
CGI2022 manuscript No.
(will be inserted by the editor)

Fast Probe-Leaking Elimination Using Mask Decomposition

Jixiang Zhou · Yanzhen Chen · Yuanheng Li · Shun Cao · Yu Wu ·
Xiaogang Jin

Abstract Light leaking in Probe GI is typically solved

by visibility tests, which cannot benefit from hardware-

aided tri-linear sampling. We present Mask Decomposi-

tion, which decomposes the visibility into probe-group

indicators and their corresponding masks, making it

possible to use tri-linear sampling in its reconstruction.

We prove that the rendering overhead is significantly

reduced with the help of Mask Decomposition, making

the rendering at least 3× faster than the state-of-the-art

visibility-test Probe GI, and even as fast as the original

leaking probe GI. We also present an efficient algorithm

to solve the Mask Decomposition problem and a sim-

ple compression method to minimize the spatial over-

head of the mask textures, which is much lower than in

compression methods like Moving Basis Decomposition

(MBD).

Keywords computer graphics · rendering · global
illumination · compression

1 Introduction

Probe GI has suffered from light leaking for a long time.

Light leaking appears when the geometric occlusion of

the scene leads to such great discontinuity of the light

field that the light field cannot be well reconstructed

Jixiang Zhou and Yanzhen Chen contributed equally to this
research.

Xiaogang Jin, jin@cad.zju.edu.cn

Jixiang Zhou · Yanzhen Chen · Xiaogang Jin
State Key Lab of CAD&CG, Zhejiang University, Hangzhou
310058, China

Yuanheng Li · Shun Cao · Yu Wu
Tencent, Unit Two, Building C, Kexing Science Park, Ke-
jizhongsan Avenue, Nanshan District, Shenzhen 518057,
China

with linear interpolation between probes. Light leaking

can cause severe rendering artifacts, which impair ren-

dering quality and reduce the authenticity of the virtual

space.

In practice, to reduce artifacts caused by light leak-

ing, game developers usually place bounding boxes

manually in the scene to indicate the influence range of

probes, which is time-consuming and inflexible. Most

recently proposed leaking-free probe GI frameworks

[5][6][3] tend to use visibility tests to exclude probes

that are invisible from the shading point during inter-

polation. However, the culling procedure cannot be per-

formed by hardware directly, thus requires 4˜8 “load-

ing” operations instead of 1 “sampling” operation,

which multiplies the time cost in rendering. So far

there is no such a method that can eliminate light leak-

ing completely without introducing significant manual

workload or rendering overhead.

We address the light leaking problem in probe GI

using a new approach, Mask Decomposition (MD). MD

automatically decomposes probes into different volume

textures using baked masks, enabling the masked light

field to be directly sampled using hardware-aided tri-

linear interpolations. With probes decomposed into vol-

umes, any shading point only needs to sample probe

volumes whose masks are marked at the position of the

shading point, which significantly reduces the sampling

cost for culling out probes. Experiments show that MD

is at least 3× faster than the most optimized visibil-

ity based GI framework,which makes it comparable to

the original light leaking GI. MD can be applied to any

probe-based GI system, so long as the geometry struc-

ture of the scene does not change at run time.

In particular, we make the following contributions:

1. We introduce Mask Decomposition, a lightweight

framework that addresses the light leaking problem



2 Zhou and Chen, et al.

in probe-based GI systems without introducing sig-

nificant rendering overhead.

2. We develop an algorithm based on simulated an-

nealing to efficiently assign masks to probes base on

their visibility to each other with a high precision.

3. We present a compression method that can signifi-

cantly compress the dense mask volume texture we

use in our framework into a sparse representation of

a smaller size.

2 Related Works

Global Illumination (GI) is a longstanding topic in

physically-based rendering, especially in real-time ap-

plications such as modern video games. There are

mainly two approaches to implement GI in real-time:

performing ray-tracing with the support of ray-tracing

accelerated GPUs; or caching the precomputed GI in-

formation (e.g. light transport) of the scene and sam-

pling it at run time.

To achieve the best performance, methods like

Screen Space GI (SSGI) [9] are proposed to approx-

imately solve ray-tracing problems in screen space.

Nowadays, full real-time ray-tracing is also avail-

able with the help of GPUs that support hardware-

accelerated ray-tracing. However, for mobile devices,

real-time ray-tracing is still too expensive and currently

not feasible. Therefore, we focus on the other type of

approaches — light field caching — in this paper.

2.1 Probe GI

Light probe was first introduced by McGuire et al. [7]

as a simplification of Irradiance Caching (IC) [4]. After-

wards, probe methods became widely used in irradiance

caching, especially for diffuse lighting.

The lighting probes are points scattered in the

scene, storing the precomputed GI information at each

position. At the shading time, the diffuse light field is

reconstructed by interpolation of the probes. Due to its

low cost and acceptable shading results, probe-based

GI technology has been generally used in mobile video

games.

In 2020, NVIDIA proposed Diffuse Global Illumina-

tion (DDGI) [5], which utilizes RTX ray-tracing accel-

erated GPUs to update light probes with ray-tracing at

run-time.

Probes can not only be organized in a uniform grid

layout, but also in a hierarchy architecture [2] to com-

press the light field of an extremely large scale. Wang

et al. [12] leveraged a sparse voxel octree to organize

the probes, and used gradient descent to minimize the

number of probes. These methods introduce significant

changes to the pipeline and take several times of time

in querying,

2.2 Probe Visibility Test

The original probe-based GI framework suffers from

light leaking. NVIDIA’s RTXGI [6] can leverage the

depth information and Variance Shadow Maps (VSM)

[1] to represent visibility fields around the probes. As a

result, it can prevent light leaking artifacts. However,

this method has technical limitations on hardware and

cannot be applied to mobile devices.

The light leaking problem can also be eliminated

using signed distance fields (SDFs) [3]. By representing

the scene using SDFs, which can be considered as a

stand-in of conventional triangle meshes, it is able to

accelerate the computation of GI.

2.3 Light Field Compression

Another class of light field caching approaches directly

compress the light field itself into a compact represen-

tation.

One approach to compress light fields is Clustered

Principal Component Analysis (CPCA)([11]). [8] con-

cluded that the key idea of compression is to leverage

the spatial redundancy of the signals and then pre-

sented clustered Blockwise Principal Component Anal-

ysis (BPCA) . Moving Basis Decomposition (MBD) [10]

is a general framework on the compression of spatial

signals. It decomposes high frequency and high dimen-

sional signals into the dot product of low frequency,

high dimensional basis, and high frequency, low di-

mensional coefficients. They use the result of PCA for

initialization and solve the MBD problem by Quasi-

Newton iteration.

3 Methodology

In this section, we will formulate our key idea of mask

decomposition (Section 3.2), consider the related graph

coloring problem (Section 3.3), and present the full al-

gorithm (Section 3.4).

Figure 1 illustrates the framework of our Mask De-

composition method. In a typical pipeline of Probe GI

with visibility test, each probe has a depth map, which

is similar to the variance shadow map (VSM) [1], and

the visibility test is just a “depth test”. In our pipeline,

we calculate mask vectors for the whole space, and the



Fast Probe-Leaking Elimination Using Mask Decomposition 3

Fig. 1 Difference between Visibility Test and Mask Decomposition. Visibility test methods use the variance shadow map
(VSM) to cache the depth of each probe in each direction. Mask Decomposition divides the space into several clusters (2
clusters in this example colored by red and green) and uses mask vectors to indicate the category of each spatial position. The
dot product of mask vectors denotes the approximate visibility between two positions.

dot product of mask vectors of two close points implies

the visibility of these two points. Such a representation

is differentiable and interpolatable.

3.1 Background

A typical probe-based GI system discretizes one light

field into probes (sample point) at the baking time,

then reconstructs the light field by linearly interpolat-

ing among probes at run time. The probes are usually

organized into one 3D lattice grid, which can be stored

as a volume texture.

3.1.1 Notation

Light fields are usually defined as 3D fields of Spherical

Harmonics (SH) or Light Transport Matrices (LTM,

the linear operators on SH). We write one light field as

L(x) : R3 → L, where x ∈ R3 is the position vector in

world space, and L is the mapped SH or LTM space.

Given the precomputed (diffuse) light field P being

discretized by a uniform grid of probes, we write i =

(ii, i2, i3) ∈ I as the index of this grid (I ⊂ N3 is the

index space), and x(i) as its world position. For brevity,

we use the subscript (or superscript when a subscript

exists) for indexing (e.g. Pi) or field sampling (e.g. Px),

instead of using function invocation forms.

The sampling of probes is accomplished by interpo-

lation of probes, and we adopt the kernel form:

Px :=
∑
i

ϕi(x)Pi,

where ϕ : R3 × I → [0, 1], is usually a tri-linear weight-

ing function. Such tri-linear weighting interpolation is

performed by the hardware when sampling the volume

texture.

3.1.2 Light Field Reconstruction

Most of the leaking-free probe-based GI systems, such

as RTXGI[6], leverage a visibility test to prevent light

leaking. As a result, the sampling is no longer able to

be written in a kernel form of interpolation. We have:

LProbeGI(x) = Px, (1)

LRTXGI(x) =
∑
i

θi(x)ϕi(x)Pi, (2)

where θ : R3 × I → [0, 1] is the visibility function from

position x to probe i. To determine the visibility of

each probe, we have to perform at least 8 loading op-

erations (Pi) to reconstruct the light field, and cannot

use hardware-accelerated tri-linear interpolation.

3.2 Mask GI

We want to make leaking-free probe-based GI to be

hardware-interpolatable, so that the number of sampling

operations can be reduced. Instead of using one volume

texture to represent all probes, we partition probes into

K clusters using an one-hot cluster indicator g : I →
{0, 1}K . Then the light field can be constructed by

LMaskGI(x) = mx · (g ⊗ P )x. (3)



4 Zhou and Chen, et al.

where m : R3 → [0, 1]K is a normalized mask value

specifying the visibility of one cluster from the shading

position x. The mask value m can be computed using

various approaches, in our implementation, we perform

visibility tests by casting rays from x to the point, line

or plane formed by probes in the bounding cell of x

and in the target cluster as well, then we average the

visibility values to get the final mask value.

Given the light field being discretized by one uni-

form grid of probes, the maximum value for K is 8,

indicating that every probe in one grid cell will be par-

titioned into a different cluster. In such case, Equation

(3) is close enough to Equation (2), by defining g(i) as

follow:

gk(i) =

{1 if
∧3

d=1[Bit(k, d) = Bit(id, 1)],

0 otherwise,

(4)

where Bit(k, d) is the d-th digit in reverse order of the

binary representation of k. With this definition, each

pair of probes i, j within a single cell should have dif-

ferent indicators g(i) ̸= g(j), which means that the vis-

ibility of all 8 probes with non-zero weights in (2) can

be modeled separately using different mask values.

The number K is chosen by the user according to

the performance budget for the GI algorithm. Since K

maps directly to the number of clusters (3D textures)

and the maximum number of sampling operations to

perform, a smaller K value saves memory and shading

time, but may cause sufficient precision to model the

visibility discontinuity for some cells. If K is limited

to a number smaller than 8, we solve an optimization

problem by defining a loss term as the distance between

Equation (3) and Equation (2):

R =

∫ ∥∥∥∥∥∑
i

θixϕ
i
xPi −

K∑
k

mk
x

∑
i

ϕi
xg

k
i Pi

∥∥∥∥∥
F

dx

=

∫ ∥∥∥∥∥∑
i

ϕi
xPi(θ

i
x −mx · gi)

∥∥∥∥∥
F

dx

≤
∫ ∑

i

ϕi
x∥Pi∥F

∣∣θix −mx · gi
∣∣ dx.

The optimization is approximately achieved when the

simplified residual R̂ is minimized:

R̂ =
∑
i,x

ϕi
x

∣∣θix −mx · gi
∣∣ , (5)

which is not correlated to the light field value. Note that

we do not distinguish between discrete summation and

integration in the rest of this paper for convenience.

3.3 Graph Coloring

Assume that g(i) = g(j), residual R̂ will increase by:

E(i, j) :=
∑
x

min(ϕi
x, ϕ

j
x) ·

∣∣θix − θjx
∣∣ , (6)

which is defined as the edge-wise loss penalizing node-

wise difference. Consider the probe grid as a graph G

whose edges are weighted by E(i, j), and the optimiza-

tion problem of Equation (5) becomes equivalent to a

graph coloring problem. Then, we employ simulated an-

nealing to solve this graph coloring problem. Our loss

function is:

L(g) :=
∑
i,j

1gi=gj · E(i, j). (7)

3.3.1 Regularization.

To improve the sparsity of m(x), we add a regulariza-

tion term into the loss to penalize filling adjacent nodes

with E = 0 in different colors:

Lreg(g) :=
λ

2

∑
i

∑
j∈N (i)

1gi ̸=gj , (8)

and we empirically choose λ = 0.001 in our experi-

ments.

3.3.2 Light-aware Optimization.

Since the formulation of Mask Decomposition is similar

to Moving Basis Decomposition, we directly optimize

the reconstructed light field. Given g, we solve m by

minimizing:

Lopt(g) :=
∑
x

∥∥∥∥LMaskGI(x)− L(x)

∥∥∥∥2
+λ

∑
x,k

1minitial
x,k =0|mx,k|.

(9)

This optimization may decrease the sparsity of m and

increase the rendering time overhead, so we also add a

regularization to penalize filling zero channels of initial

mx with non-zero values.

3.4 Algorithm

3.4.1 Mask Decomposition

We present the full algorithm of Mask Decomposition

as follow:



Fast Probe-Leaking Elimination Using Mask Decomposition 5

(a) Simple Mask (b) Light-aware Optimized
Mask

Fig. 2 Colored probes and baked maskmaps. Probes are di-
vided into different clusters and filled with different colors.
Every pixel in maskmaps is colored according to colors of
probes visible from its position.

1. Calculate the ground-truth θi(x) (e.g. the visibility

using VSM). x is discretized by a refined grid (e.g.

6 times the resolution of the probe grid).

2. Calculate E(i, j) using Equation (6), within a single

traversal.

3. Solve g(i) by simulated annealing. We initialize g

with a convex division of the original probe grid.

Each part of the division forms a convex hull, whose

nodes have the same initial color. This method

works better than random initialization.

4. Given g, we initialize m(x) on the refined grid with

θi(x) that we have stored in step (1), by optimizing

Equation (5) locally.

5. (Optional) We scale m(x) to directly minimize the

reconstruction loss of Equation 9 by gradient de-

scent, just similar to compression methods. This is

the only step that uses the content of the probes.

6. Finally, we filter m with a Gaussian kernel.

3.4.2 Mask Compression.

We also developed an algorithm that efficiently com-

presses mask volume textures used in our framework.

We noticed that data in mask volume textures are

highly sparse, so we divide mask data into cubes formed

by 8 probes, and use one indirection volume texture to

index cubes. In this way, cubes with the same mask data

can be merged and thus the mask volume texture can

be significantly reduced. Experiment shows that after

compression, the texture size is reduced to about 1/16

of the original size, at the cost of only one additional

sampling call at run time.

Table 1 Base-Pass time cost measurements

Methods Computer 1 Computer 2

GI Disabled 0.07 ms 0.31 ms
Leaking Probe GI (Baseline) 0.09 ms 0.37 ms
Mask GI (Ours) 0.11 ms 0.43 ms
Visibility Test without culling 0.38 ms 0.99 ms
Visibility Test with culling 0.25 ms 1.01 ms

4 Results

In this section, we present the experimental result of

our approach. We implement our algorithm in Unreal

Engine 4.26. As a comparison, we also adopt the official

RTXGI plug-in for UE4 to shade visibility GI result, as

well as the native volumetric lightmap system in UE4

to shade the baseline (leaking probe GI) result.

4.1 Space Division

Figure 2 demonstrates the results of our space-division

and mask baking algorithm. The algorithm performs

500˜1000 simulated annealing iterations in 5˜10 sec-

onds, producing a satisfactory result that is suitable for

most application cases. Our space-division algorithm

converges fast and behaves stably in multiple runs. In

most cases, setting the number of clusters to 3 will be

enough, while using more unnecessary colors will in-

stead decrease the sparsity of the result. However, some

complex meshes in the scene (like trees with abundant

leaves) may cause unexpected color waste. Although

such waste will not affect the correctness of the algo-
rithm, we suggest excluding such meshes when baking

masks or replacing them with simpler proxy meshes.

4.2 Reconstruction Quality

Figure 3 compares our result with the baseline (Light-

leaking GI), RTXGI, and the ground-truth (static

lightmap without probe GI). In the experiment, we con-

structed one scene of one house with multiple rooms and

windows. We set the probe grid resolution to 16x32x16

for all probe-based approaches from (a) to (d), and the

cluster number K to 4 for our mask GI approaches (c)

and (d), then followed UE4 convention to represent the

light field using Spherical Harmonics. Lightmap tex-

tures for static objects were used to store pre-baked

maskmaps in our approach (a) and (d), so no lightmap

lighting contributed to our result. Shading errors were

measured by pixel-wise standard deviations between



6 Zhou and Chen, et al.

RMSE=0.1523
(a) Baseline

RMSE=0.1166
(b) RTXGI

RMSE=0.1014
(c) Ours (no optimiza-
tion)

RMSE=0.0912
(d) Ours (light-aware
optimized)

RMSE=0.0000
(e) Ground-truth

Fig. 3 Comparison. We present the rendering result (Top), the lighting visualization (Middle) and the pixel-wise error (Bot-
tom) of different implementations. a) Baseline (Probe GI without leaking elimination). b) RTXGI (Visibility-based Probe GI).
c) Mask Decomposition without light information. d) Mask Decomposition with light-aware optimization. e) The Ground-truth
illuminated using lightmaps.

Fig. 4 Decoupling of Mask Decomposition and lighting environment. From top to bottom, the lighting environment changes
without re-dividing of probe volumes or re-baking of masks (of the version without lighting-aware optimization). The rendering
result is convincing from each point of view (in different columns). The scene becomes slightly darker since we do not scale
the masks to fit the lighting environment. However, the light leaking is still perfectly eliminated.

the current shading result and the ground-truth:

E(x) :=

√√√√1

3

RGB∑
n

(Cn(x)− C ′
n(x))

2

The pixel-wise error values are then visualized by

heatmaps ranging from 0 to 1 in the third row of Fig-

ure 3. We also computed the root mean square error

(RMSE) value for each image comparison:

ERMSE :=

√√√√1

s

s∑
i

(C(i)− C ′(i))2

where s is the number of pixels in the image. Color

values were represented in normalized (0 to 1) range

for all error measurements. We can see from Figure 3

that the shading quality of our approach is very close

to RTXGI, but with a much lower rendering cost.



Fast Probe-Leaking Elimination Using Mask Decomposition 7

(a) Leaking Probe GI (b) Ours (c) Detail Comparison

Fig. 5 Dynamic object rendering. Figure (b) shows dynamic object rendering using mask volume in our approach. Compared
to leaking probe GI in figure (a), our approach also reduces light leaking for dynamic objects. Figure (c) highlights one of the
incorrect brighter areas on the 2nd floor in figure (a) and (b).

Table 2 Spatial cost measurements

Type Probe K-Probes Mask m Flag g Indirection Texture Compressed Mask

Voxel Bytes 28 112 1 1 4 1
Volume Size 16× 32× 16 16× 32× 16 16× 32× 16× 83 16× 32× 16 16× 32× 16 252× 252× 6

Table 3 Precomputing performance measurements

Entry MBD Ours

Coef/Mask Resolution 64× 64× 64 96× 192× 96
Basis/Probe Resolution 9× 9× 9 16× 32× 16
Basis/Probe Channels 324 27
Hardware Requirements GPU Concurrent CPU Serial
Time cost (full bake) 199s 183s
Complexity Non-linear Linear

Figure 5 demonstrates the shading result of our ap-

proach for dynamic objects. We placed several white

spheres, cubes, and cylinders in the Sponza scene, and

marked them as dynamic objects, so no maskmap is

baked for them. Figure 5 shows that light leaking is

also well addressed for dynamic objects.

4.3 Spatial and Temporal Performance

Table 1 compares the temporal cost of the ”BaseP-

ass” shading stage in UE4 using different GI strate-

gies. We use two computers to render the same sam-

ple room scene presented in Figure 3, from the same

camera view. Computer 1 is equipped with Intel i9-

9900K CPU, 32GB of system memory, and NVIDIA

RTX 3070 GPU; computer 2 is equipped with AMD

Ryzen 7 1800X CPU, 32GB of system memory, and

NVIDIA GTX 1080 Ti GPU.

For visibility GI, we implemented both

with/without culling versions. For the culling ver-
sion, we only load one probe when its visibility term

is not close to 0, while for the version without culling,

we always load 8 adjacent probes for every sample

point. When implementing visibility GI, we cache

the visibility from every probe to adjacent probes in

precomputation, and load them directly when shading

to further increase performance. Even with these

optimizations, the average sample/load count for mask

GI is still much lower than visibility GI, which makes

it at least 2x faster.

Table 2 displays the spatial cost for mask GI in our

experiment. Mask GI uses one volume texture per probe

cluster, every volume texture takes 0.21MB to store all

probes in it, summing to 0.84MB for 4 clusters. For

mask volumes, we choose 8x8x8 as the sample density

between every 8 probes that form one cube. Since the

mask volume is sparse, we then compress the mask vol-

ume, merging cubes with the same local data to one

cube entry in the mask atlas volume, then address the

cube using one separate indirection volume texture. Af-



8 Zhou and Chen, et al.

ter compression, the mask volume size is reduced to

1.08MB, about 10× smaller than the original size, while

RTXGI would store at least 16× 16 depth textures for

every probe, about 4.00MB in total, to achieve the same

precision. Therefore, even with 4×size growth in probe

volumes, the total volume size is not bigger than that

of RTXGI.

Table 3 demonstrates the precomputing perfor-

mance of Mask GI in our experiment. Compared to

MBD, our approach costs less time even with a higher

resolution and without any concurrency. Although our

approach only stores 27-dimension SH rather than 324-

dimension LTM, our mask decomposition algorithm is

not related to the probe data itself, but to the probe fil-

tering by their visibility, thus the number of dimensions

for each probe data is not relevant to the performance

comparison of the algorithms.

4.4 Decoupling of Visibility and Lighting

Figure 5 shows the decoupling of decomposed masks

and the lighting information content of probes. In this

case, we do not scale masks to fit the lighting intensity

for the complete decoupling of mask and lighting, so

the scene may look darker than average. We change the

lighting environment along the rows of Figure 5 without

updating the baked masks, and the rendering result is

still convincing from each point of view.

4.5 Discussion

In this section, we will discuss the relationship between

Mask Decomposition and Moving Basis Decomposition

(MBD)[10].

MBD is a generalization of space-related compres-

sion algorithms, which includes Mask Decomposition

(MD). In their formulation, mask decomposition is a

specialization of MBD with the number of bases equal

to 4.

[10] mentioned that applications of MBD frame-

work could have their own task-related kernels, which

is what Mask Decomposition does. Mask Decomposi-

tion assumes that all discontinuation of the signal comes

from spatial occlusion, which is tenable only in precom-

puted light field rendering semantics.

Our approach utilizes this assumption and consid-

erably increases the sparsity of B and c term until they

only have non-zero values in 1 channel, making its per-

formance close to the MBD result with K = 1.

In addition, since our algorithm is mostly decoupled

with the light data stored in probes, the mask may not

need to be recomputed even when the scene light con-

dition changes, so long as the scene geometry structure

does not changed, which is also an attribute that MBD

does not have.

The limitation of our approach is the lack of gener-

alization ability. But since Mask Decomposition keeps

all premises that Probe GI has, it is capable of handling

all cases that Probe GI supports.

5 Conclusion

We present a lightweight framework, Mask Decomposi-

tion (MD), to deal with the leaking problem of Probe

GI in mobile games. Mask Decomposition is based on

Leaking-free Probe GI with visibility test and resolves

its problem of interpolation. We prove that the Mask

Decomposition problem has a 0-loss solution with K =

8. Then, we present an algorithm based on graph color-

ing to solve Mask Decomposition problems efficiently.2

Finally, we compare the result of Mask Decomposition

with visibility methods and show that Mask Decom-

position performs well both in the usage of time and

space while maintaining an approximately close render

quality to visibility methods.

6 Limitation and Future Works

The Mask Decomposition is a static method and does

not adopt to the geometry changing at run time. One

run time system may be implemented to update masks

when geometry changes, or multiple sets of masks can

be prepared and switched at run time if all scene

changes can be determined at baking time. We are still

exploring approaches to adopt MD for dynamic scene

changing.

Currently, the choice of the probe grid resolution in

MD is strongly limited. An 8-probe cage should neither

be larger than the static geometries nor smaller than

the dynamic geometries, otherwise causing unaccept-

able artifacts. Apparently the best value can be deter-

mined automatically by analyzing the scene structure.

We are developing algorithms to choose the suitable

value for every unique scene.

The Mask Decomposition renders much faster than

visibility-based GI algorithms, making it suitable for

performance-limited devices like mobile phones. We’re

migrating our framework to mobile platforms to test its

performance on such platforms.



Fast Probe-Leaking Elimination Using Mask Decomposition 9

References

1. Donnelly, W., Lauritzen, A.: Variance shadow maps. In:
Proceedings of the 2006 symposium on Interactive 3D
graphics and games, pp. 161–165 (2006)

2. Garcia, K., Lindqvist, A., Brinck, A.: ” hustle by day,
risk it all at night” the lighting of need for speed heat in
frostbite. In: Special Interest Group on Computer Graph-
ics and Interactive Techniques Conference Talks, pp. 1–2
(2020)

3. Hu, J., Yip, M.K., Alonso, G.E., Gu, S., Tang, X., Jin,
X.: Efficient real-time dynamic diffuse global illumination
using signed distance fields. The Visual Computer pp. 1–
13 (2021)

4. Krivanek, J., Gautron, P.: Practical global illumination
with irradiance caching. Synthesis lectures on computer
graphics and animation 4(1), 1–148 (2009)

5. Majercik, Z., Guertin, J.P., Nowrouzezahrai, D.,
McGuire, M.: Dynamic diffuse global illumination with
ray-traced irradiance fields. Journal of Computer Graph-
ics Techniques Vol 8(2) (2019)

6. Majercik, Z., Marrs, A., Spjut, J., McGuire, M.: Scal-
ing probe-based real-time dynamic global illumination for
production. arXiv preprint arXiv:2009.10796 (2020)

7. McGuire, M., Mara, M., Nowrouzezahrai, D., Luebke, D.:
Real-time global illumination using precomputed light
field probes. In: Proceedings of the 21st ACM SIG-
GRAPH Symposium on Interactive 3D Graphics and
Games, pp. 1–11 (2017)

8. Nishino, K., Nayar, S.K., Jebara, T.: Clustered blockwise
pca for representing visual data. IEEE Transactions on
Pattern Analysis and Machine Intelligence 27(10), 1675–
1679 (2005)

9. Ritschel, T., Grosch, T., Seidel, H.P.: Approximating dy-
namic global illumination in image space. In: Proceedings
of the 2009 symposium on Interactive 3D graphics and
games, pp. 75–82 (2009)

10. Silvennoinen, A., Sloan, P.P.: Moving basis decompo-
sition for precomputed light transport. In: Computer
Graphics Forum, vol. 40, pp. 127–137. Wiley Online Li-
brary (2021)

11. Sloan, P.P., Hall, J., Hart, J., Snyder, J.: Clustered princi-
pal components for precomputed radiance transfer. ACM
Transactions on Graphics (TOG) 22(3), 382–391 (2003)

12. Wang, Y., Khiat, S., Kry, P.G., Nowrouzezahrai, D.: Fast
non-uniform radiance probe placement and tracing. In:
Proceedings of the ACM SIGGRAPH Symposium on In-
teractive 3D Graphics and Games, pp. 1–9 (2019)


