
Make it swing: Fabricating personalized roly-poly toys

Haiming Zhaoa, Chengkuan Hongb, Juncong Linc,∗, Xiaogang Jina, Weiwei Xua

aState Key Lab of CAD&CG, Zhejiang University, China
bSchool of Mathematical Sciences, Zhejiang University, China

cSoftware School of Xiamen University, China

Abstract

A roly-poly toy is considered as one of the oldest toys in history. People, both young and old, are fascinated
by its unique ability to right itself when pushed over. There exist different kinds of roly-poly toys with
various shapes. Most of them share a similar bottom which is a hollow hemisphere with a weight inside.
However, it is not an easy task to make an arbitrary model to swing like a roly-poly due to the delicate
equilibrium condition between the center of mass of the roly-poly toy and the shape of the hemisphere. In
this paper, we present a computer-aided method to help casual users design a personalized roly-poly toy
and fabricate it through 3D printing with reduced material usage and sufficient stability. The effectiveness
of our method is validated on various models. Our method provides a novel easy-to-use means to design an
arbitrary roly-poly toy with an ordinary 3D printing machine, extricating amateurs from the dilemma of
finding extra weight to balance the shape.
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1. Introduction

Figure 1: A goblet shape roly-poly toy example designed by our method. The snapshots show that the toy is able to regain
balance when pushed over.

A roly-poly toy, which is also referred to as a tumbler, is usually a round-bottomed doll. It is considered
as one of the oldest toys in history. The bottom of a traditional roly-poly toy is roughly a hemisphere, so
that it is able to right itself when pushed over. Over the years, different-looking roly-poly toys are produced
across the world, such as animals, clowns, and celebrities. They have come to symbolize the ability to have5

success, overcome adversity, and recover from misfortune [1].
Traditional roly-poly toys usually consist of two parts [2]. The upper part has an amazing variety of

shapes influenced by culture and manufacturers. The lower part (base part) is mostly round and roughly a
hemisphere, which is generally hollow with a metal weight inside to balance the center of mass. The shape
of the lower part and the center of mass of a roly-poly toy are carefully designed for regaining balance by10
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itself. However, creating a personalized roly-poly toy is traditionally a cut-and-try process which requires
moderate attempts and experiences. A key problem is to keep a delicate equilibrium between the center of
mass of the toy and the shape of the lower part. Usually, a carefully selected metal weight is located in the
base [3, 4].

3D printing enables everybody to easily fabricate 3D models. However, making a personalized roly-poly15

toy is still a nontrivial process for ordinary users as the input mesh must be edited carefully to keep the
equilibrium. Moreover, most 3D printers use the same material which makes it even harder to balance the
roly-poly toy and make it swing.

Much attention has been devoted in the field of fabricating models with certain structures associated
with static equilibrium and motion. Prévost et al. [5] aimed to fabricate static models that stand in various20

poses. Bächer et al. [6] took a step further to spin it. Different from previous work, in our case, the toy
to be printed should balance on the initial standing position and restore to the balancing state after being
pushed over or rotated. Therefore, our design will result in different equilibrium conditions and constraints
for optimization in order to account for the special dynamic properties of roly-poly toys. When designing
the equilibrium constraint, we should take the shape of toy, the stability of restoring balance, and the swing25

amplitude into consideration.
In this paper, we present a novel framework to help amateurs design personalized roly-poly toys. In our

interactive design system, the upper part mesh of a roly-poly toy is provided by users. The input mesh
is firstly optimized in terms of mass distribution. Then, a corresponding base part is calculated. Finally,
the generated results are fabricated through 3D printing. Besides the reduced material usage constraint,30

our approach can maintain sufficient stability and attain amplitude of swing as large as possible. We have
conducted extensive experiments on a variety of models to validate our pipeline, which are demonstrated in
the accompanying video.

The contributions of this paper lie in the following main aspects: (i) We present a novel framework to
fabricate roly-poly toys which can theoretically guarantee the stability of the printed toy. To the best of35

our knowledge, this is the first approach to design personalized roly-poly toys through 3D printing. (ii) We
formulate the design process as an optimization problem so as to reduce the printing material and maintain
dynamic characteristics of the resulting toy. (iii) We develop a method to print the whole toy with the same
material without using traditional metal weight to balance the center of mass.

2. Related work40

3D Printing stimulates a significant amount of research interests in the computer graphics community
recently. With the help of simulation techniques, some methods have been developed to optimize 3D
shapes to satisfy specific elastic deformation constraints under external forces [7, 8]. Shape optimizations
are introduced to reduce supporting structures and speed up the printing process [9, 10, 11]. Adding
3D-printable joints provides a solution to produce functional posable models [12, 13]. Mechanical motion45

is achieved using mechanical automata [14, 15]. Offset surfaces can also be employed to reduce printing
materials by making printed objects hollow [16, 17]. To optimize the mass distribution and the stability of
printed objects, Musialski et al. [18] proposed a reduced-order shape optimization method by using offset
surfaces with varying thickness. In addition, surfaces with desired spatially varying reflectance can be
fabricated [19, 20]. Different from previous methods, we provide an insight into fabrication-oriented design50

towards dynamic equilibrium.
Structural stability analysis under varied loading conditions plays a crucial role in printing digital models.

It helps to detect the weak regions and enhance its printability through the shape optimization. Whiting et
al. [21, 22] introduced the idea of generating structurally feasible models of buildings. They used the measure
of infeasibility as an energy function and optimized the energy to satisfy structural constraints. Panozzo55

et al. [23] designed unreinforced masonry models. Deuss et al. [24] applied and extended the framework to
successfully assemble self-supporting structures. To satisfy the stress constraints, Stava et al. [25] added
support structure and adjusted the thickness of the surface mesh. Zhou et al. [26] proposed an easy-to-use
framework to analyze the worst load distribution by means of a fast linear element-based method. Besides
improving structural stability, we also focus on adjusting the center of mass using shape optimization.60
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The delicate balance between static equilibrium and dynamic motion is fascinating. The approach
proposed by Prévost et al. [5] drew researchers’ attention to fabricate static models that stand in various
poses without requiring glue or pedestals. Bächer et al. [6] took a step further in dynamic equilibrium. They
proposed an impressive framework to optimize the rotational stability using a combination of hollowing
inside, cage-based deformation, and dual-material models. Different from them, we are interested in solving65

the static and dynamic equilibrium of a roly-poly toy. The process formulation, variables, and constraints
involved are quite different from previous methods.

Toy design. Researchers have devoted much to the delightful design process of toy manufacturers [27,
28, 29, 30]. Puzzles with interlocking pieces are fabricated [31, 32, 33]. Mori et al. [34] introduced an
interactive system to conveniently design personalized plush toys. Based on sketch interface, this system70

facilitates various editing operations tailored for plush toy design. Later on, 3D printing becomes an active
part in toy design, especially for toys with sophisticated geometry characteristics. Hirose et al. [35] proposed
an interactive system to design the unique solid ”sphericon” with additional conditions like geometric and
symmetry constraints. Mueller et al. [36] presented a layout refinement algorithm that iteratively improved
the structure. Luo et al. [37] presented a new approach to rapid prototyping functional objects using bricks-75

like LEGO bricks. Different from them, we focus on designing personalized roly-poly toys.
Torque and energy in rotational motion. The torque acting on the particle is proportional to its

angular acceleration [38], which is useful in describing the self-righting motion of roly-poly toys when pushed
over. The energy concept of converting between kinetic energy and potential energy can be equally useful in
understanding rotational motion. A well-designed roly-poly toy requires center of mass [39] and the shape80

of the base part of the roly-poly toy to satisfy specified constraint. To fabricate personalized roly-poly toys,
we formulate the above-mentioned constraints into an optimization process. The self-righting property of
a roly-poly toy inspires researchers to design input devices for 3D interaction. Based on the hemispherical
shape and free moving property of the roly-poly toy, Perelman et al. [40] designed a roly-poly mouse to unify
2D and 3D interactions, which managed to create compound gestures such as translation, roll, and rotation.85

3. Method overview

(a)

Phase 1 Phase 2

C
C’

cU, mU

(b) (c) (d) (e) (f) (g)

0

Figure 2: System overview of our approach. Given a 3D shape as input mesh (a), we first optimize the upper part U of the
roly-poly toy in Phase 1. (a) is hollowed as shown in (b). The outer surface and the inner surface are shown in (c) and (d).
After the optimization in Phase 1, the position of center of mass for U , as c0U in Equation 10 and the mass of U , as mU in
Equation 22 are determined and set as initial value for Phase 2. The parameters a, r for L are optimized in Phase 2 (e). Thus,
an optimized result is generated (f). U and L are printed separately and then glued together to generate the final roly-poly
toy (g).

A roly-poly toy (M) usually consists of a lower part (L) and an upper part (U). The shape of U is usually
carefully designed to attract people. L has a hemisphere-like shape and plays a key role in balancing the
toy. We assume that the shape of L is a paraboloid of revolution. Based on these observations, we divide
our framework into two phases: Phase 1 is used to optimize the upper part U by adjusting its material90

distribution and its position on L; Phase 2 is employed to optimize the coefficient a, which dictates the level
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of curvature for the paraboloid of revolution, and radius r of the lower part L. Once the users specify some
necessary parameters, such as printing material and dimension, the system will automatically compute U
and L. We finally combine the two parts by gluing U on top of L to get the final personalized roly-poly toy.
In the following sections, we will describe each optimization process in detail.95

3.1. Computational model

Figure 3 is a discrete illustration of our roly-poly model. An input mesh is taken as U of a roly-poly toy.
A minimal wall thickness is set to meet the basic standard for 3D printing fabrication. The inner and outer
surface meshes are represented as MI and MO, respectively.

In our framework, the shape of L is a paraboloid. The reason for using a paraboloid is that it can100

represent more shapes than circular arcs by adjusting the level of curvature. Therefore, L can be described
by the following function:

z = ax2 + ay2, (1)

where a is a coefficient to dictate the level of curvature of the paraboloid of revolution.
The standing position of the roly-poly toy is set as the initially balanced position (shown in Figure 3(a)).

Thus, the center of mass C for the roly-poly toy should lie on the middle axis. As it is pushed away from105

the initial position, the contact point on the supporting plane switches from O to A (see Figure 3(b)). For
simplicity, we set the origin of the coordinate as O and assume the Z direction is along the middle axis of
the roly-poly toy. The blue line indicates the supporting plane and B is the intersection of the Z axis and
the gravity direction. We project paraboloid of revolution on X-Z plane, the projected curve is a parabola
equation:110

z = ax2, (2)

where a is the same coefficient used in Equation 1, which equals to the reciprocal of the latus rectum for
this parabola.
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Figure 3: The requirement for the center of mass. (a) shows a roly-poly chiming clown. (b) and (c) are viewed along Y axis.
(b) is a simple illustration for calculating the best location for center of mass for the roly-poly toy. The amplitude of swing is
calculated in (c). OAED denotes the optimized L and the angle ABC indicates upper limit of balancing by itself.

3.1.1. Center of mass

Let m be the mass of the roly-poly toy shown in Figure 3(a). We use dm to represent the mass at point
P = (x, y, z). Then the center of mass (xc, yc, zc) of the toy can be simply calculated by [38, 39]:115

xc =
1

m

∫
xdm, yc =

1

m

∫
ydm, zc =

1

m

∫
zdm. (3)
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3.1.2. Equilibrium condition

Righting itself when pushed over is one of the main characteristics of a roly-poly toy. We assume that
a roly-poly is put on the table with its standing position as the balancing position. At the moment the
roly-poly toy is pushed over, it gains an initial kinetic energy. When the roly-poly toy swings away from
the balancing position, its kinetic energy is transformed into potential energy and the speed of the swing120

decreases. Afterwards, the potential energy is transformed back into kinetic energy which reaches the
maximal at the balancing position. Because of the friction of the table and the air, the roly-poly toy is able
to reach its balance at the initial position when its center of mass meets some requirements. Figure 3(b)
illustrates the situation when Figure 3(a) is pushed over to the right. A is the contact point for L, which is
drawn as the parabola curve. B is the intersection point of direction of supporting force F and the Z axis.125

Let the coordinate of center of mass C for the roly-poly toy be (0, c). Considering the torque [38] associated
with the gravity with the wrench pivoted on the axis through A, the direction of this torque determines
the rotation of the roly-poly toy. If C is lower than B in Z direction, the roly-poly toy tends to swing back
to the balancing position. If the center of mass is located on C ′, under the influence of torque derived by
gravity, the roly-poly tends to fall.130

The constraint for C is calculated as follow. The slope for point A = (x0, z0) on the curve is:

k = 2ax0. (4)

The equation for the line AB can be described as:

z − z0 = − 1

2ax0
(x− x0), (5)

which can be rewritten as:

z = − 1

2ax0
x+

1

2a
+ ax0

2. (6)

Thus the coordinate of B is (0, 1
2a +ax0

2). The roly-poly toy will restore its balance as long as the following
condition is satisfied:135

c <
1

2a
+ ax0

2. (7)

Therefore, the center of mass C should satisfy the following equation with any contact point A on the curve:

0 ≤ c ≤ 1

2a
. (8)

Considering the coordinate system we adopted in Section 3.1, the center of mass can be calculated separately
according to x, y, z coordinates.

3.1.3. Inner filling140

Based on the conclusions in Section 3.1.2, lower center of mass leads to better stability. We start our
algorithm from filling the inner space of the 3D object. I stands for the filling pattern and IU and IL
represent the filling pattern for U and L, respectively.

The filling pattern for U is based on the method proposed by Prévost et al. [5]. They proposed the
framework to manipulate mass distribution by alternating between interior carving (denoted as IU ) and145

shape deformation (denoted as TU ). As illustrated in Figure 2 in Phase 1, such a method can change the
position of center of mass from the original position C to the target position C ′ by carving the volume inside
the candle while maintaining the outer surface.

It is obvious that filling L from the bottom to top will lower the center of mass of the toy with the same
amount of printing material. Let CM be the center of mass of the roly-poly toy, CU and CL the center of150

mass for U and L, respectively. From Equation 3, it is easy to follow that the more material away from CU ,
the lower CM is.
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Figure 4: The illustration for center of mass of a roly-poly toy. The upper part (U) is the input mesh and the lower part (L)
is a paraboloid of revolution. (b) is an abstract model viewed from Y axis.

3.2. Design issue

3.2.1. a, r constraint for L
a controls the shape of the paraboloid and r determines the opening size of L, which are key factors in155

regaining the balance for the roly-poly toy. We assume that the filling of L is from height 0 to height h as
shown in Figure 4(b). Then, r and h are related as following:

h = ar2. (9)

Let ρ be the density of the material, mU the mass of U , and mL the mass of L. We assume that points
CU and CL are located at (0, 0, cU ) and (0, 0, cL), respectively as shown in Figure 4. Based on our filling
strategy, U is placed on top of L. Then the following equation stands:160

cU = c0U + ar2, (10)

where c0U is the height of the center of mass for U when we put U directly on the supporting plane. Thus,
the mass mL of L after the filling process is:

mL = ρ

∫ ar2

0

π

a
zdz =

1

2
aρπr4. (11)

Based on the formula in Equation 3, CL of L after the filling process can be calculated as:

cL =
1

mL
ρ

∫ ar2

0

π

a
z2dz =

2

3
ar2. (12)

Therefore, the position of CM denoted as (0, 0, czM ) is derived as:

czM =
cUmU + cLmL

mU +mL
=
cUmU + 1

3ρπa
2r6

mU + 1
2ρπar

4
. (13)

Considering Equation 8, the constraint for balancing is:165

mU +
1

2
ρπar4 − 2acUmU −

2

3
ρπa3r6 ≥ 0. (14)

If we only fabricate L as the roly-poly toy, Equation 14 can be further simplified into:

ar ≤
√

3

2
. (15)
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3.2.2. Shape constraint

Interesting and adorable roly-poly toys require well designed shapes, which indicates that L is propor-
tional to U considering its dimension. Therefore, we assume radius ru of U matches with the radius rL of
L. Thus, we adopt S to measure the shape constraint:170

S =
(ru − rl)2

ru2
. (16)

When S decreases, a similar sized L is produced which makes the upper part be in harmony with the lower
part.

3.2.3. Stability constraint

The stability to regain the initially balancing state is one of the key characters of roly-poly toys. We use
P to describe the motion stability:175

P =
czM

1
2a + ar2

, (17)

which is derived from Equation 7. According to Equation 14, the value of P is between 0 to 1. The smaller
the P is, the lower the center of mass is, and hence the more stable the roly-poly toy should be. A roly-poly
toy with smaller P tends to regain balance by itself.

3.2.4. Swing amplitude constraint

The larger amplitude of swing is, the more interesting the roly-poly toy seems. We adopt D to represent180

the amplitude of swing:
D = arccot 2ar. (18)

As shown in Figure 3(c), D is the cotangent of angle 6 BAE. Smaller D indicates a larger amplitude of
swing. L is drawn as the connection of OAED. E is the intersect point of L and Y axis. Therefore,

AE = r,BO =
1

2a
+ ar2, EO = ar2, (19)

and

6 ABE = 6 EAH, tan 6 ABE =
AE

BE
= 2ar, cot 6 BAE =

AE

BE
= 2ar. (20)

As 6 BAE decreases, 6 EAH increases. Thus, the designed toy gains a larger amplitude with smaller D.185

3.3. Optimization

We aim to fabricate roly-poly toys with less time and less material while keeping upper parts and lower
parts visually pleasant. Besides the basic constraint in Equation 3, the center of mass for CM = (cxM , c

y
M , c

z
M )

should lie on the Z axis. Some parameters have direct impact on the fabricated results, such as the filling
pattern IU and IL, the transformation of the upper part TU , the posed position PU of U , and the coefficients190

a, r for determining the shape of L. Thus, the optimization problem can be formulated as:

min
a,r,IU ,IL,TU ,PU

mM

mu
+ λSS + λPP + λDD,

s.t. cxM = 0, cyM = 0, czM <
1

2a

(21)

where λS , λP , and λD are used to balance the weight between S, P,D.
The optimization for Equation 21 is nonlinear. To simplify the problem, we adopt several assumptions.

We use the inner filling process to fill L to keep the balance, which sets a constant routine for IL and have a
direct influence on czM . cxM and cyM are optimized by adjusting TU and PU . In order to speed up the process,195

we use an alternating optimization process to iteratively meet the constraints for cxM , c
y
M and czM .
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In Phase 1, we set a, r unchanged and optimize parameters of U to satisfy the constraints for cxM , c
y
M :

min
IU ,PU ,TU

mU ,

s.t. cxM = 0, cyM = 0.
(22)

Phase 1 is calculated based on the method by Prévost et al. [5] to optimize IU and TU . However, several
improvements are made. Prévost set the optimized target of center of mass at the rim of the safe region of
the supporting region, while we set the target at the center of the supporting region instead for a visually200

pleasing shape. We also change selection of possible distribution of material to favor the solution with
smaller mass. If the optimized target is not reached after the improved optimization of Prévost et al., the
translation of U is adopted.

Phase 2 is optimized by ignoring the constraints for cxM , c
y
M and setting U unchanged. Equation 21 is

set as:205

min
a,r

1
2aρπr

4

mu
+ λS

(ru − rl)2

ru2
+ λP

czM
1
2a + ar2

+ λD arccot 2ar,

s.t. mU +
1

2
ρπar4 − 2ac0UmU − 2a2r2mU −

2

3
ρπa3r6 ≥ 0

(23)

The optimization problem for Phase 2 is nonlinear and it is solved using genetic algorithm.

4. Results

We tested our method on a variety of examples. All the examples are printed using PLA plastic material
with the fused decomposition modeling (FDM) technique. We set the parameters as follow: λS = 0.2, λP =
0.2, λD = 6.0.

amplitude of swing

supporting plane
55.59o 60.00o 0o 50.19o 60.00o 0o

(1) (2) (3) (4) (5) (6)

Figure 5: The validation of Equation 15. The green ones labeled (1-3) are fabricated with same r and different a, while the
white ones labeled (4-6) are fabricated with same a and different r. Details are shown in Table 1. They present different
characteristics when pushed over.

210

Validation for the ar constraint in Equation 15. Without combining U , the balancing condition
of L is constrained to Equation 15. In Figure 5, test results are printed on different values of a and r. The
parameters are shown in Table 1. (2) and (5) reach the upper limit of Equation 15 and they have the largest
amplitude of swing. As (3) and (6) fail to restore balancing by themselves, the amplitude is set to 0. (3)
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Table 1: Parameters for models in Figure 5.

model a r (mm) ar satisfy the ar constraint amplitude
(1) 0.0292 25 0.7300

√
55.59o

(2) 0.0346 25 0.8660
√

60.00o

(3) 0.0400 25 1.0000 × 0o

(4) 0.03 20 0.6000
√

50.19o

(5) 0.03 28.86 0.8660
√

60o

(6) 0.03 36 1.0800 × 0o

and (6) illustrate that with bigger L for the roly-poly toy is not always a good idea. If the parameters of215

a, r fail the ar constraint, L hardly balance themselves, which also proves that randomly selecting the shape
of L to make a roly-poly toy is likely to fail.

(b)

0.38 mm

0.62 mm

0.95 mm

0.95 mm 0.95 mm

0.70 mm

dragon unit model

tree unit model

(1) size 60  (2) size 65  (3) size 70  (4) size 75 (5) size 80 

(1) size 100  (2) size 105  (3) size 110  (4) size 115 (5) size 120 

Figure 6: Examples of dragons and trees.

Table 2: Optimization with different sizes of U .

dragon tree
model size U a r (mm) ar amplitude size U a r (mm) ar amplitude

(1) ×60 0.0253 17.22 0.4357 41.07o ×100 0.0205 20.97 0.43 40.70o

(2) ×65 0.0234 18.74 0.4385 41.25o ×105 0.0191 21.54 0.4120 39.49o

(3) ×70 0.0219 20.31 0.4448 41.65o ×110 0.0183 22.71 0.4157 39.74o

(4) ×75 0.0204 21.75 0.4437 41.59o ×115 0.0179 24.16 0.4325 40.86o

(5) ×80 0.0194 24.12 0.4679 43.10o ×120 0.0173 25.39 0.4392 41.30o

Examples for U in different sizes. Figure 6 shows the same model for U with different sizes. The
dragon unit model is 0.95 mm in length × 0.38 mm in width × 0.62 mm in height as reference. The tree
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unit model is 0.95 mm in length × 0.95 mm in width × 0.70 mm in height. The details for model size and L220

are shown in Table 2. The size for printed model is compared to dragon and tree unit models respectively.
With different sizes, mass of the U and center of mass change correspondingly. The optimized L results

vary consequently, which tends to have larger r and smaller a.
Comparisons with different weights for S . S is essential to the shape of a result, which affects the

shape of combination of U and L. The larger λS is, the better U and L match on the interface. For this225

goblet model example in Figure 7, different results are produced with various λS as shown in Table 3. The
radius (r0) for U on the interface is 12.5 mm. With increasing λS , the optimized r for L tends to fit r0.
However, the amplitude decrease significantly.

(1) (2) (3) (4) (5)

Figure 7: Examples of goblets.

Table 3: Optimization with different λS for goblet model.

model λS a r (mm) ar amplitude
(1) 0 0.0224 20.59 0.4612 42.69o

(2) 0.2 0.0212 19.36 0.4104 39.38o

(3) 0.5 0.0207 18.85 0.3902 37.97o

(4) 1.0 0.0193 17.39 0.3356 33.87o

(5) 2.0 0.0164 12.50 0.2050 22.29o

(a) (b)

Figure 8: Examples of girls. (a) is the balancing state. U use the same model. The white one is optimized using P and the red
one is optimized without using P . The optimized results are a = 0.0234, r = 25.7556 for the left one and a = 0.0237, r = 23.9305
for the right one consequently. After pushing them in (a), the white one is more likely to regain its balancing state, while the
red one is not, as shown in (b).

Comparisons with and without P . P (Equation 17) plays an essential part in the stability of the
printed examples. Various deviations are introduced in the printing process including 3D printing process,230
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removing the support material, combining U and L and so on. As shown in Figure 8, these two roly-poly
toys have the same U . The left one is the result using our method and the right one is optimized with
λP = 0. The optimized results for the left one (a = 0.0234, r = 25.7556) is slightly larger than the right one
(a = 0.0237, r = 23.9305). The left one is more likely to regain its balancing state when pushed over.

Comparisons with and without D. D affects the amplitude of swing for the roly-poly toy. Figure 9235

is an example of optimized results with and without D.

(a) (b) (c)

Figure 9: Examples of candles. (a) shows the optimized results using our method. The mass and height of the upper part are
24.66 g and 95 mm, respectively, and that of the lower part are 5.79 g and 13.9 mm, respectively. With obvious difference in
size and mass, the combination of the two parts is able to swing. (b) is our result and (c) is the result without using swing
amplitude constraint (D). The outer surfaces are drawn pink in (b-c), while the inner surfaces are drawn in grey.

The U is hollowed inside. (b) is our result with a = 0.0209, r = 25.80, while (c) (a = 0.0025, r = 37.55)
is optimized with λD = 0. The comparison results are straightforward. With the L produced in (c), the
roly-poly toy is sufficiently stable. However, the swing amplitude is limited.

5. Conclusions and Discussions240

We have introduced an effective method to design personalized roly-poly toys. Our optimized toys can
regain balance by themselves when they are pushed over. We also favor a well-balanced shape and a larger
amplitude of swing without reducing the motion stability. The effectiveness of our method are validated by
various results.

Our method has some limitations. (1). The center of mass position of U in Phase 1 is adjusted through245

inner carving, which may limit the shape of the resulting toy. One solution to eliminate this limitation is
to optimize the shape of U [11]. (2). We use the same material for both U and L. Employing multiple
materials will enable the optimization process with more degrees of freedom and produce more visually
pleasing results. For example, we can use a larger density material for L and a lighter density material for
U to increase the stability of the resulting toy. (3). The upper part and the base are optimized separately.250

It will be interesting to merge U and L first and then optimize the whole merged shape directly. We will
leave it as our future work.
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Figure 10: More results.
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