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ABSTRACT

Face alignment is a critical and difficult task for many facial
analysis applications. Existing VFA methods frequently
ignore the consistency of facial geometries and textures
across video sequences, limiting their ability to handle ac-
curate and stable face alignment. This paper describes a
robust and highly accurate 3D Morphable Model (3DMM)-
based VFA approach that employs a novel texture gener-
ation method and a self-refined face alignment procedure.
Our method iteratively fine-tunes facial geometries, tex-
tures, and poses by using a differentiable rendering tech-
nique and a self-refined optimization method. Experiment
results show that our method outperforms existing state-
of-the-art methods in terms of both accuracy and temporal
stability. Visual results and source code are available at:
https://pawindergit.github.io/SR-VFA/

Index Terms— Video-based face alignment, 3D dense
face alignment, self-refining model

1. INTRODUCTION

Face alignment (FA) involves accurately identifying specific
facial landmarks, such as the corners of the eyes and mouth,
within facial images or video frames. This fundamental step
is crucial for a range of facial analysis tasks, including face
action unit detection [1], expression and micro-expression
recognition [2], and face reconstruction [3]. Its importance in
ensuring the stability and precision in these applications has
driven the pursuit for more accurate and robust FA solutions.

Depending on the type of data addressed, FA approaches
can be broadly divided into two categories: those designed
for single images and those tailored for videos. Over the past
few decades, single-image face alignment has received con-
siderable attention and achieved impressive results in both
speed and accuracy. Dominant methods in this area include
cascaded regression [4], deep learning heatmap prediction[5],
and 3D face model fitting [6]. In contrast, video-based face
alignment (VFA) research [7], which aims to track facial land-
marks in successive video frames, has been relatively less ex-
plored. An additional challenge unique to VFA primarily lies
in the heightened requirement for consistency in the predicted
facial landmarks across adjacent frames.

Exploiting the temporal continuity of faces in video se-
quences [8] is a straightforward and prevalent VFA approach
for robust facial landmark detection. Specifically, recurrence
regression-based [9], optical flow-based [10] , and cycle-
consistency-based [11] methods propose reusing the outputs
or intermediate features from one frame to facilitate precision
landmarks prediction in subsequent frames. But these meth-
ods commonly neglect the consistency of facial geometries
within video sequences, thus limiting their effectiveness in
addressing faces with occlusions or extensive motion. To
address this issue, other VFA approaches based on 3DMM
utilize reconstructed facial geometries to achieve video face
alignment. These methods typically impose constraints on
the identity parameters of facial models within a single video
or multiple perspectives, subsequently predicting or optimiz-
ing facial expressions, positions, and orientations for face
alignment. However, despite the advantages of identity con-
sistency provided by 3DMM, these methods often struggle to
accurately align 3DMM textures with real-world facial fea-
tures, which undermines the precision and reliability of thes
VFA approaches.

In this paper, we present a novel 3DMM-based VFA
method aiming to achieve robust and highly accurate face
alignment in video sequences. Our key innovation involves
sampling and generating realistic facial textures in video
frames, complemented by the iterative refinement of facial
alignment through a self-refined procedure. We employ the
Basel Face Model (BFM) [12] as the foundational frame-
work for face reconstruction. Given that the BFM supports
only low-frequency textures, its ability to accurately repre-
sent diverse facial features is restricted. This limitation leads
to discrepancies between the 3DMM models generated and
the actual faces in video frames, thereby compromising the
precision of aligned facial positions and orientations. To ad-
dress this issue, we introduce a sampling-based approach to
acquire more realistic facial textures. Subsequently, the facial
positions and orientations, along with the facial textures, are
iteratively updated using the differentiable rendering tech-
nique. Our method leads to robust and highly accurate face
alignment across video sequences. The main contributions
of this work include (1) a novel sampling-based approach for
acquiring realistic facial textures and (2) a new self-refined
procedure for enhanced video-based face alignment.
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Fig. 1. Overview of the proposed VFA method. Our approach comprises two phases: texture reconstruction and frame inference.
Details about the network structures are available on the project page.

2. METHODOLOGY

Traditional 3DMM methods often yield facial reconstructions
that lack realism. Despite recent studies [13] incorporat-
ing refined Bidirectional Reflectance Distribution Function
(BRDF) to enhance the rendered results, noticeable discrep-
ancies persist between rendered and real facial appearances.
To address this issue while optimizing reconstruction speed
and alignment accuracy, our method introduces a simplified
face model with coefficients and features, including iden-
tity α, expression β, and pose p from 3DMM, along with
texture T sampled from video frames and texture-free irradi-
ance I . This adjustment enables realistic 3D face modeling,
thereby contributing to following precise face alignment.

Figure 1 illustrates the comprehensive pipeline of our face
alignment method. Given a video sequence containing faces
of a consistent identity, we partition the sequence into two
sets. The first set consists of a smaller subset of frames that
are evenly sampled to construct a realistic facial texture. The
second set comprises the remaining frames, which exploit this
pre-constructed texture to achieve high-precision face align-
ment, obviating the need for additional texture modeling.

In the texture reconstruction phase, an initial coarse fa-
cial geometry is obtained for each selected frame using the
BFM [12]. These facial geometries serve as the foundational
basis for sampling facial appearances, which are subsequently
refined into a photorealistic texture via Gated Convolutional
Neural Networks (CNNs). In parallel, these sampled facial
appearances are utilized to compute texture-free irradiances.
Finally, through differentiable rendering and self-refining op-
timization, the 3D facial geometries, photorealistic texture,
and texture-free irradiances are synthesized to achieve precise

face alignment in each frame. This method produces con-
sistent and highly accurate face alignment across the video
sequence. The generated textures are reused for subsequent
frames to facilitate rapid face alignment, eliminating the need
for additional texture reconstruction. The texture reconstruc-
tion phase remains consistent with the alignment process.

2.1. Texture reconstruction

Coarse face coefficients. We start with a CNN based model
to estimate coarse coefficients for 3DMMs of selected frames.
These coefficients contain basic information about facial
identity α∗

i , expression β∗
i , and pose p∗i of frame i. To en-

hance both efficiency and robustness of the subsequent face
alignment model, we pretrained the coefficient-estimation
model on a dataset of in-the-wild face images following [14].

Video-consistent identity and texture. Theoretically, varia-
tions in facial expressions, poses, and lighting naturally occur
across different frames of a video sequence, while identity co-
efficient and texture should exhibit temporal consistency. Mo-
tivated by this, a uniformly selected subset of frames is used
for the computation of a temporally consistent texture image
and identity coefficient. For the texture generation, coarse 3D
facial models reconstructed from these selected frames serve
as the foundation for texture sampling. It can be observed
that the sampled texture maps {T ∗

0 , T
∗
1 , . . .} are largely simi-

lar and may miss occluded portions. Therefore, a model Mt

equipped with gated convolutional layers is deployed to gen-
erate a unified facial texture T specific to the video sequence.
As for the identity component, the aim is to amalgamate a
set of coefficients {α∗

0, α
∗
1, . . .} from different frames into a

video-consistent identity coefficient α. Given these coeffi-
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cients are inherently similar but may contain minor fluctua-
tions, it is logically concluded that a transformer model Mid

is apt for this specific task. Note that positional encoding is
excluded from the transformer model due to the weak tempo-
ral correlations among the selected frames.

Self-refined expression and pose. After acquiring the texture
image T and identity coefficient α for a given video sequence,
we construct the 3D face models Fi for each frame i as:

Fi =

{
geometry: BFM(α, βi, pi),

shaded texture: T ∗ Ii,

where the “geometry” part is derived from the BFM method
[12]. The “shaded texture” combines the texture T with the
texture-free irradiance Ii. The latter serves as an indicator
of texture brightness and is constrained to the range [0, 10].
To generate Ii, we employ a lightweight CNN model Mir

equipped with gated convolutional layers to convert the sam-
pled images to texture-free irradiances. With the necessary
components prepared, the 3D face model Fi is rendered into a
2D image Ri and aligned with its corresponding video frame
Pi. We formulate the alignment task as an optimization prob-
lem involving the expression βi = β∗

i + ∆βi and pose pi =
p∗i +∆pi, as well as the trainable models Mt, Mid, and Mir.
Differentiable rendering techniques are used to enable gradi-
ent backpropagation. The objective function f(i) comprises
a structural similarity (SSIM) term [15], augmented by three
L2 regularization terms for faster convergence: f(i) = 1 −
SSIM(Ri, Pi)+λ1∥∆βi∥2+λ2∥∆pi∥2+λ3∥Ii−1∥2, where
weights λ1, λ2, and λ3 are empirically set to 0.1, 0.1 and 0.5,
respectively. The optimization is conducted using the Adam
optimizer [16], with a learning rate decaying from 1e-4 to
1e-6 over 1,000 epochs.The batch size, set to 128, also cor-
responds to the number of frames selected for texture gen-
eration phase. Upon optimization, we obtain the self-refined
facial texture T , identity coefficient α of the given video, and
precise alignment for pose p and expression β of each frame.
Fig. 2 provides an illustration of the intermediate results.

2.2. Inference for the remaining frames

A given video can contain a large number of facial frames.
To enhance computational efficiency, we select only a small
subset of these frames for the generation of the temporally
consistent texture image T and the identity coefficient α. The
remaining frames are then efficiently aligned by leveraging
the precomputed T and α. As shown in the lower portion of
Fig. 1, we employ a self-refining method same to the one de-
scribed in Sec. 2.1 to accurately estimate pose and expression
coefficients. During this stage, optimization is only focused
on the expression βi, the pose pi, and the texture-free irradi-
ance Ii. All other computational settings, including the choice
of objective function and optimizer, are consistent with those
outlined in Sec. 2.1.

Fig. 2. Illustration of intermediate results. From left to right,
the figure displays the sampled textures, the reconstructed
textures, the final 3D face models, and reference images.

2.3. Inference time

We have optimized our approach and designed lightweight
models, ensuring manageable inference times. The first
phase, optimizing facial texture, takes about 1 minute for one
person on an RTX 3090 GPU. The second phase, focusing
on facial pose and expression, is faster, processing more than
180 frames per minute on the mentioned hardware.

3. EXPERIMENTS

3.1. Dataset and evaluation metrics

We use the 300-VW dataset [21], consisting of 114 videos to-
taling 218,595 frames, to evaluate our VFA method and com-
pare it with state-of-the-art (SOTA) approaches. Of these, 64
videos serve as the test set, which are categorized into three
difficulty levels (A, B, and C), with category C being the most
challenging as its inclusion of low-resolution and poor-quality
faces. The test videos cover a diverse set of facial expressions
and poses, offering a comprehensive evaluation foundation.

To evaluate the face alignment results of different meth-
ods, we employ two widely-used metrics in this field: the nor-
malized mean error (NME) and the normalized mean flicker
(NMF) [9]. The NME is a standard metric that quantifies the
mean discrepancy between the predicted and ground-truth
(GT) landmarks. Given N frames, each containing L GT
landmarks, let mi,l and m̂i,l denote the GT and predicted 2D
coordinates for the i-th frame and l-th landmark, respectively.
The residual vector is defined as ri,l = mi,l−m̂i,l. The NME

is then computed as: NME = 1
N

∑N
i=1

(
1
L

∑L
l=1

∥ri,l∥
d0

)
,

where d0 is the inter-ocular distance to normalize the error
with respect to human perception. While the NMF metric
is designed to measure the temporal coherence of land-
mark positions across frames and is defined as: NMF =√√√√ 1

N

∑N
i=2

(√
1
L

∑L
l=1

(
∥ri,l−ri−1,l∥

d1

)2)2

, where d21 is the
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Methods Metrics
FAN [17] SBR [8] 3DDFAv2 [7] MGC [18] DECA [3] PIP [19] SLPT [20] LDEQ [9]

Ours
ICCV 17’ CVPR 18’ ECCV 20’ ECCV 20’ ToG 21’ IJCV 21’ CVPR 22’ CVPR 23’

Category A
NME 4.210 4.175 4.968 3.945 3.882 3.451 3.454 3.388 3.341
NMF 254.42 154.28 174.07 132.86 133.66 139.68 146.22 138.73 131.97

Category B
NME 3.988 3.755 4.667 4.054 4.219 3.697 3.640 3.472 3.546
NMF 295.55 192.04 212.73 274.79 180.11 169.83 171.38 161.67 149.86

Category C
NME 7.416 6.267 6.891 6.295 6.648 5.951 5.352 6.047 5.564
NMF 414.74 240.52 272.08 392.51 298.19 290.14 337.53 270.62 246.95

Table 1. Comparison of FA methods across three categories. NME and NMF are used to assess the accuracy and temporal
stability of facial landmarks, respectively. Best results are highlighted in bold, and second-best results are underlined.

Optimizing Identity Texture NME NMF SSIM

✗ ✗ ✗ 5.432 276.51 0.8610

✓ ✗ ✗ 4.017 164.44 0.8849

✓ ✓ ✗ 3.882 161.19 0.8943

✓ ✓ ✓ 3.763 157.80 0.9512

Table 2. Ablation study assessing contributions of proposed
method components using NME, NMF, and SSIM metrics.

face area and serves for normalization. The root mean square
is applied to penalize abrupt changes more effectively, thus
better capturing the human perception of flicker.

3.2. Comparison

We compare our proposed model against SOTA methods
across the 3 categories on the 300-VW dataset. Our baselines
include the image face alignment methods [17, 19, 20], opti-
cal flow-based [8] and 3DMM-based [7, 18, 3], and heat map
recurrence regression-based [9] VFA methods. The perfor-
mance of these methods is evaluated in terms of both accuracy
and temporal stability of the extracted facial landmarks, using
the metrics NME and NMF.

Tab. 1 shows the performance of various face alignment
methods across test sets of differing complexity. In Category
A, which corresponds to the easiest scenarios, our method and
LDEQ [9] achieve the lowest NME scores which indicates
higher accuracy in the positions of detected facial landmarks.
Meanwhile, our method and MGC [18] attain the lowest NMF
scores, which indicating minimal temporal fluctuations and
greater stability in landmark predictions. For Category B, our
method and LDEQ [9] exhibit strong performance across both
the NME and NMF metrics. In the most challenging Cate-
gory C, our method outperforms other approaches by achiev-
ing both a lower NME score and markedly better NMF scores.
Overall, our VFA method exhibits performance that is com-
parable or superior to existing SOTA methods across all cate-
gories. Especially for the temporal stability metric NMF, our
approach consistently outperforms existing methods. These
results validate the accuracy and robustness of our method in
addressing the video-based face alignment tasks.

3.3. Ablation Study

An ablation study is conducted to assess the contributions of
individual components in the proposed method. We employ
the coefficient-estimation CNN model as our initial base-
line for comparison. Then, we incrementally augment this
baseline by introducing the following enhancements: (1)
optimizing for facial expressions and pose only; (2) incor-
porating temporally consistent identity coefficients; and (3)
adding generated texture maps for further refinement. For the
evaluation, a subset of 30 videos is randomly selected from
the 300-VW dataset. Besides the NME and NMF metrics,
we also evaluate the similarity between reconstructed and
ground-truth faces using SSIM. Results presented in Tab. 2
show that each progressive refinement leads to performance
improvements, with our final version achieving the best re-
sults across all evaluation metrics.

4. CONCLUSIONS

We present a novel VFA approach for accurate and temporally
stable video-based face alignment in this work. To begin, we
use a coefficient-estimation model and a sampling approach
to compute video-consistent identity and texture from a sub-
set of frames. This allows us to create a realistic facial tex-
ture while also maintaining a consistent identity coefficient
throughout the video. Following that, we use an iterative self-
refinement process that employs differentiable rendering and
optimization techniques to incrementally refine facial geome-
tries and poses. Furthermore, the pre-constructed facial tex-
ture and identity coefficient are used to speed up face align-
ment in the remaining video frames. Experiment results vali-
date the efficacy of our proposed method, demonstrating that
it outperforms SOTA approaches in both accuracy and tem-
poral stability.
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