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Abstract Mesh deformation has a wide range of ap-

plications, including character creation, geometry mod-

eling, deforming animation, and morphing. Recently,

mesh deformation methods based on CLIP models demon-

strated the ability to perform automatic text-guided

mesh deformation. However, using 2D guidance to de-

form a 3D mesh attempts to solve an ill-posed prob-

lem and leads to distortion and unsmoothness, which

cannot be eliminated by CLIP-based methods because

they focus on semantic-aware features and cannot iden-

tify these artifacts. To this end, we propose FusionDe-

former, a novel automatic text-guided mesh deforma-

tion method that leverages diffusion models. The de-

formation is achieved by Score Distillation Sampling

(SDS), which minimizes the KL-divergence between the

distribution of rendered deformed mesh and the text-

conditioned distribution. To alleviate the intrinsic ill-

posed problem, we incorporate two approaches into our

framework. The first approach involves combining mul-
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tiple orthogonal views into a single image, providing ro-

bust deformation while avoiding the need for additional

memory. The second approach incorporates a new reg-

ularization to address the unsmooth artifacts. Our ex-

perimental results show that the proposed method can

generate high-quality, smoothly deformed meshes that

align precisely with the input text description while pre-

serving the topological relationships. Additionally, our

method offers a text2morphing approach to animation

design, enabling common users to produce special ef-

fects animation.

Keywords Diffusion Model · Mesh Deformation ·
Score Distillation Sampling

1 Introduction

Mesh is the most prevalent representation for 3D mod-

els and is universally compatible with the majority of

graphic hardware systems to facilitate accelerated ren-

dering. Mesh deformation, which changes the shape of a

mesh without modifying its topology or the number of

vertices, edges, and faces, is a valuable technique with

extensive applications in geometric modeling, content

creation [8], character posing [17], and morphing [23].

Traditional mesh deformation methods [41] demand

considerable human intervention to yield results that

align with human preferences. To counter this, auto-

matic mesh deformation techniques are introduced to

reduce the requirement for manual labor. To further

effectively steer the results of this automatic process,

and leverage the simplicity and intuitiveness of textual

instructions, newly developed techniques [21,29,9] in-

corporate text guidance into deformation by employing

the Contrastive Language-Image Pre-training (CLIP)

model [35]. These methods aim to minimize the dispar-

ity between the CLIP image embedding (pre-training to
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Fig. 1 Our proposed pipeline performs text-guided deformation, initiating with a source mesh, and generating a high-quality
target mesh that aligns with a given text prompt. The resulting mesh preserves the topological relationships amongst the
vertices, thereby facilitating a seamless transformation from the source mesh and making our approach suited for mesh
morphing applications.

the rendered mesh results) and the CLIP text embed-

ding (associated with the input text description), effec-

tively producing results that comply with the text de-

scription while also preserving the semantic attributes

of the input geometry. For example, vertices associated

with a particular semantic attribute will uphold this

attribute in the deformed result.

However, the above-mentioned methods attempt to
deform a 3D mesh by constraining its rendered results

within a specific 2D space, which attempts to solve an

ill-posed problem and leads to undesired deformations

such as distortions or compromises in geometric quality,

such as a lack of surface smoothness. In addition, even

though CLIP-based methods incorporate rendering re-

sults from various camera poses in a batch to achieve

multi-view guidance during optimization, they utilize

CLIP-based embeddings which focus on semantic-aware

features and overlook the fine-grained details of the

images, hence they cannot identify distortions. There-

fore, these methods cannot effectively eliminate these

artifacts and also demonstrate limited expressiveness,

which is validated by our experiments. Unlike the CLIP

model, diffusion models [13,36] offer a comprehensive

and direct mapping from the text space to the im-

age space. These models exhibit exceptional capabili-

ties in generating two-dimensional images, suggesting a

promising solution to the constraints in expressiveness

inherent in CLIP-guided deformations.

Motivated by the success of diffusion models, we

propose FusionDeformer, a novel diffusion-based au-

tomatic mesh deformation approach, utilizing a pre-

trained diffusion model to deform a mesh according to

the target text description, resulting in a high-quality

mesh that matches the text description as well as ad-

heres to the input geometry. Specifically, the mesh de-

formation is achieved through the optimization on a

set of per-face Jacobians, which utilizes Score Distilla-

tion Sampling (SDS) to minimize the KL-divergence

between the distribution of rendered deformed mesh

and the text-conditioned distribution. To address the

artifacts caused by the intrinsic ill-posed problem, we

incorporated two different approaches into our frame-

work. The first approach involves combining multiple

orthogonal views into a single image. As a result, a

single-step update concerns information from different

perspectives, providing robust deformation at each step

while avoiding the need for additional memory. The sec-

ond approach is intended to address the unsmooth arti-

facts. This involves incorporating a new regularization

based on ARAP, which works to prevent deformation

from straying too far from the input mesh while pre-

serving local smoothness. As demonstrated later, this

strategy proves to be effective in mitigating the occur-

rence of intersections and collapses that are induced by

large deformations.
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Through rigorous experimentation, we have ascer-

tained that our framework is adept at generating smooth,

high-quality deformed meshes that resonate closely with

textual descriptions. Furthermore, as our method pre-

serves the one-to-one correspondence between the ver-

tices of the input and the resulting meshes, it can facil-

itate seamless morphing via simple interpolation.

We summarize our contributions as follows:

– We propose FusionDeformer, a novel method for au-

tomatic mesh deformation leveraging diffusion prior.

– To achieve robust deformation and avoid additional

memory, we develop a multi-view supervision method.

– Our method introduces a new regularization based

on ARAP that aims to alleviate the unsmooth arti-

facts caused by the inherent ill-posed problem.

2 Related Work

2.1 Neural Shape Deformation

Deformation techniques, which are crucial in the realm

of computer graphics, have undergone considerable evo-

lution over decades. Many techniques are contingent

upon specific models or templates and optimal settings,

or intricate pre-processing [41]. Recent neural methods

have augmented traditional deformation techniques, in-

cluding handles, cages, and key points, by incorporating

cutting-edge neural networks. Some of them automat-

ically identify 3D key points for shape manipulation

[19]. Others utilize neural cages to warp a source shape,

aligning it to the broader structure of a target shape

but retaining the detailed surface features of the source
[47]. Additionally, there are methods that enhance ex-

isting linear handle-based subspace models with non-

linear corrections learned from the same subspace [37].

Regularizers such as As-Rigid-As-Possible (ARAP) [14]

and the Laplacian [20], are frequently employed in these

processes to enhance the overall quality.

There is a strand of research that leverages deep

neural networks for the exploration of 3D surfaces. For

instance, some approaches employ Variational Autoen-

coders (VAEs) to delve into the latent space of sur-

faces [43]. Concurrently, Generative Adversarial Net-

works (GANs) are leveraged to ensure the derived shapes

from specific mappings closely resemble the target shapes

[43]. Data-driven strategies also abound for predict-

ing realistic deformations. Some of these methods focus

on learning the per-vertex offset derived from diverse

mesh datasets [1]. Others empower users to craft ge-

ometric deformations anchored by a suite of semantic

attributes [51]. There is also interest in methods that

assign per-vertex coordinates or offsets based on a foun-

dational model [2,53]. Moreover, using images as refer-

ences, meshes can be reconstructed by deforming a base

mesh [48,46]. While some recent studies propose data-

driven approaches to predicting realistic deformations

[1,19,47,11,51], their semantic capabilities are limited

by a lack of datasets or notations.

Some methods seek to counteract this limitation by

incorporating guidance from the powerful visual model

CLIP [29,21,9]. To supervise the 3D deformation pro-

cess at the image-level guidance provided by CLIP, dif-

ferentiable rendering techniques [24] are utilized to back-

propagate gradients from the rendering results to the

meshes. With the CLIP model, they achieve text-guided

mesh deformation by maximizing the similarity between

the text embeddings and the rendered image embed-

dings through the deformation process. Our objective

aligns closely with the CLIP-based methods. However,

while their method uses CLIP, our approach employs

the diffusion model to drive the deformations of a tem-

plate shape.

2.2 Text-Guided 3D Synthesis

Generating 3D shapes has long been a challenging task.

Numerous research efforts have been devoted to 3D gen-

erative modeling, employing various types of 3D rep-

resentations, such as 3D voxel grids [12,7], point cloud

[27,31,49], and implicit representations [6,28]. However,

most of these approaches rely on 3D asset datasets,

which requires a laborious process of data collection and

processing. Thankfully, the usage of differential render-

ing and large-scale vision-language models like CLIP

and diffusion models can potentially eliminate the need
for extensive 3D data collection and enable text-guided

3D synthesis.

CLIP [35], which learns a joint embedding space for

texts and images, is the foundation of many text-to-3D

methods. CLIP-Forge [39] overcomes the lack of a pre-

trained counterpart to CLIP for 3D by using renderings

of training shapes to bridge the gap between text and

3D data. They first train a voxel encoder and an implicit

decoder on available 3D datasets using CLIP image em-

beddings, then swap image embeddings for text em-

beddings at inference time. DreamFields [18] leverages

Neural Radiance Field (NeRF) [30] to directly optimize

views of a 3D shape against a desired text prompt in

CLIP’s embedding space.

Diffusion models have demonstrated commendable

performance in the text-to-image domain [13,36]. To

bridge the gap between 2D image generation and 3D

content generation, DreamFusion [34] pioneers Score

Distillation Sampling (SDS) and optimizes neural im-

plicit representations by distilling knowledge from a
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pretrained diffusion models. Its potential in text-to-

3D generation has quickly sparked a series of research

works. In synergy with DMTets, Magic3D [26] imple-

ments a two-stage pipeline. Initially, it generates a sparse

3D hash grid structure using a low-resolution diffusion

prior, which is then used as the initial step in the op-

timization of a textured 3D mesh model using a high-

resolution diffusion model. This step-by-step process fa-

cilitates the creation of high-quality content. Notably,

while earlier methods simultaneously optimized shape

and texture, Fantasia3D [5] decouples the generation

of geometry and disentangled materials. In addition

to general object generation, there is also a consider-

able amount of task-specific generation work, such as

avatars [15,10,4] and human bodies [22,16]. Another

line of research focuses on fine-tuning diffusion models

to provide more explicit 3D guidance, such as depth

[42], orthogonal-view [52,40], and coordinate map [25],

leading to outcomes with better view-consistency.

However, both NeRF and DMTets-based methods

are unable to perform direct mesh deformation, as they

require additional neural implicit representation fitting

for initialization. These methods also necessitate fur-

ther mesh extraction to acquire the final mesh results.

This extraction not only leads to the loss of vertex re-

lationship before and after deformation, but it is also

a non-trivial process for NeRF due to its density-based

representation [45,44,50]. Unlike those methods, our

approach deforms the mesh directly, allowing for seam-

less integration with the existing graphics pipeline.

3 Preliminaries

3.1 Diffusion Model

Diffusion models [13] are generative models that learn

to gradually transform a sample from a tractable noise

distribution towards a data distribution x0 ∼ q0(x).

The forward pass follows the Markov Chain to gradu-

ally add noise to the input image x0 towards a Gaus-

sian noise N (0, 1). At each step in the forward process,

the diffused image xt is computed by adding noise with

variance βt to the previous image xt−1 as:

xt ∼ N (
√
1− βtxt−1, βtI). (1)

Given x0, we obtain the diffused image xt according to

the independence property of the Markov Chain:

xt ∼ N (
√
ᾱtx0, (1− ᾱt)I)

xt =
√
ᾱtx0 +

√
1− ᾱtϵ.

(2)

Here, ᾱt is the total noise variance at step t, defined as

ᾱt =
∏t

s=0 αs, wherein αt = 1− βt.

At the reverse denoising process, the estimation x̂t−1

for the next step is acquired by predicting the mean,

µθ(xt, t), and the covariance, σθ(xt, t), of xt−1 with xt

serving as the input, then x̂t−1 is sampled from the nor-

mal distribution defined by the predicted parameters:

x̂t−1 ∼ N (µθ(xt, t), σθ(xt, t)). (3)

Instead of directly predicting µθ(xt, t), [13] advo-

cates for the use of a network ϵ̂ϕ(xt, t) to predict the

noise ϵ added to x0. Then µθ(xt, t) is computed utiliz-

ing Bayes’ theorem:

µθ(xt, t) =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵ̂ϕ(xt, t)

)
. (4)

The covariance σθ(xt, t) can either be maintained as

constant, as suggested by [13], or learned through a

neural network, as proposed by [32].

In a conditional generation process, such as text-

to-image diffusion models, a provided text prompt y

also functions as the input for the neural network as

ϵ̂ϕ (xt; y, t).

To reduce computational expenses, the latent diffu-

sion model [36] extends the application of the diffusion

model to the latent space of a pre-trained autoencoder.

Specifically, the image x0 in RGB space is replaced by

the latent z0 = E(x0) from the encoder E . For text-

guided latent diffusion models like Stable Diffusion [36],

the noise prediction is stated as ϵ̂ϕ (zt; y, t).

3.2 Score Distillation Sampling

Score Distillation Sampling (SDS) was first introduced

in DreamFusion [34]. This technique aids in generating

3D content (represented by Mip-NeRF [3]) that aligns

with the provided input text prompt under the super-

vision of a pretrained diffusion model. The optimiza-

tion of the Mip-NeRF g with parameters θ starts with

adding noise ϵ to the rendered image x0 = g(θ) at a

randomly sampled noise level t, getting diffused image

xt. Then SDS is applied to calculate the gradient by

computing the difference between the predicted text-

conditioned noise ϵ̂ϕ(xt; y, t) and the injected noise ϵ as

follows:

∇θLSDS(ϕ,x0) ≜ Et,ϵ

[
ω(t) (ϵ̂ϕ (xt; y, t)− ϵ)

∂x0

∂θ

]
, (5)

where ω(t) is a weighting function which absorbs the

constant
√
ātI = ∂xt/∂x0. By applying SDS loss, θ is

optimized to render images that align with the distri-

bution learned by the pretrained diffusion model.

Instead of relying on the inaccessible Imagen model

[38] employed by DreamFusion, our approach utilizes

the open-source latent diffusion model Stable Diffusion

[36] through the Diffusers library [33].
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Fig. 2 The overview of our pipeline. Given the input base mesh, we initialize the per-face Jacobians as identity matrices
(implying no deformation). These Jacobians are subsequently processed by a Poisson solver to compute the deformation map,
resulting in an intermediate deformed mesh. This intermediate mesh is then rendered from four orthogonal views, which are
concatenated into a 2x2 grid and merged to form a single image. Following this, we employ the Score Distillation Sampling
(SDS) on this grid image to compute the gradients necessary for updating the Jacobians. Furthermore, regularization terms
are applied to both the Jacobians and the deformed mesh.

4 Methodology

In this section, we first introduce the indirect mesh de-

formation strategy, which results in smoother and more

stable deformations compared to the direct displace-

ment of vertices. This strategy optimizes per-face Jaco-

bians under the guidance of SDS loss (Sec. 4.1). Then,

we delve into our innovative orthogonal-views combi-

nation strategy (Sec. 4.2), which leads to fewer global

distortions in the resulting meshes. Finally, we explore

mesh regularization (Sec. 4.3), with the goal of prevent-

ing the deformation from straying too far from the in-

put mesh and mitigating the occurrence of intersections

and collapses.

4.1 Optimization Process

A mesh M is composed of a set of vertices V and faces

F . Instead of directly optimizing vertices V coordinates

as CLIP-Mesh [21] does, we employ the Neural Jacobian

Field [1] to indirectly deform the mesh as the TextDe-

former [9] suggested. It is proven to produce smoother

and larger deformations and preserve the connection

at the same time. Specifically, the shape is parameter-

ized using a collection of per-triangle Jacobians, which

serve to describe deformations. To obtain the deforma-

tion map Φ, we resolve the Poisson problem [1] as:

Φ∗ = min
Φ

∑
fi∈F

|fi| ∥∇i(Φ)− Ji∥22 , (6)

where ∇i(Φ) denotes the Jacobian of the deformation

map Φ at triangle fi, |fi| denotes the area of the trian-

gle. Hence the optimization of mesh can be achieved by

optimizing the per-face Jacobian ∇i(Φ).

At the kth step of the mesh optimization process,

the intermediate mesh is denoted as Mk. Utilizing a

sampled camera poses c, Mk is rendered against an ar-

bitrary background color, yielding the resulting image

xk = R(Mk, c), where R denotes a differentiable ren-

derer [24]. We then feed xk into encoder E , getting the

latent z0 = E(xk), where the subscript 0 in z0 implying

that the latent is devoid of noise. Subsequently, noise is

introduced to z0 to noise level t, producing the noised

latent zt. Then we apply SDS to compute the gradient

which is used in the Jacobians updating as:

∇∇i(Φ)LSDS(ϕ,xk)

≜ Et,ϵ

[
ω(t) (ϵ̂ϕ (zt; y, t)− ϵ)

∂z0
∂xk

∂xk

∂∇i(Φ)

]
,

(7)

where ω(t) is a weighting function, which absorbs the

constant
√
ātI = ∂zt/∂z0.

4.2 Orthogonal Views Combination

Being a 2D generative model, the Stable Diffusion model

falls short in providing the required 3D prior guidance

imperative for achieving realistic geometry. This short-

coming becomes particularly evident when only part

of the faces of the mesh are visible in the resulting

renderings, leading to an under-determined issue when
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A B
Fig. 3 On the left we show the orthogonal rendering views
setup, the cameras are rotating along the y-axis. On the right
are two ways to organize our rendering results. A) Concate-
nate 4 images into a 2× 2 grid. B) Feed the images into the
Diffusion Model respectively. We take the A scheme because
it saves the running time memory with the number of faces
seen and offers more coherence.

characterizing the geometry of the invisible area. Con-

sequently, significant distortions ensue within the final

meshes (see Sec. 5.3).

Previous CLIP-based methods [21,9] include ren-

dering results from several camera viewpoints within

a single batch to facilitate multi-view guidance. How-

ever, given the high computational demand of the diffu-

sion model, this strategy could prove to be excessively

pricey.

To attain more realistic geometry with less distor-

tion, while circumventing the need for additional mem-

ory, we adopt an Orthogonal Views Combination (OVC)

strategy, inspired by [45].

Specifically, we first sample an azimuth angle a ∈
[−180◦, 180◦], and then render four orthogonal views

of the mesh using azimuth angles a0 = a, a1 = a +

90◦, a2 = a+ 180◦, a3 = a+ 270◦. The elevation angles

of the four views are randomly sampled from the range

[0◦, 30◦]. Consequently, we obtain {x0
k,x

1
k,x

2
k,x

3
k}, which

gets tiled on a 2 × 2 grid and merged into a single image

as:

xtiled
k = Grid(x0

k,x
1
k,x

2
k,x

3
k), (8)

where Grid is a function to concatenate four images

into a 2 × 2 grid.

Subsequently, we utilize xtiled
k as a substitute for xk,

and then apply SDS on xtiled
k to compute gradients as

discussed in 4.1. The single-step update featured in our

OVC strategy accounts for information from different

perspectives, leading to multi-view guidance and robust

deformation.

4.3 Regularization

We observe that large deformations within the results

induced problems such as intersections and collapses

(see 5.3). To prevent the deformation from straying

too far from the input mesh, we adopt an As-Rigid-

As-Possible (ARAP) regularization strategy [14]. The

ARAP regularization comprises two distinct compo-

nents: Jacobian regularization and mesh smooth regu-

larization, which facilitate a more precise and controlled

deformation process, ensuring that the changes remain

faithful to the initial structure while allowing for nec-

essary transformations.

Regarding the Jacobian regularization component,

we penalize the difference between the updated per-face

Jacobians and the identity matrices, which represent

the case of no deformation. Inspired by TextDeformer

[9], we compute the Jacobian regularization as:

LJacobian = α

|F|∑
i=1

||Ji − I||2. (9)

For the mesh smooth regularization component, we

incorporate two geometry regularization terms, the Lapla-

cian term and the normal consistency term, as proposed

in NDS [48]:

Lsmooth = λLaplacianLLaplacian + λnormalLnormal, (10)

where λLaplacian and λnormal denote the weights of the

loss terms.

The Laplacian loss term is defined as follows:

LLaplacian =
1

n

n∑
i=1

||δi||22

δi = (LV)i ∈ R3,

(11)

where δi is the differential coordinates of the i
th vertex,

V and L denote the vertices set and the graph Laplacian

of M respectively. This term minimizes the distance of

each vertex from the average position of its neighboring

vertices.

The normal consistency loss term is defined as fol-

lows:

Lnormal =
1

|F̄ |
∑

(i,j)∈F̄

(1− ninj)
2, (12)

where F̄ is the set of the adjacent triangles, ni is the

normal of the ith triangle, and nj is the normal of the

jth triangle. It aims to maximize the cosine similarity

between the normals of the adjacent triangles.

The total regularization is defined as follows:

LARAP = LJacobian + Lsmooth. (13)
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Fig. 4 Deforming a single mesh using distinctive input prompts. For each case, the source meshes are centrally positioned. Our
methodology proves its capability to transform the same source mesh into diverse targets using varying prompts. Additionally,
even with identical prompts, the outcomes of the deformations are influenced by the characteristics of the input mesh.

5 Experiments

5.1 Implementation Details

Our experiments are conducted on a system equipped

with an Intel Core i9-13900k processor, 64GB of RAM,

and an RTX 4090 graphics card. Notably, our method

requires only a graphics card with 12GB of memory.

We use Nvdiffrast [24] as our renderer, which is a deep-

learning library that provides high-performance primi-

tive operations for rasterization-based differentiable ren-

dering. The learning rate is set to 0.0025. The version

of Stable Diffusion we use is stable-diffusion-2-1-base,

which is fine-tuned on the stable-diffusion-2-base with

220k extra steps taken on the same dataset. All meshes

employed in our experiments range between 1,000 and

20,000 triangles.

5.2 Main Results

Text-guided deformation. FusionDeformer shows ver-

satility in handling a broad spectrum of target prompts,

as illustrated in Fig. 5. For each case, the source mesh

is displayed in the top left corner. Our method not only

deforms the source mesh in accordance with the input

prompts, but also improves the realism of the geome-

try by incorporating intricate details. Additionally, our

method has the ability to reshape faces into specific

identities, such as “Trump”.

Fig. 4 showcases three instances of deforming a sin-

gle mesh from distinctive input prompts using our method.

For each case, the source meshes are centrally posi-

tioned. FusionDeformer demonstrates its generalization

to deform the same source mesh into diverse targets us-

ing different prompts. Crucially, while the deformation

loudspeaker violin dolphin

Trump boat duriandog

street lamp

Fig. 5 Text-driven Deformation. Our method is capable
of producing a wide range of results, influenced both by the
characteristics of the input mesh (displayed in the top left
corner) and the specific input text prompts (listed below).

Method User Preference ↑
Ours 73.04%

TextDeformer [9] 18.91%
CLIP-Mesh [21] 8.05%

Table 1 User Study. The user study’s distribution evalu-
ates the quality of deformation results from different methods.
It indicates that the results of our method are most preferred
by user study participants.

results accurately align with the prompts, they are also

affected by the specific features of the input mesh.

Qualitative Comparisons. In Fig. 6, we conduct

a qualitative comparison of our FusionDeformer method

against two SOTA text-based mesh deformation tech-

niques, CLIP-Mesh [21] and TextDeformer [9]. We present

the comparison using five distinct target text prompts:

“shark”, “Albert Einstein”, “giraffe”, “submarine”, “rab-

bit”. The results indicate that CLIP-Mesh tends to pro-

duce models with sub-optimal surface quality, charac-

terized by floating faces. TextDeformer produces results

with improved surface quality but still lacks realistic de-
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Source OursCLIP-Mesh TextDeformer

Fig. 6 Qualitative Comparison. From left to right: the
source mesh, CLIP-Mesh [21], TextDeformer [9] and our
method. We present the comparison using five distinct target
text prompts: “shark”, “Albert Einstein”, “giraffe”, “subma-
rine”, “rabbit”. The results generated by our method are the
best aligned with the target text prompts and possess the
highest quality.

tails and fails to align well with the input prompt (evi-

denced by the fish-like “submarine” and the coarse ge-

ometry of “Einstein”). In contrast, our FusionDeformer

yields results with less distortion, better aligning with

the input prompt, and improved realistic details (see

the gill of “shark”). Notably, while CLIP-Mesh and

TextDeformer incorporate 25 multi-view results in a

single batch to achieve multi-view guidance, our Fusion-

Deformer achieves better results using only 4 views in

a single batch, thanks to our carefully designed frame-

work.

Runtime Performance. In regards to runtime per-

formance, FusionDeformer accomplishes a 5,000-step de-

formation process in merely 15 minutes on a single RTX

4090 GPU. In contrast, TextDeformer [9] requires 30

minutes to complete the same task on the same ma-

chine. This shows FusionDeformer’s superior efficiency

over TextDeformer.

User Study. CLIP-Mesh [21] and TextDeformer [9]

leverage the CLIP R-Precision benchmark to evaluate

the semantic discrepancies between the input text and

generated meshes. However, as both these methods em-

cow submarine horse

Fig. 7 Jacobians Ablation. The first row displays results
produced via Jacobians, and the second row shows results
generated by direct vertex displacement. Deformation based
on Jacobians exhibits a more global impact and results in
better surface quality.

ploy CLIP-based text-image similarity for their training

objectives, this evaluation approach could result in an

unfair comparison. As such, we evaluate whether our

method and SOTA methods meet human expectations

by conducting a user study. We presented 20 groups

of mesh rendering results in a random sequence to 23

participants. Each group consisted of the target text

prompt and three mesh rendering results, encompass-

ing those generated by our method, TextDeformer, and

CLIP-Mesh, presented in a random order. Participants

were asked to select the best result that matched the

text prompt while also demonstrating the highest real-

ism. As displayed in 1, our results were most preferred

by the participants, indicating a positive reception of

our method’s effectiveness in corresponding with text

prompts and attaining realistic outcomes.

5.3 Ablation Study

In this section, we conducted ablation studies to eval-

uate the effectiveness of the diverse components in our

method.

Jacobians. As mentioned in 4.1, the Jacobians re-

main integral to our deformation process. Fig. 7 con-

trasts results achieved through Jacobian-based defor-

mation (the 1st row) with those obtained via direct

vertex displacement (the 2nd row). The direct vertex

displacement reduces the surface quality in all three

examples, underscoring the importance of Jacobians in

our deformation method.

Orthogonal views combination. To illustrate that

the Orthogonal Views Combination strategy results in

fewer global distortions within the resulting meshes, we
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OVC 1 Random / Batch 4 Orthog. / Batch 4 Random / Batch 

Fig. 8 Orthogonal-Views Combination Ablation. The
results are rendered from the same camera pose. We com-
pare the results of using the Orthogonal-Views Combination
(OVC) technique with three alternative foundational experi-
ments: using four orthogonal views within a batch, four ran-
dom views within a batch, and one random view within a
batch. It can be found that the method with orthogonal
views combination can produce results with less distortion.
Additionally, it significantly outpaces the two aforementioned
methods that employ the utilization of four images in a batch,
in terms of speed.

high heel w/ ARAP high heel w/o ARAP giraffe w/ ARAP giraffe w/o ARAP

Fig. 9 Regularization Ablation. For each case, the left re-
sult uses regularization, while the right one does not. The reg-
ularization mitigates the occurrence of intersections and col-
lapse provoked by large deformations. The self-intersections
of the high heel are highlighted by the orange box.

conduct three baseline experiments. The first experi-

ment computed SDS by combining the results of four

randomly sampled orthogonal-view renderings. The sec-

ond experiment used four randomly sampled renderings

in a batch, whereas the third used one randomly sam-

pled view. As illustrated in Fig. 8, it is evident that the

method employing orthogonal view combination yields
representations of “Biden” with considerably less dis-

tortion. Additionally, it outperforms the two methods

that use four images in a batch in terms of speed.

Regularization. To demonstrate the effectiveness

of the regularization terms, we draw a comparison be-

tween results with and without the implementation of

regularization, as illustrated in Fig. 9. For example,

in the transformation from “shoe” to “high heel”, the

lack of regularization results in self-intersections (high-

lighted by the orange box). In the case of transforma-

tion from “cow” to “giraffe”, the structure of the head

collapses. In sum, the regularization terms are critical

in more effectively mitigating the occurrence of inter-

sections and collapse provoked by large deformations.

5.4 Application

Morphing. Our deformation method maintains the

one-to-one correspondence between mesh vertices, a fea-

ture that allows for morphing without additional spec-

ifications. This property facilitates the use of 3D pro-

cessing software such as MAYA to effortlessly generate

morphing targets. Consequently, our approach holds

significant potential for applications in computer ani-

mation, particularly in character transformations, blend

shapes and so on.

6 Conclusion and Future Work

We introduce FusionDeformer, a novel framework to

automatically deform mesh according to text prompts

via diffusion model. To compute the gradients of the

mesh optimization, we utilize per-face Jacobians up-

date and Score Distillation Sampling (SDS). We further

introduce a multi-view supervision method to achieve

robust deformation and avoid additional memory us-

age, as well as a new regularization to alleviate the

unsmooth artifacts. Our innovative method delivers re-

sults that well align with the input prompts, exhibits re-

alistic details, and retains meaningful correspondences

between the original and deformed shapes.

Our method has limitations. It currently focuses

solely on geometry, leading to the meshes trying to

replicate target-specific features such as hair or speck-

les. In the future, texture integration could be used to

separate geometry and appearance to address this prob-

lem. Furthermore, per-face Jacobians focus on global

deformation and are unable to accomplish local edit-

ing. Future advancements may incorporate more refined

control mechanisms for text-guided editing, thereby en-

hancing the precision and versatility of our method.
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