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a b s t r a c t

Virtual marine scene authoring plays an important role in generating large-scale 3D scenes and it has
a wide range of applications in computer animation and simulation. Existing marine scene authoring
methods either produce periodic patterns or generate unnatural group distributions when tiling marine
entities such as schools of fish and groups of reefs. To this end, we propose a new large-scale marine
scene authoring method based on real examples in order to create more natural and realistic results.
Our method first extracts the distribution of multiple marine entities from real images to create
Octahedral Blocks, and then we use a modified Wang Cubes algorithm to quickly tile the 3D marine
scene. As a result, our method is able to generate aperiodic tiling results with diverse distributions
of density and orientation of entities. We validate the effectiveness of our method through intensive
comparative experiments. User study results show that our method can generate satisfactory results
which are in accord with human preferences.

© 2022 The Authors. Published by Elsevier B.V. on behalf of ZhejiangUniversity and ZhejiangUniversity
Press Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Natural scene simulation has been receiving considerable at-
ention in computer animation and computer simulation. As ma-
ine scenes are commonly found in natural environments, au-
horing and generating marine scenes are valuable in the fields
f 3D visualization of marine data, film production, and science
ducation, etc. In order to create realistic and immersive virtual
arine environments, it is necessary to populate an environment
ith marine entities such as fish, marine submerged plants, and
eefs while ensuring that the distribution of these entities is as
lose as possible to real environments. However, research on
arine scenes mainly focuses on physical simulation fields such
s sea surface shading, wave motion, refraction, and caustics.
here is no prior work on large-scale marine entity populating
ethods. In practical applications, we expect users to quickly
uthor diverse marine scenes with naturally distributed marine
ntities by only adjusting a few parameters in a simple way.
Our goal is to provide an interactive authoring tool that can

uickly generate a scene with large-scale marine entities based
n the example marine entities and virtual models provided by
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the user. The generated scene should have the following design
objectives:

• Behavioral diversity. The behavior of creature groups (e.g.,
fish schools) should have diversification such as alignment,
aggregation, hide, and escape. Moreover, these behaviors
should not have obvious periodic patterns.

• Species (objects) diversity. The scene should contain a variety
of creature groups, and they should have group interactions.
In addition, the scene should contain non-living marine
entities, such as marine submerged plants and reefs, to make
the marine scene more vivid.

• Performance. The scene generation should be fast enough to
facilitate users to create and edit scenes quickly.

In this paper, we try to leverage group (crowd) simulation
techniques to accomplish this task. Methods to generate large-
scale groups mainly consists of two categories: continuous mod-
els and discrete models. However, these group simulation models
usually do not satisfy all three objectives described above at the
same time, and therefore they do not meet our expectations for
marine scene authoring.

Continuous models are macro-level simulations that take the
group behavior as the study object. These models usually use
field potential or fluid dynamics to control the behaviors of the
groups (Treuille et al., 2006; Narain et al., 2009). However, con-
tinuous models usually focus on the overall behavior and ignore
sity and Zhejiang University Press Co. Ltd. This is an open access article under the
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he diversity of individual species. In addition, continuous models
re usually designed to guide groups in path planning. In our
cenario, marine scenes contain a variety of independent groups
ith no specific path, so these continuous models are not suitable

or the authoring of marine scenes.
Discrete models are micro-level simulations that take individ-

als as the study object. Each individual is treated as an indepen-
ent agent, and these agents are influenced by the behavior of
urrounding agents and also the environment, making the agents
nteractive, and thus revealing group behaviors (Hartman and
enes, 2006; Silva et al., 2010; Helbing et al., 2005; Snape et al.,
011). However, existing discrete models for large-scale group
eneration often result in groups exhibiting the same behavior or
aving the same movement path between groups, i.e., periodic
atterns. As a result, they may generate unsatisfactory results
hen they are used to author marine scenes.
In addition, another important class of research in 3D scene

imulation is indoor authoring (Zhang et al., 2019), which focuses
n the automatic arrangement of furniture objects. With the
radual enrichment of data sets, techniques for indoor authoring
ave shifted to data-driven approaches based on which they learn
prior knowledge of object distribution through images, and

hus ensure the quality of layouts (Zhang et al., 2021; Fisher
t al., 2012; Xu et al., 2013). Compared to indoor scene authoring,
atural scene simulation is richer in species and more complex in
istribution.
Addressing the above design objectives may bring the follow-

ng challenges. First, it is not enough to rely on a number of
redefined rules or stochastic algorithms to generate aperiodic
atterns of diverse group behaviors and group species. Second,
ue to the large and diverse marine groups, authoring individuals
ndependently in 3D space can be very computationally intensive
nd does not meet the need for fast editing.
We tackle these challenges by developing an example-based

ethod for authoring large-scale marine scenes efficiently. Our
ethod can be considered as a meso-level model which is be-

ween macro-level and micro-level. In order to achieve realistic
arine group behaviors, inspired by data-driven approaches, we
xtract the distribution examples of marine entities from au-
hentic marine images. Then, these examples are crafted into a
et of local feature Octahedral Blocks for aperiodic tiling. Each
ctahedral Block contains collective behavior information of one
r more sets of marine entity groups, such as distribution, orien-
ation, and species type. Next, these Octahedral Blocks are cut and
ssembled by following Wang Cubes (Wang, 1961) generation
ules to produce a set of Marine Cubes. Finally, the marine scene is
uickly tiled in 3D space using the Marine Cubes and user-defined
arameters.
In summary, our paper makes the following main contribu-

ions:

• We propose a first-of-its-kind example-based method for
authoring marine creatures (objects) and marine group be-
haviors effectively. Our approach leverages real examples to
create final large-scale marine scenes. Both the experimen-
tal results and user study results show that our method is
able to generate marine scenes naturally and efficiently. To
the best of our knowledge, it is the first approach to au-
thor large-scale realistic marine sciences in real time using
exemplars.

• Unlike previous techniques, our approach allows authoring
both 2D and 3D mixed groups (crowds) simultaneously.

• We propose a point-set based spatial density adjustment
method for interactive design. It can dynamically adjust the
creature group distribution during the tiling process accord-
ing to the characteristics of different species, such as the
survival depth and survival probability, which significantly
improves the naturalness of the generated results.
24
To evaluate the effectiveness of our method, we have gen-
erated marine scenes for a variety of scales, where scenes with
hundreds of thousands of individuals took only a few seconds
to generate. In addition, by using two metrics proposed in Yang
et al. (2020), we also quantitatively compare the behavior of our
method with the Boids method (Reynolds, 1987). The comparison
results show that our method has competitive results with the
Boids method in generating fish schools. Finally, we conducted
a user study to show that our results meet natural and realistic
group authoring results and match human preferences.

2. Related work

This work aims to populate the environment with large-scale
marine groups efficiently. Our task involves group (crowd) sim-
ulation and scene synthesis methods. As addressed in the pre-
vious section, group (crowd) simulation can be classified into
three categories due to different spatial resolutions: macro-level,
meso-level, and micro-level. As there have been many previous
works on group (crowd) simulation, we only discuss the most
relevant previous work for brevity, including data-driven crowd
simulation and 3D group simulation. As for scene synthesis tech-
niques, we mainly discuss Wang Cubes and its related synthesis
techniques.

2.1. Data-driven crowd simulation

Data-driven techniques can be used to extract behavioral data
from the real world for crowd simulation. These techniques can
effectively enhance the realism and accuracy of simulation re-
sults. In recent years, data-driven crowd simulation has achieved
pleasing results in crowd simulation and traffic scenario simula-
tion. In crowd simulation, Lee et al. (2007) proposed a simulation
method that uses 2D pedestrian trajectory data extracted from
natural videos. During the simulation, agents learn these trajec-
tory data and decide their behaviors based on the environment
and neighboring agents’ behaviors. Their experimental results
show that the simulation results are similar to the real video. Ju
et al. (2010) used real crowd videos to sample data on crowd tra-
jectories and then used a rule-based approach to simulate an arbi-
trary number of people. Kim et al. (2016) proposed a crowd simu-
lation method combining data-driven techniques with the adap-
tation and interactivity of synthetic multi-agent techniques. The
method generates interactive virtual pedestrians after capturing
pedestrian motion features from real-world videos. Karamouzas
et al. (2017) proposed an energy function-based crowd veloc-
ity optimization method. The method can generate stable and
high-quality simulations of crowds of different densities with
guaranteed collision-free performance. Ren et al. (2021) proposed
Heter-Sim, and it combines data-driven and physics-based sim-
ulation methods to achieve heterogeneous agents with different
combinations of agents for different dynamics of agent objects.
The system was successfully applied to the simulation of crowd
and traffic scenarios.

In the traffic simulation, Chao et al. (2013) extracted the
motion feature information of vehicles in the video and applied
it to large-scale vehicle animation. The method can follow the
surrounding changes to adjust the driving behavior and has a
strong sense of realism. Subsequently, Chao et al. (2017) pro-
posed a texture-synthesis and data-driven approach for traffic
flow simulation by inputting a limited number of real-world
vehicle trajectories, viewing the traffic flow as a two-dimensional
texture, and generating a large number of vehicle trajectories
using texture synthesis. Bi et al. (2016) proposed a data-driven
traffic lane change model. They extracted features of the target

vehicle and surrounding vehicles from real-world traffic flow and
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nput them to a back-propagation network for building a vehicle
rajectory lane change decision model. The model makes lane
hanges in traffic flow close to the real world and improves the
ealism of traffic flow. Li et al. (2017) reconstructed the traffic
rom GPS data and used metamodel-based simulation to optimize
he data deficient areas.

However, these data-driven approaches are designed for cro-
ds or traffic flows, not for animals. Moreover, they usually focus
n two-dimensional space. They cannot be directly extended to
D marine group simulations. In the following, we will introduce
D group simulation.

.2. 3D group simulation

The main group simulations in 3D space are the flock of birds,
he swarm of insects, and schools of fish.

In 1987, Reynolds (1987) proposed the Boids method, a rule-
ased flock simulation algorithm, which uses three principles of
ollision avoidance, center proximity, and velocity matching to
onstrain the flock. With further research (Hartman and Benes,
006; Alaliyat et al., 2014; Paranjape et al., 2018; Iizuka et al.,
018; Inomata and Takami, 2020; Xueying et al., 2017), the Boids
ethod was gradually improved and used until now. Mean-
hile, Vicsek et al. (1995) use the principles of statistical me-
hanics to calculate the forces and directions of individuals in a
roup. Since the Vicsek model can simulate complex systems with
imple principles, researchers have applied it to the simulation of
ird flocks other groups (Ginelli, 2016; Xueying et al., 2017; Chen
t al., 2021).
Besides the simulation of bird flocks, insect swarm simulation

s also a trendy research area in group simulation. For exam-
le, Wang et al. (2014) proposed a field-based insect simulation
ethod. Ren et al. (2016) proposed a data-driven formulation
ased on pre-recorded insect trajectories for collective insect
ehavior, including aggregation, migration, phase change, and
scape. Chen et al. (2019) proposed an external force model based
n a trade-off mechanic that allows insects to move into specified
hapes naturally. Xiang et al. (2020) proposed the FASTSWARM
ramework for high-fidelity simulation of common insect behav-
ors. This method can be used to predict the missing insects’
rajectories in the captured data set, and they also provide a user-
ontrolled interface for editing simulating results. However, these
ethods focus on one or several groups, while many organism
roups usually exist simultaneously in a marine scene. Therefore,
direct use of these methods may produce identical or similar
ehaviors in marine groups that do not exhibit natural behavioral
eatures.

In fish school simulation, the artificial life technique is the
ost common method, i.e., artificial fish. Xiaoyuan’s fish (Tu
nd Terzopoulos, 1994) is the first generation of the artificial
ish model. Artificial fish are generated using a cognitive-based
pproach and are capable of exhibiting intelligent behaviors, in-
luding predation, escape, and aggregation. However, since arti-
icial fish algorithms are usually computed individually on each
ish, they do not perform well when conducting large-scale fish
chool simulations (Zhou et al., 2015). Therefore, the artificial
ish algorithm is not applicable when authoring marine scenes
nteractively.

.3. Wang Tiles and Wang Cubes

Wang Tiles is a synthetic algorithm proposed by Hao Wang in
961 (Wang, 1961), mainly for solving the tessellation problem of
lanes. In 1966, Robert proved the tessellation planes generated
y Wang Tiles are aperiodic (Berger, 1966). Nowadays, Wang Tiles

re widely used in the work of creating pattern textures (Stam,

25
1997; Cohen et al., 2003), terrain textures (Derouet-Jourdan et al.,
2016), and group scenes (Shen et al., 2014). These works make
use of limited data to obtain aperiodic data results. Specifically,
in the scene authoring area, Shen et al. (2014) proposed a fast
sample-based crowd authoring method using Wang Tiles for fast
crowd synthesis. Their method was able to create natural crowds
with rich local behavior. However, the method is still in 2D space
and does not apply to author 3D marine scenes.

Wang Cubes (Culik and Kari, 1996) is a 3D extension of Wang
Tiles, which can be used to create aperiodic tessellation in 3D
space. Based on this method, Sibley et al. (2004) proposed a
Wang Cubes-based video synthesis method that uses sampled
video or Poisson distributed points Wang Cubes to perform video
synthesis or geometry placement in a short time. The method has
achieved good results for focal dispersion creation of shallow pool
scenes and asteroid belt creation. However, their method requires
video stream as inputs, but the lack of marine video resources
makes the method not applicable to author marine scenes. In ad-
dition, Lu et al. (2007) developed a Wang Cubes-based interactive
body illustration system to author human organs using data sets
such as feet and abdomen. Their method has the advantages of
creating local details of the human body, such as fingerprints of
the feet and subcutaneous blood vessels, but these advantages
are not necessary for generating marine scenes. It is worth men-
tioning that our method is designed for marine group authoring,
not only using Wang Cubes to create aperiodic groups efficiently
but also proposing a point-set based spatial density adjustment
method for resolving artifacts caused by overstocking of marine
groups.

3. Method

In this section, we will describe our example-based method
for authoring marine scenes. The overview of our method is
shown in Fig. 1. First, we create a library of marine entities,
including species such as marine creatures (take fish schools as
an illustration in our experiments), submarine plants, reefs, etc.
Then, we fill the marine scene quickly by using the species in this
library. Specifically, the primary process is described as follows:

• Octahedral Blocks Creation. We extract the distributions of
marine entities from real images (denote as examples) and
create the Octahedral Blocks by using these examples.

• Marine Cube Set Synthesis. Several specified Octahedral Blocks
are combined to form a Marine Cube. All Marine Cubes form
a Marine Cube set.

• Scene Tiling. We further use the Marine Cube set to tile the
marine scene in the order of X , Y , and Z axis, respectively.
The coordinates of the entities in all selected Marine Cubes
are updated.

• Species and Orientation Randomization. Every marine entity is
assigned a species number, and a 3D vector is also randomly
generated as its orientation.

• Density adjustment. To prevent artifacts caused by overstock-
ing of marine groups, we use a point-set based approach to
dynamically adjust the density of the generated scene.

3.1. Octahedral Blocks creation

The creation of Octahedral Blocks requires two sub-steps.
First, we extract the real distribution of marine entities as

input examples by taking a data set of real marine images as
references. Meanwhile, we also set a corresponding entity infor-
mation table for each marine entity in the examples, including
their coordinates, sizes, species types, group numbers, survival

depths (denoted as d), and survival probabilities (denoted as s).
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Fig. 1. The overview of our method. Firstly, we create a real data set of the marine images. Secondly, we extract the distribution information of marine entities in
hese data sets as examples and create an entity information table for each example. Next, we fill these examples into Octahedral Blocks and update the coordinates
n the entity information table of the examples as the Octahedral Blocks’ table. Then, we select Octahedral Blocks to synthesize Marine Cubes and update the
oordinates in the entity information table of the Octahedral Blocks as the Marine Cubes’ table. Following, specific Marine Cubes are taken from Marine Cubes to
ile the marine scene. In the meantime, the coordinates, the group numbers, and the species type in the entity information table are also updated for the scene.
inally, we randomize the species and orientation of the entities and adjust the density of the scene.
Fig. 2. Extraction of distribution information from real images. (a) Real images of Pennant coralfish and Chaetodon lunula. (b) Corresponding examples of these fish.
During the extraction, the behavior and distribution of entities
in each group (for example, a school of fish) should match the
real images. Specifically, we determine how many species of
fish are in the image and select the corresponding number of
models, then we estimate the size of the fish population in the
image to determine the placement area, and finally, we place the
corresponding models in this area according to the distribution of
fish in the image. An illustration of extraction is shown in Fig. 2.
Fig. 2(a) shows the real image of the Pennant coralfish and the
Raccoon butterflyfish. The corresponding examples are shown in
Fig. 2(b), respectively.

Next, we fill the examples into a series of octahedron-shaped
locks (non-regular, see Fig. 3) called Octahedral Blocks. The size

of the Octahedral Block can be automatically generated by the
system based on the scene size or specified by the user. According
to the different orientation of the symmetry axis of an Octahedral
Block to the X, Y, and Z axis of the world coordinate system, there
26
are three types of Octahedral Blocks: left (right), up (down) and
front (back), as shown in Fig. 3. Each Octahedral Block can be
filled with an arbitrary number of examples. But it is preferable
to fill it with a number that matches the density of the natural
distribution of marine entities. Octahedral Blocks can also be
filled empirically; that is, the user provides input parameters such
as the number of schools and the distance range between groups
of the specified marine entities to fill the blocks. Since each layer
of the marine scene contains different species, we also need to
classify the submarine and non-submarine Octahedral Block set,
making it possible to select the correct Octahedral Blocks during
the tiling process. To do so, we fill the up (down), front (back),
left (right) Octahedral Blocks with entities to obtain the non-
submarine Octahedral Block sets, named as UBlocks, FBlocks, and
LBlocks. We fill the front(back), left(right) Octahedral Blocks with
reefs, seaweeds, and Near-bottom entities to obtain the subma-

rine Block sets, named as GFBlocks and GLBlocks. In addition, it is
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Fig. 3. Three types of Octahedral Blocks with respect to the X, Y and Z axis: left (right), up (down), and front (back).
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ecessary to conduct an intersection test on the marine entities
n each Octahedral Block to ensure that entities are all within the
lock. The intersection test equation is described as follows:

j ∈ [0, 7], ∃Vj ∈ VertexSet j,Dot(Nj,Vi − Vj) > 0 (1)

where Vi is the center coordinate of the marine entity i. j ∈ [0, 7]
is the number of each face of one Octahedral Block. VertexSet j is
the set of vertices of face j. Vj belongs to the VertexSet j. Nj is the
normal vector of each face.

Additionally, we create an entity information table and a color
number for each Octahedral Block. We update the entity informa-
tion table of the examples as the Octahedral Block’s table.

3.2. Marine Cube set synthesis

Inspired by Wang Cubes (Wang, 1961), we cut the Octahedral
Blocks into cubes, defined as Marine Cubes. Each Marine Cube has
six faces: up (down), front (back) and left (right). After randomly
choosing six Octahedral Blocks in the corresponding direction
(type) of the Octahedral Block set and placing them together
and cutting off the extra half of the Octahedral Blocks in each
direction, we obtained a Marine Cube. There are also two types
of Marine Cube sets: non-submarine Cube set and submarine
Cube set. To synthesis a non-submarine Cube, we separately
select Octahedral Blocks from UBlocks, FBlocks and LBlocks for
its six faces. To synthesis a submarine Cube, we separately select
Octahedral Blocks from UBlocks, GFBlocks and GLBlocks for its six
faces. In addition, all entities in the bottom half of a submarine
Cube should be removed to obtain a ground plane. We create an
entity information table for each Marine Cube based on the entity
information table of the Octahedral Block, paying particular atten-
tion to updating the coordinates of each entity from Octahedral
Block’s table to Marine Cube’s.

During the Synthesis process, each face of a Marine Cube
can inherit the color number of the corresponding Octahedral
Block (see Section 3.1). We denote the color number of the up,
down, front, back, left, and right directions of Marine Cubes
as u, d, f , b, l, r , respectively. Each Marine Cube has a number
(denoted as Numcube) calculated from the color number. To ensure
that a matching Marine Cube is found in each case, we arrange all
the color numbers in the Octahedral Block set of every position
using the full permutation method. Assuming that each Octahe-
dral Block set contains n Octahedral Blocks, there are n6 Marine
Cubes in the non-submarine Cube set and n5 Marine Cubes in
the submarine Cube set after full permutation. In this paper, the
base-n number system is used to store all cases. The conversion
equation between color sequence and Numcube is:

Numcube =

{
((r, l, b, f , u)n)10 cube ∈ Csubmarine
((r, l, b, f , d, u)n)10 cube ∈ Cnon-submarine

(2)
27
where (r, l, b, f , d, u) and (r, l, b, f , u) represent the color se-
quence in the base-n number system of a non-submarine Cube
and a submarine Cube, respectively. Csubmarine and Cnon-submarine
represent the submarine Cube set and non-submarine Cube set,
respectively. Numcube is a number in the decimal system which
corresponds to the color sequence.

3.3. Scene tiling

Next, we tile a marine scene with the Marine Cube sets. Adja-
cent surfaces of adjacent Marine Cubes with the same color can be
combined together. We tile Marine Cubes from down to up, left
to right, and back to front in the process of tiling. We define the
down, front, and left positions of the current Marine Cube as pre-
order Marine Cubes. We only match the pre-order Marine Cubes
when tiling. If the pre-order Marine Cubes already exist, the color
of its corresponding position is obtained. Otherwise, the color for
that direction is selected directly from the Octahedral Block set
in the corresponding direction.

In the process of tiling, let (i, j, k) be the index of each Marine
Cube in the scene, where i is the left–right direction, j is the up-
down direction, and k is the front–back direction. When j = 0, the
current Marine Cube is selected in the submarine Cubes set, and
the corresponding color sequence of the selected Marine Cube is
(r, l, b, f , d, u). When j ̸= 0, the current Marine Cube is selected
in the non-submarine Cube set, the corresponding color sequence
of the selected Marine Cube is (r, l, b, f , u). The color sequence is
alculated as:

ir =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Random, dir ∈ {u, f , r}

l(i,j,k) =

{
Random i = 0
l(i−1,j,k) i ̸= 0

d(i,j,k) =

{
nonentity j = 0
d(i,j−1,k) j ̸= 0

b(i,j,k) =

{
Random k = 0
b(i,j,k−1) k ̸= 0

(3)

where dir is the color number of a cube, and dir ∈ {u, d, f , b, l, r}.
i, j, k is the index of a cube in scene. Random is a random number
from 0 to n. n is the quantity of Octahedral Blocks contained in
one Octahedral Block set (see Section 3.1).

3.4. Species and orientation randomization

During the scene tiling process, we use many Marine Cubes.
However, due to the limited number of Octahedral Block sets,
the distribution and orientation of entities and entity groups may
be repeated in the scene. We randomly assign species types to
each entity and assign a random orientation to each entity group
to solve this problem. When making the Octahedral Blocks, we
assigned group numbers to each entity. But during the synthesis
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f the Marine Cubes, the same Octahedral Block is used many
imes, and the group numbers are not unique. Therefore, we
eed to use the unique index of Marine Cube to update the
roup number for each entity. Then we assign random species
nd random orientations based on each entity’s group number
nd species type and update those information into the table
f each Marine Cube in the scene. Species used for the random
ssignment are derived from the library of marine entities. The
ibrary of the marine entities is shown in Fig. 5.

.5. Density adjustment

In the process of tiling, some Octahedral Blocks may have
any groups, leading to an overstocking of groups in the final

esult. In 2D, density control is generally implemented with den-
ity maps. In 3D, it is obvious that density control cannot be
chieved by one or several 2D density maps, and users cannot
uickly obtain 3D density function expressions. To this end, we
ropose a point-set based density control method to improve
ser operability and achieve the effect of scene density control
t the same time. The factors that affect the survival of the
ntities in the scene are not only the scene density but also the
urvival probability and survival depth of the entities. Therefore,
e propose a rendering probability formula for the adjustment
f scene density. The core idea of this formula is to perform a
robability calculation for each marine entity and then decide
hether to discard the entity or not. The rendering probability

ormula is:

P(i) = ωd ∗ fd(i) + ωu ∗ fu(i) + ωs ∗ si (4)

where si is the survival probability of entity i recorded in entity
nformation table, fd is the depth probability function, and fu is
the user probability function. P(i) is jointly determined by fd, fd
and si, ωd, ωu and ωs are their respective weights, and the sum of
all ω is 1.

The depth probability function fd(i) is defined as:

fd(i) = K0 ∗ |di − d| (5)

where di is the current depth of entity i in the scene, d is the
survival depth in the entity information table, and K0 is the decay
factor.

The user probability function f is defined as:

fdis(dis) = K1 ∗ Min(|Vi − Vj|), j ∈ U (6)

where U is the set of density control points provided by the
user, Vi denotes the 3D coordinates of entity i, and Vj is the 3D
coordinates of a point j in U . Min(|Vi − Vj|) denotes the minimum
distance value of entity i to U , and K1 is the decay factor. Finally,
each entity i is assigned a random number ζ from 0 to 1. When
ζ > P(i), the entity i is discarded.

4. Results and analysis

4.1. Implementation and performance

To validate our method, we choose Unity
®

software1 as a
desktop environment and implement an interactive authoring
application on a desktop PC with an Intel I7 processor, 16G of
RAM, GTX 1080Ti GPU. We pre-define three categories of marine
entities for creating examples, including fish, marine plants, and
reefs. Each category contains twenty species of fish, nine marine
submerged plants, and five species of reefs, respectively. Six ex-
amples are made for each direction of the Octahedral Blocks, and

1 https://unity.com/
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Table 1
Parameters of our method in Section 3.5. We use these parameters to obtain
the following results.
Parameter Value Description

ωd 0.3 Impact factor of survival depth
ωdis 0.2 Impact factor of density control point set
ωs 0.5 Impact factor of survival probability
K0 0.01 Attenuation factor of survival depth
K1 0.05 Attenuation factor of survival probability

two Octahedral Blocks are shown in Fig. 4. Fig. 6 shows a subset
of the final results authored using our application and Fig. 7
shows the results of our application with and without density
adjustment which is presented in Section 3.5. More results are
available in the supplementary materials. Meanwhile, we list all
the parameters of our experiments and their default settings in
Table 1.

Besides this, we test the running time of our method on the
same desktop PC mentioned above. The performance tests focus
on the four steps of the approach in this paper: Marine Cube
set synthesis (Section 3.2), scene tiling (Section 3.3), species and
orientation randomization (Section 3.4), and density adjustment
(Section 3.5). Since the first step (Octahedral Blocks creation, Sec-
tion 3.1) is pre-processed and manually produced, we conduct a
user study to evaluate the crafting consumption time of this step
instead of directly evaluating its running time (see Section 4.3
for more details). Note that the time spent on the rendering
processes, such as drawing meshes and shading, are not key parts
of our method, so we ignore the performance tests for these
processes. The results of the running time test are shown in
Table 2, where the first column of the table indicates that I , J ,
nd K Marine Cubes are used to fill the length, width, and height
f the virtual marine scene, respectively. From this table, it can be
een that our method takes only 6.593 s to generate a scene of a
cale with 6 × 6 × 6, indicating that the method can effectively
upport user requirements for quick editing and adjustment and
s suitable for adoption in interactive authoring tools.

In particular, since the step of Octahedral Blocks creation
Section 3.1) affects the step of Marine Cube set synthesis (Sec-
ion 3.2), we also conduct a further performance test on Sec-
ion 3.2 independently. In this step, the main factors affecting
he running speed are the number of Octahedral Block candidates
in each direction, the number of entities M i

1 in each UBlocks,
Blocks, and FBlocks (denoted as i), and the number of entities
j
2 in each GLBocks and GUBlocks (denoted as j). The time for

enerating Marine Cube set is estimated by
6∗N∑
i=1

M i
1 ∗ N5

∗ t +

N∑
i=1

M i
1 ∗ N4

∗ t +

4∗N∑
j=1

M i
2 ∗ N4

∗ t (The time taken for an entity to

test is t). The size of the Marine Cube set is N6
+ N5 (i.e., the

size of the non-submarine Cube set is N6, and the size of the
submarine Cube set is N5). M depends on the properties of the
user-made Octahedral Blocks, so we fix the range of values of M
in our test: the number of entities in the non-submarine Cube set
ranges from M1 ∈ [100, 200] in each example, and the number
of entities the submarine Cube set ranges from M2 ∈ [20, 30].
The effect of different M,N, T on the running time is shown in
Table 3. It can be seen that an increase in N will consume more
running time. However, since an increase in N can lead to richer

synthesis results, a trade-off can be sought in practical use.

https://unity.com/
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Fig. 4. Illustrations of two Octahedral Blocks selected from UBlocks and GLBlocks, respectively. (a) A block with fish schools. (b) A block with both fish schools and
marine submerged plants.
Fig. 5. Library of marine entities. We adopt these marine models for the implementation part of Section 4.1, including twenty types of fish, nine types of marine
submerged plants, and five types of reefs.
4.2. Quantitative and visual comparison

Next, to quantitatively assess our method and objectively
compare our method to other baseline algorithms, we com-
pare against two group simulation methods: the Boids method
29
(Reynolds, 1987), and the Random method (groups are com-
pletely randomly generated, i.e., all the entity groups are ran-
domly generated and randomly placed in the scene). For our
method, we implement two versions, one with density adjust-
ment (Section 3.5) and one without density adjustment. We also
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m

a

a
e

Fig. 6. Results of the proposed method: multiple shots of a marine scene simulated in a cube scale of 6 × 6 × 6. (a)–(d) Close-up views of diverse behaviors of
arine groups, including alignment, aggregation, escape and hide. (e)–(h) Shots of different areas in the scene.
Fig. 7. A comparison between our application with and without density adjustment, (a) Our application without density adjustment. (b) Our application with density
djustment.
dopt two comparison metrics, which are proposed by Yang
t al. (2020): position deviation and orientation deviation. These
30
two metrics are developed by their reference to the three major
rules of the Boids method. Concretely, the position deviation
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Table 2
Consuming time of each procedure (in seconds).
Scene scale Number of entities Time of

Section 3.2
Time of
Section 3.3

Time of
Section 3.4

Time of
Section 3.5

Total

2 × 2 × 2 552

6.566

0.003 0.002 0.001 6.572
4 × 4 × 4 4,401 0.004 0.002 0.001 6.573
6 × 6 × 6 13,213 0.006 0.003 0.001 6.576
8 × 8 × 8 32,227 0.011 0.004 0.001 6.582
10 × 10 × 10 58,267 0.020 0.006 0.001 6.593
Table 3
Consuming time of generating Marine Cube set (in seconds).
N Range of M1 Range of M2 T (N6

+ N5) Time

2

100∼200 20∼30

96 0.027
3 976 0.169
4 5,120 0.729
5 18,750 2.345
6 54,432 6.566

Table 4
Quantitative Comparison of different methods for generating fish schooling
behaviors (The closer the range is to the Boids method, the better).
Method Set of position

deviation R1

Set of orientation
deviation R2

Boids method (Reynolds, 1987) 0.7∼3.0 2∼180
Random method 0.2∼1.5 2∼10
Ours (w/o density adjustment) 0.8∼2.2 10∼104
Ours (with density adjustment) 0.9∼2.2 2∼180

is designed to measure the aggregation behavior and collision
avoidance behavior. We calculated the position deviation for
each group and obtained the set of positional deviations for all
groups in the scene (denoted as R1). For each group, the position
eviation is calculated by:

e1 =
1
C

C∑
i=1

∥pi − p̄∥2 , ∀e1 ∈ R1

p̄ =
1
C

C∑
i=1

pi,

(7)

here e1 represent the position deviation for one group, C is
he total number of individuals in the group, pi is the position
ector of individuals in the group, and p̄ is the sum of the
osition vectors of each individual in the group divided by the
otal number of individuals.

The orientation deviation is designed to measure the isotropic
ehavior. We calculated the orientation deviation for each group
nd obtained the set of orientation deviations for all groups in the
cene (denoted as R2). For each group, the orientation deviation
is calculated by:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
e2 =

1
C

C∑
i=1

∥oi − ō∥2 , ∀e2 ∈ R2

ō =
1
C

C∑
i=1

oi,

(8)

where e2 is the orientation deviation for one group, C is the total
umber of individuals in the group, oi is the direction vector of
ndividuals in the group, and ō is the sum of direction vectors
f each individual in the group divided by the total number of
ndividuals.

The comparison results of the four methods (the Boids method
Reynolds, 1987), the Random method, our method with den-
ity adjustment, and our method without density adjustment) to
31
Table 5
User Study 1: The range of total time spent by
participants to create examples and Octahedral
Blocks (in seconds).
Task Time

Create Examples 63∼158
Create Octahedral Blocks 33∼97

measure position deviation and orientation deviation metrics are
shown in Table 4. The significance of these two metrics is that
different fish schools will maintain a stable position deviation,
but the orientation deviation will show a large variation with
different fish school shapes (Yang et al., 2020) and thus can be
used to measure the local behavior of the fish schools. From
the comparison results, it can be seen that the result of our
method is similar to the Boids method in both position deviation
and orientation deviation and outperforms the Random method
(the close to Boids (Reynolds, 1987), the better). It shows that
the method in this paper is better than the Random method in
terms of local behavior creation and is competitive with the Boids
method.

In addition, we also compare the visual results of the four
methods mentioned above. For each set of comparisons, a real im-
age is provided as a reference. The comparison results are shown
in Fig. 9. Since the Boids method is rule-based, the fish schools
generated using this method may follow the same rule, and many
fish schools show similar behavior. The fish schools generated
from the Random method tend to be too ‘‘dull" to match good
visual effects. In our method, when no density adjustment is
performed, some of the generated fish schools are overstocked.
However, after density adjustment is performed, this problem is
solved.

4.3. User studies

We have designed two user studies to verify the usability and
visual experience of our approach objectively. We designed two
tasks for 20 participants (12 males and 8 females) in the age
range from 20 to 40, including teachers, university students, and
company employees.

For the first task, we expected to evaluate the usability of
this method. We invited these 20 participants who had differ-
ent artistic backgrounds and areas of knowledge for this case
to create the Octahedral Blocks. At the beginning of the study,
each of them was given a desktop PC and a 10-minute tutorial
on our system. Table 5 shows the range of total time spent by
participants to create examples and Octahedral Blocks. As can
be seen from the table, the time of creating an example of each
participant is between 63 and 158 s, and creating an Octahedral
Block is between 33 and 97 s. Once the examples are created,
the user only needs to interact with a few parameters, and all
subsequent steps are automatically computed. This user study
demonstrates our method is a very easy-to-use and efficient tool.

For the second task, we expected to evaluate the visual experi-
ence of the results generated by this method. We set up 20 sets of
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Fig. 8. Questionnaire scores. Overall, the visual quality of our method is better than the Boids method (Reynolds, 1987) and the Random method. The Cronbach α

of this user study is 0.983, which indicates that the user study has a high reliability level.
Fig. 9. Visual comparison. We provide four sets of images, each providing one real image and three images generated by the Random method, the Boids (Reynolds,
1987) method, and our method. The comparison shows that the Random method appears to be stacked, the Boids method appears to have similar behavior of
multiple fish schools, and our method is closer to the real images.
images, each containing 4 images, with a real marine scene image
as the reference image and 3 virtual marine images generated by
3 methods (randomly scrambled), including the Boids method,
Random method, and Our method. All the virtual marine scene
images had similar lighting and camera angles with the corre-
sponding real marine scene image to eliminate additional effects
on the visual experience. In addition, since the Boids method
cannot generate schools of fish along with marine submerged
plants or reefs, this user study only focuses on the fish schools
authoring results. We designed a survey questionnaire of a 10-
point scale, with 1 being the lowest and 10 being the highest, and
asked these 20 participants to rate the 3 virtual marine images
in each image set based on how similar the distribution of fish
schools was to the corresponding one real image. The evaluation
results are shown in Fig. 8, where the X-axis indicates the ID of
each image set and the Y -axis indicates the average score of each
32
image in each set. We conducted a reliability test on the results
of this questionnaire, which had a Cronbach’s α coefficient of
0.983, indicating that the questionnaire has high data reliability.
The overall average scores for all image sets were: 6.41 for the
Boids method, 3.15 for the Random method, and 7.08 for Ours,
indicating that the results generated by the method are in accord
with human preferences. Specifically, the table shows that our
method scored higher than the Random method in each of the
20 sets of images and higher than the Boids method in 15 sets.
Among the 20 sets of images, we designed 10 image sets with full
scene views (set numbers: 1, 9, 10, 12, 15, 11, 16, 17, 18, 19, 20),
which all contain more than 10 fish, to measure the overall scene
effect. In the scoring results of these sets, our method scored
higher than the Boids method in 8 sets, which indicates that our
method is better in the overall effect of scene authoring results;
we also designed 10 image sets with single fish school views (set
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umbers: 2, 3, 4, 5, 6, 7, 8, 11, 13, 14), which focus on a single
ish school and are used to measure the local fish behaviors. In
he scoring results of these sets of images, our method does not
iffer much from the Boids’ scores, which indicates that we can
atch the Boids method in terms of the effect of fish behavior
etails, which is also consistent with the experimental results in
ection 4.2.

.4. Limitations

Despite the good results obtained, our approach still has some
imitations. We leave these limitations to the open discussion of
uture work:

• Our method can only author static marine scenes and is
therefore only suitable for creating the initial state of the
marine groups.

• Creating Octahedral Blocks cannot deal with individuals in
the input examples with sizes larger than an Octahedral
Block.

. Conclusions

In this paper, we have proposed a fast method for authoring
arine scenes using Wang Cubes. The method is able to create

arge-scale marine scenes by extracting information about the
eal distribution of marine groups of entities from real photos to
nhance the realism and accuracy of simulation results. During
he authoring steps, users can customize the entity information
able and library of marine entities and use parameters to adjust
he density. The method uses Wang Cubes to combine Octahedral
locks into Marine Cubes, which enriches the diversity of ma-
ine group distribution. In the experimental part, we validated
he method’s performance and compared it quantitatively and
isually with four methods. Finally, we designed two user studies
o demonstrate that our method is able to create diverse marine
cenes that match human preferences in an efficient way.
It is worth mentioning that although the marine scene is

elected as our research subject, the method proposed in this
aper is generic and it allows for fast authoring of any 2D and
D mixed groups (crowds). For example, our method can also
uthor scenes such as a forest with bird flocks, farmland infested
y locust swarms, a city park inhabited by pigeons, etc.
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