k
and the expected movement direction of the agent i,
which is obtained from the precomputed direction field,
and the group formation energy term Eg is further in-
troduced to describe the interaction of agent i’s interac-
tions with surrounding neighbors and generate various
group movement patterns in crowds. wv, wp, we, wc, wd
and wg are normalized weight parameters of these
energy terms.

4 Energy Term Calculation

4.1 Velocity-related energy terms

Ev, Ep, and Ee are three energy terms related to
agent i’s velocity, which are used to ensure the individ-
ual’s smooth continuous movement and the expectation
of moving at the desired velocity.

In the real-world crowd, humans cannot change
their motion state frequently or suddenly within a time
step. Inspired by this observation, in the simulation,
we design the velocity similarity term Ev to represent
the tendency of individual velocity changes within
a reasonable range. This energy term measures the
similarity between vi,j and vr,k in terms of movement
direction and velocity magnitude, which is defined as:

Ev = wv1‖‖vi,j‖ − ‖vr,k‖‖2 + wv2 ‖ni,j − nr,k‖2 , (2)

where ‖ni,j − nr,k‖2 is designed for direction similarity,
and ‖‖vi,j‖ − ‖vr,k‖‖2 is designed for velocity magni-
tude similarity. ni,j and nr,k are respectively the unit
vector representing the moving direction of agent i at
frame j and that of the candidate r at frame k in the
velocity dataset. wv1 and wv2 are weight parameters.
It is noteworthy that measuring the similarity of veloc-
ity magnitude and direction separately with different
weight parameters can expand the search range in
the velocity set, thereby effectively avoiding individual
movement concussion in the simulation.

In addition to keeping the individual’s velocity
change within a reasonable range, the individual’s
velocity change is also required to be continuous to
ensure the continuity of movement and the smoothness
of the trajectory in the simulation. As defined in Eq.
3, we take the individual’s previous frame speed into
account and introduce the velocity consistency term Ep:

Ep = ‖vi,j−1 − vr,k−1‖2 , (3)

Fig. 4 Different crowd movement patterns generated by
our approach combined with different collision avoidance
algorithms ((a) SFM, (b) ORCA).

where vi,j−1 and vr,k−1 are the velocities of the agent
i and r at the previous frame, respectively.

The velocity expectation energy term Ee describes
individual i’s motivation to move with an expected
velocity V ei , which only measures the similarity of
velocity magnitude:

Ee = ‖V ei − ‖vr,k‖‖2 , (4)

where V ei is a constant used as a personalized attribute
of the agent i, defined during the initialization step.

4.2 Collision avoidance energy term

Collision avoidance is achieved through the energy
term Ec. Taking the neighboring agents (as dynamic
obstacles) and the environment (as static obstacles) as
input, we compute the collision-free velocity vci,j for
the agent i by using reliable local collision avoidance
algorithms, such as Social Force Model (SFM) [11] and
Optimal Reciprocal Collision Avoidance (ORCA) [3].
Then the velocity vci,j is compared with the candidate
velocity vr,k in the velocity set by measuring the
similarity, which leads to the following formula for Ec:

Ec =
∥∥vci,j − vr,k

∥∥
2
. (5)

Our approach can be easily integrated with any local
collision avoidance algorithm to obtain vci,j . Different
collision avoidance mechanisms lead to different crowd
movement patterns. As shown in Fig. 4, in a scene
where two groups (red and white) face each other, the
agents that use SFM to avoid collisions tend to gather in
small piles, while the agents using ORCA are scattered
to avoid collisions.

4.3 Movement direction energy term

The movement direction energy term Ed is intro-
duced for global navigation, which imitates the agent’s
movement toward its goal. Through the constructed
direction field over the entire environment during ini-
tialization, the ideal (fastest) moving direction of any
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Fig. 5 Various crowd movements simulated by our approach
(a) without the group formation energy term and (b)-(c) with
different settings of positional attractions: (b) two subgroup
formed by manually specified attractors, and (c) two dynamic
subgroup formed using automatically specified attractors by
mean-shift. In (d), we give an illustration of the mean-shifting
process applied on the feature space (blue dots) of all agents
for crowd aggregation in a square.

agent can be obtained from the movement direction
stored in the grid cell where it is located (Fig. 3).
Correspondingly, the energy for movement direction
control is presented as:

Ed =
∥∥ndi,j − nr,k

∥∥
2
, (6)

where ndi,j is the unit vector denoting the desired
moving direction of agent i at frame j, nr,k is the
unit vector representing the moving direction of agent
candidate r at frame k in the velocity dataset.

4.4 Group formation energy term

Using the five types of energy items introduced
above can generate natural-looking macroscopic crowd
behaviors. But in addition to the basic collision avoid-
ance between individuals (Fig. 5(a)), it is difficult to
describe the complex interaction behaviors between
individuals and simulate various group behavior pat-
terns, such as array, queue, aggregation, and evacua-
tion. Furthermore, people often change their behavior
states in the real world. For example, people come
out of a crowded subway station, cross the square,
and then walk to the entrance of a shopping mall to
queue. However, previous methods usually use uniform
behavior control rules for the entire crowd, which leads
to consistent behaviors of individuals in the crowd and
lack of environmental adaptability [32]. In order to
generate various movement patterns of the crowd in
a dynamically changing environment, we define a group
formation velocity vsi,j to imitate the agent i’s decision-
making under the influence of the surrounding local
environment at frame j, and correspondingly, the group
formation energy term Eg is given as:

Eg =
∥∥vsi,j − vr,k

∥∥
2
. (7)

Positional attraction: Specifically, the influence
of the surrounding local environment on individual
decision-making is often manifested as position at-
tractiveness [33]. Different definitions of position at-
tractiveness lead to different formulations of group
formation velocity vsi,j , thereby generating different
crowd behavior patterns in simulation. Basically, a
certain point in the environment or a certain individual
in the crowd can be set as a source of attraction to
guide individuals, thereby generating the aggregation
and guide-follower crowd movement patterns. For the
queuing crowd (Fig. 5(b)), the individual in front
of each individual can be regarded as the source of
positional attraction, so that they follow the individual
in front of them and make decisions based on the
distance between them. Formally, we define the group
formation velocity of the agent as:

vsi,j = δi(p
a
i,j − pi,j), (8)

where pai,j is the positional attraction source, pi,j is
the position of agent i at frame j, δi is the weight of
distance influence.

Mean-shift clustering: By specifying the attrac-
tion points, rich agent interactions and various group
movement patterns can be realized in the crowd. How-
ever, it is difficult to manually specify the attraction
points for the scenarios where the positional attraction
sources of agents are different or dynamically changing,
such as crowds walking in twos in a square, and
crowds dynamically gathering at multiple exits during
evacuation. In such a movement pattern where a self-
organized crowd gathers into small groups (Fig. 5(b)),
people usually tend to walk to areas with high crowd
density around them.

Inspired by this observation, we introduce the mean-
shift clustering method [5,6] to automatically compute
the dynamic attraction point. The feature space is
spanned by the position of each agent in crowd. As
illustrated in Fig. 5(d), a window function is selected as
a kernel and the mean-shift algorithm iteratively shifts
this kernel to a higher density region until convergence.
Each shift is defined by a mean-shift vector pointing
toward the maximal increasing direction in terms of
density. Here, the kernel is shifted to the centroid (or
the mean) of all points falling in the local support of the
window function. The centroid is called the mean point
and is used as the attraction point for group formation
in crowd simulation.

Specifically, the mean point of agent i can be
computed as follows:

1) Initialize the mean point p̄ with the agent i’s
position pi,j at frame j.
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2) Apply a window function ω(p, p̄) to control the size
of agents considered in mean-shift iteration:

ω(p, p̄) =

{
1, θ(p, p̄) ≤W and L(p, p̄) ≤ R,
0, otherwise,

(9)

where W and R control the window size (W =
60◦ and R = [1.5, 6] in our implementation). p is
the position of an agent in crowd, L(p, p̄) is the
distance between the directions of the mean point
p̄ and agent, and θ(p, p̄) is the angle between the
direction field of the grid (where the mean point p̄
is located) and the vector pointing from p̄ to p. If
ω(p, p̄) equals 0, the effect of this agent will not be
considered in the next simulation step.
For each agent i within the window, we compute
its weight for re-estimating the mean using a kernel
function k(pi, p̄):

k(pi, p̄) = e−0.5gie−0.05lie−2di , (10)

gi =

∥∥∥∥θ(pi, p̄)

W

∥∥∥∥2 , li =

∥∥∥∥L(pi, p̄)

R

∥∥∥∥2 , di =

∥∥∥∥s(pi)s0i

∥∥∥∥2 ,
(11)

where s(pi) represents the length of the rest path
from the agent i’s current position pi to the target,
and s0i gives the length of agent i’s path from its
initial position to the target.

3) Compute the new mean p̄new using the weighted
mean of the density in the window as follows:

p̄new =

∑
i∈A k(pi, p̄)pi∑
i∈A k(pi, p̄)

, (12)

where A is the set of agents, and pnew means the
new position in the mean-shift algorithm.

4) Shift the window center to p̄new and go back to
Step 2 if the terminal condition has not been met.
If the number of iterations exceeds 100 times or the
deviation of p̄new is less than 0.01, the algorithm
terminates. p̄new is employed as the positional
attraction and we compute the group formation
velocity vsi,j for agent i at frame j by Eq. 8.

4.5 Parameter Calibration

In our proposed method, there are totally 8 weight
parameters (wv1, wv2, wp, we, wc, wd, wg, δi) related to
the energy terms. In order to avoid the tedious non-
trivial tuning of these parameters in a trial-and-error
manner, we use the Simulated Annealing algorithm [7]
to calibrate parameters. Given the real-world traffic
data, the calibration task is to determine the specific
optimal parameter set of the proposed model that best
fits the given trajectory for each crowd agent.

The simulated annealing algorithm works as follows.
First, the 8 parameters are randomly initialized within
the range of [1, 10]. We set the initial temperature
as 1, 000, 000◦C and define the temperature reduction
function as Tnew = 0.25 ∗ Tcurrent according to the
geometric reduction rule, where Tcurrent is the current
temperature, and Tnew is the new temperature. For
each temperature, the number of iterations is set to 500,
which leads to 500 parameter sets for our simulation
model.

As the temperature drops, the range of parameters
gradually changes from [0.01, 0.1] to [0.01, 0.01] with
each iteration r. The created parameter set is applied to
our simulation model to generate the virtual movement
of the crowd agent. Then, we measure the error F vr
between simulated behavior and the real-world agent
trajectory in terms of velocity, defined as follows:

F vr =
1

N

N∑
j=1

∥∥vsimj − vdataj

∥∥
2
, (13)

where vsimj and vdataj are the simulated velocity and
the given velocity of the agent at an arbitrary frame
j, respectively. N is the total number of frames of
agent movement. We compare F vr with the error in the
previous iteration F vr−1 by ∆F = F vr −F vr−1. According
to the value of ∆F , the parameters generated in this
iteration will be accepted with a certain probability ρ:

ρ =

{
1, if ∆F ≤ 0;

e−∆F/T , if ∆F > 0,
(14)

where T is the current temperature.
Repeat the above procedures and decrease the

temperature according to the reduction function, the
annealing process stops until the termination conditions
are met. The termination criterion is either the end
temperature is less than 1.0 or the change of error F vr
is less than 0.01. The calibration process takes about
eight hours for 40 trajectories.

Using the calibrated parameter set, we can achieve
a simulated crowd similar to the given real-world crowd
data. In order to further simulate complex crowd
movements in various scenarios, fine-tuning can be
further made based on these calibrated parameters.

5 Dynamic Crowd Simulation

In order to exhibit various movement patterns in
the same crowd scenario, the positional attraction
sources can be defined in different ways for different
agent groups. It is also possible to simulate the agent
movement in a dynamically changing environment by
switching the direction field according to its dynam-
ically changing target and the positional attraction
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computing ways. Specifically, in a multi-exit crowd
evacuation scenario, we separately set up a direction
field for the entire environment with each exit as the
target position during initialization, where each grid
stores the distance from the current position to the
target and the crowd density in the grid. During the
evacuation process, the agent will dynamically select
the appropriate exit and switch the direction field
according to the density of the crowd around each exit
and the distance from each exit.

The general velocity-based framework we proposed
can be easily integrated with other crowd simula-
tion methods. Specifically, the computation method
of group formation velocity can be replaced by an
arbitrary microscopic group modeling method. The
desired moving direction in the movement direction
energy term can be obtained from any global navigation
mechanism. Similarly, any collision avoidance approach
can be used to obtain the collision-free velocity in the
collision avoidance energy term.

We first validated our approach in an autonomous
vehicle navigation test scenario, where a virtual crowd
of 40 pedestrians crosses an urban road without traffic
lights. In order to test the decision-making ability of the
autonomous vehicle in different crowd situations, we
generated three different behavior patterns of crowds
by defining positional attraction sources in different
ways: freely moving pedestrians, queuing crowd, and
aggregated subgroups. When describing the mutual
interaction between the car and pedestrians, we employ
the method of Chao et al. [4] for car decision-making.
Fig. 6 shows the simulation result and the velocity curve
of the autonomous vehicle in each case. It can be seen
that the decision-making of the autonomous vehicle
varies when facing crowds with different movement
patterns. This proves the necessity and effectiveness
of our method to simulate various crowd behaviors for
application in autonomous vehicle testing.

6 Simulation Results

6.1 Comparison with real-world crowd dynamics

Evacuation: We use virtual crowds to reproduce
the real-world crowd evacuation experiment organized
by the University of Melbourne. The escape layout
is designed to build four panels in the basketball
stadium, one of which has four narrow exits (only one
person can pass through at the same time). In this
scenario, people dynamically choose the exit according
to the dynamically changing environment, and after
escaping, they will also choose to go left or right.
Fig. 7 show the snapshots of the experimental video
(top) and our simulation result (middle). It can be
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Fig. 6 Example crowd simulation results with different
movement patterns generated by our approach for au-
tonomous vehicle testing: (a) freely moving pedestrians, (b)
queuing crowd, and (c) aggregated subgroups. The blue curve
in each image shows the velocity of the autonomous vehicle.

seen that the various movement patterns, such as
self-organized queuing, aggregation at the exit, and
spreading movement pattern after escaping, can all be
reproduced by our approach. This can be achieved by
assigning different definitions of positional attraction
sources to different groups of agents.

In addition, an agent’s movement in this dynam-
ically changing environment is simulated by switching
the direction field according to its dynamically changing
target and the positional attraction computing ways.
Specifically, we set up multiple direction fields for the
entire environment with each exit as the target position
during initialization, where each grid stores the distance
from the current position to the target and the crowd
density in the grid. During the evacuation, the agent
will dynamically select the appropriate exit and switch
the direction field according to the density of the crowd
around each exit and the distance from each exit.

The bottom images in Fig. 7 shows the heatmap of
the pedestrian velocity distribution in different areas
during the simulation. At the 334th frame, the individ-
ual slows down after passing the right exit, resulting
in congestion and slower agent velocities at the right
exit. At the same time, there is more space near the
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Fig. 7 The snapshots of video of the real-world crowd
evacuation experiment (top), our simulation result (middle),
and the heatmap of pedestrian velocity distribution (bottom).

(a) (b)

Fig. 8 The comparison between (a) the rendering of real-
world crowd movements from ETH-Univ dataset, and (b) our
simulation result with this dataset as input.

left exit, and the crowd leaves in an orderly manner at
a faster speed (at the 628th frame). Moreover, it can be
observed that some people change their target exit from
the right to the left in order to leave more quickly. After
the evacuation is completed (at the 1157th frame), the
crowd in the open area moves at the desired speed,
resulting in a more even distribution of crowd velocity.

Square: We simulate the crowd behaviors in a
square using the real-world square crowd dataset ETH-
Univ [30] as input, and compare the generated crowd
dynamics with that in the real-world sample. As shown
in Fig. 8, the virtual crowd presents similar behaviors
as the ones in the real-world scene, especially the
movement pattern of walking in twos. Fig. 9 also gives
the velocity probability distribution of the simulated
crowd, which matches that of the ETH-Univ dataset.

6.2 Runtime Performance

Table 1 gives the detailed parameter settings used in
the above three scenarios. It is worth noting that in the
square scene, we increase the range of the mean shift
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Fig. 9 Comparison of crowd speed distributions between
real crowd data from the ETH-Univ dataset (red), and our
simulated crowd (blue) with this dataset as input .

Table 1 Parameter values for different scenarios.

Scence wv1 wv2 wp we wc wd wg δi z
Vehicle interaction 2.9 1.0 2.5 1.0 3.0 1.9 3.0 1.0 15

Evacuation
indoor 3.9 1.0 2.5 0.2 3.2 3.5 3.0 1.5

10
outdoor 3.9 1.0 2.5 0.2 6.0 1.0 1.9 1.0

Square 2.9 1.0 2.5 1.2 8.0 2.6 4.2 1.0 8

and the weight of group formation term wg to make
more agents walk in pairs. At the same time, in order
to keep the crowd collision-free, we increase the weight
of collision avoidance wc.

The timing performance of our approach is related
to the number of agents and the search range z
(representing the number of adjacent subsets to be
searched) in the velocity set. Fig. 10 shows the runtime
performance of our method in terms of agent number
and search range. It can be seen that the runtime of
our data-driven optimization process is approximately
linear with the crowd size. When the search range is
set to 3, our method can simulate about 750 agents in
real time (30 fps) and about 1,750 agents at interactive
simulation rates (10 fps) . In addition, the runtime at
z = 6 is twice that at z = 3, which indicates that
when the search range z of the dataset is expanded, the
time spent is also doubled. All the reported times were
obtained on a 64bit desktop machine with a 2.30GHz
Inter Core CPU i5-8300H processor and 8GB memory.

6.3 Comparison with typical approaches

We compare our method with that of Ren et al.
[32] in a benchmark scenario with a circular obstacle in
the middle. Two groups (80 agents each) are initialized
on opposite sides. The positions of targets are given
in the vicinity of the initial location of the opposite
group, where a lot of collisions and interactions could
happen in the middle. As can bee seen from Fig. 11(a),
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Fig. 10 The runtime performance of our approach with
different values of search range z of the velocity set.

the agents simulated by Ren et al.’s method avoid the
obstacle and other agents in the process of moving
towards the target. The direction of movement is
controlled simply by pointing from the current position
to the target position, without considering the static
obstacle in the environment. In contrast, our method
builds a direction field for the entire environment as the
agent’s global navigation at any location. In addition to
basic collision avoidance, the agents simulated by our
approach exhibit various interactive behaviors, which
leads to different crowd movement patterns, such as
queuing, aggregation, and the switching of the two
formations as shown in Fig. 11(b-d).

As a comprehensive framework, our method can
be incorporated into any crowd simulation system to
achieve more realistic virtual crowd movements by
replacing the calculation method of the local optimal
velocity in each energy item. Fig. 12 compares our
approach with that of Patil et al. [27], which uses
navigation fields to direct crowd simulation with the
Social Force Model for local collision avoidance. The
scenario comprises of four groups of 25 agents each
in each corner of the environment that need to move
to the opposite corner (Fig. 12 (a)). In the middle,
there are four square-shaped static obstacles that form
narrow passages. As shown in Fig. 12 (b), the agent
simulated by Patil et al.’s approach can smoothly move
to the target position while avoiding collisions with
other agents and obstacles. In contrast, due to the
introduction of the group formation mechanism, the
crowd generated by our approach can exhibit different
group movement patterns in the same scenario (Fig.
12 (c)), such as aggregation, queue, array, and basic
collision avoidance similar to that in Fig. 12 (b).

We also compare our method to two popular lo-
cal collision avoidance methods, SFM and ORCA,
in a benchmark scenario with 200 agents evacuating

(a) (b)

(c) (d)

Fig. 11 Snapshots of crowd movements in a scenario with a
circular obstacle in the middle: (a) basic collision avoidance
using the method of [32], and (b) queue, (c) aggregation, (d)
aggregation-queue switching by our approach.

(a) (b) (c)

Fig. 12 (a) The initial position of the crowd in the scenario,
and intermediate positions of the agents in the simulation (b)
using the method of Patil et al. [27], and (c) by our approach.

(a) (b) (c)

Fig. 13 Snapshots of crowd simulation in an evacuation
scenario by (a) ORCA, (b) SFM, and (c) our approach with
the introduction of SFM.

through three narrow exits. It can be seen from Fig. 13
(a-b) that the simulated crowd using only ORCA/SFM
will be blocked at the middle exit, while the other two
exits have very few people. In contrast, by introducing
SFM into our framework, agents in the simulated
crowd will dynamically choose exits with relatively few
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Fig. 14 Plausibility scores of the user study. (a) Statistics of the simulated crowd in various scenarios generated by our
approach. (b) Comparison statistics between our simulated crowd dynamics and the real-world crowd samples. (c) Statistics
for comparison between Ren et al’s approach [32] and ours. (d) Experimental outcomes comparing our method with the method
of Patil et al. [32]. (e) Comparative statistics between SFM, ORCA, and our approach.

people, which is also in line with the real-world crowd
dynamics.

6.4 Perceptual Study

We conducted a user study to understand and
analyze whether the virtual crowd simulated by our
method meets people’s perception of realistic crowds.
We rendered all the 14 simulated crowd animations
and 1 ETH-Univ crowd dataset shown in the figures
above. Then we recruited 39 participants to participate
in this user study. All the participants are graduate
students aged between 20 and 30, with normal visions.
At each time they were asked to watch one crowd
animation stimulus and then rate it in terms of its
perceived fidelity. The score range is from 1 (not at all
realistic) to 10 (very realistic). To counterbalance the
order of the visual stimuli, the stimuli were displayed in
a random order for each participant. The participants
were allowed to view an animation stimulus many times
before scoring it.

The outcomes of the user study are reported in Fig.
14. The various scenarios simulated by our method
have got an average score of 8, which shows that
people feel that our generated crowd behaviors are
very realistic. However, the queuing scene shown in
Fig. 11(b) has a slightly lower mean score 7, because
users feel that the queuing movement pattern does
not match this scene. Fig. 14(b) shows the fidelity
score comparison between our simulated crowd and
the real captured data from ETH-Univ. In the same
rendering environment (Fig. 8), the mean scores of
the two are very close (p-value = 0.146 > 0.05),
which is enough to prove that our simulated crowd
is so realistic that it is indistinguishable from the real
crowd. Furthermore, in the score comparison with other
typical simulation methods (Ren et al’s approach[32],
Patil et al’s approach[27], SFM and ORCA), the crowd
animation by our method obtains higher mean scores,
due to the richer crowd movement patterns and more
vivid crowd behaviors (Fig. 14(c)-(e)).

7 Conclusion

We present a comprehensive framework for crowd
simulation that allows interactive control of global nav-
igation, local collision avoidance, and group formation.
Each control is integrated into a velocity-based crowd
energy metric to measure the similarity between the
agent’s required simulated velocity and a given velocity
sample. Through a data-driven optimization process,
our approach can simulate crowd behaviors in a dy-
namically changing environment and generate various
movement patterns in the same scenario. Furthermore,
our approach can be applied to new scenarios beyond
the input dataset and simulate agent behaviors that
may differ from those captured by the input data.

As a common problem of data-driven methods, the
composition of the input real-world crowd trajectory
data directly affects the simulation results and time
efficiency of our method. Although our method can deal
with the presence of noise in the input data, it has
to expand the velocity search range to find the local
optimal speed, this will slow down the update efficiency
of the crowd. Moreover, if the velocity distribution of
the input samples is sparse, the simulated agent is prone
to abnormal behaviors with discontinuous speed, such
as jitter and drift.

In the future, we plan to extend our method to
introduce full-body motions in the animation of crowd
characters. Various types of spatio-temporal informa-
tion about the ongoing character interactions (e.g. dis-
tances, relative positions or velocities, time to collision)
can be calculated during the simulation process, and
used to trigger specific character animations. Also,
observations show that different people will achieve
the same goal in different manners in terms of the
underlying personality, we plan to emulate personality
traits of individuals within a crowd. Last but not least,
we are interested in integrating our approach with
various crowd editing tools and algorithms. In this way,
users can flexibly refine the quality of crowd behaviors
directly synthesized by our approach.
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28. Pedica, C., Vilhjálmsson, H.: Social perception and
steering for online avatars. In: International Workshop on
Intelligent Virtual Agents, pp. 104–116. Springer (2008)

29. Pelechano, N., Allbeck, J.M., Badler, N.I.: Controlling
individual agents in high-density crowd simulation. SCA
’07, p. 99–108. Eurographics Association, Goslar, DEU
(2007)

30. Pellegrini, S., Ess, A., Gool, L.V.: Improving data
association by joint modeling of pedestrian trajectories
and groupings. In: European conference on computer
vision, pp. 452–465. Springer (2010)

31. Qiu, F., Hu, X.: Modeling group structures in pedestrian
crowd simulation. Simulation Modelling Practice and
Theory 18(2), 190–205 (2010)

32. Ren, J., Xiang, W., Xiao, Y., Yang, R., Manocha, D.,
Jin, X.: Heter-sim: Heterogeneous multi-agent systems
simulation by interactive data-driven optimization. IEEE
Transactions on Visualization and Computer Graphics
27(3), 1953–1966 (2021)

33. Ren, Z., Charalambous, P., Bruneau, J., Peng, Q., Pettré,
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