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Abstract

We present an alternative approach to create digital camouflage images which follows human’s perception intu-

ition and complies with the physical creation procedure of artists. Our method is based on a two-scale decom-

position scheme of the input images. We modify the large-scale layer of the background image by considering

structural importance based on energy optimization and the detail layer by controlling its spatial variation. A

gradient correction is presented to prevent halo artifacts. Users can control the difficulty level of perceiving the

camouflage effect through a few parameters. Our camouflage images are natural and have less long coherent edges

in the hidden region. Experimental results show that our algorithm yields visually pleasing camouflage images.

Categories and Subject Descriptors (according to ACM CCS): I.4.9 [Image Processing and Computer Vision]:
Applications—

1. Introduction

Optical illusions (also called visual illusions) create images
perceived in a manner that differs from objective reality. As a
form of cognitive illusions, camouflage images (also called
hidden images) aim to demonstrate the amazing capability
of human’s visual system to transform visual input into in-
terpretable shape. Through carefully placed objects, charac-
ters, coloring and shadows, foreground objects are cleverly
concealed within the background scene. People usually have
difficulty in recognizing objects from their backgrounds im-
mediately when they view a camouflage image.

It is not easy to create interesting camouflage images,
which are usually created by highly specialized skilled
artists. Artists first sketch background and foreground ob-
jects and draw them as a coherent whole, then details are
carefully added in order to achieve a balance between hid-
ing and revealing the object [TZHM11]. However, Such a
manual creation procedure is very time-consuming and is
out of reach for most casual users. To address this problem,
recent work [CHM∗10, TZHM11] explicitly creates cam-
ouflage images using natural photos and produces visually
pleasing results. However, when the luminance contrast of
the foreground object is fairly low, these approaches cannot
guarantee the consistency of luminance between the fore-
ground and background. As a result, obvious strong long
edges will emerge and they give important visual clues to

the concealed objects. The approach of [TZHM11] may lead
to blurred details in the results, because both the large scale
structural information and the texture detail are blended in
the same way. Moreover, the structural importance of the ob-
ject is not taken into account [TZHM11].

As shown in Figure 1, many hidden objects have coher-
ent textures and consistent colors with surroundings while
clearly representing the structural feature of the object shape.
For most objects, edges in images contain important struc-
tural information about objects and the contours representing
the shape of the object are strong edges. Based on the obser-
vation, our approach utilizes edges as the structural unit in
the camouflage image. The importance of edges is consid-
ered using the Gaussian scale space analysis to ensure the
structures of the objects are preserved through camouflage
manipulations. Perception research [BM03, EM98] shows
that long coherent-edges, even when faint, are perceptually
salient to the human visual system (HVS). Motivated by the
law of closure of Gestalt psychology’s theory, which states
that humans perceive objects as a whole even when they are
not complete, we take long and important edges of the ob-
ject into account, and divide these edges into shorter edges
and remove some of them. The viewer can still recognize the
hidden object based on the remained shorter edges.

In this paper, we propose an alternative method to create
camouflage images by taking the above observations into ac-
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Figure 1: Camouflage images by Steven Michael Gardner.

(a) 9 pandas; (b) 11 bears.

count. Given a background image and a foreground object to
be hidden, the camouflage image generating process is de-
fined as an image blending problem, which is substantially
an optimization problem. The hidden object should contain
coherent textures and consistent colors with surroundings
while preserving the structure of the foreground object in the
blending region. Inspired by the physical creation procedure
of artists, we employ a two-scale computation mechanism.
Such a scheme follows the intuition that the overall shape
of an object is defined by its large features, and the details
are defined by its small features [LMJH∗11]. Our approach
starts by decomposing the foreground object and the back-
ground image into the spatial structure layer and the detail
layer respectively, which are modified in different ways. The
process of modifying the spatial structure layers is defined as
an optimization problem. Detail layers are weight-added in a
way preserving the spatial location of edges in the structure
layers.

A new alternative framework of digital camouflage im-
ages is proposed. Specifically, our paper makes the following
contributions: (1) A novel technique for large-scale image
blending: we control the large-scale spatial intensity over the
result using a novel edge-aware energy minimization. (2) A
fashion for managing spatial detail variation: we manipulate
the intensity of the high-frequency detail and its spatial vari-
ation while respecting the intensity of large-scale layers. (3)
A constraint for avoiding halo artifacts: we employ a gradi-
ent correction constraint to prevent halo artifacts.

2. Related Work

Many previous work has addressed how to automatically de-
sign and create optical illusion images using computational
tools in computer graphics community. Oliva et al. [OTS06]
develop a technique to produce static hybrid images by
blending images of different frequencies. Then different im-
ages can be perceived as the viewing distance changes.
Kim et al. [KP02] propose Jigsaw image mosaic that im-
age tiles of arbitrary shape are used to compose the final

picture. Orchard et al. [OK08] propose an approach to ob-
tain higher quality mosaics by incorporating a number of
improved algorithms. Genuine image mosaics are created
using the method proposed by Pavić et al. [PCK09]. Their
method splits an input image into a set of tiles and each tile
is replaced by another image from a large database. More
details about digital mosaics are provided by Battiato et
al. [BBFG07].

Camouflage images are considered as a form of optical
illusion art. Yoon et al. [YLK08] present a hidden picture
puzzle generator which hides transformed versions of ob-
jects using a rotation-invariant shape context matching. Mi-
tra et al. [MCL∗09] present a synthesis technique to generate
emerging images from a given scene. Wu et al. [WFY∗10]
use an optimization approach for modeling and rendering
impossible figures. Given a set of 3D locally possible parts
of a figure, their approach optimizes a view-dependent 3D
model and renders new views of impossible figures at the
desired novel viewpoint. Chu et al. [CHM∗10] use a tex-
ture synthesis technique to create camouflage images that
have natural appearance. Their approach leaves an appropri-
ate degree of clues for human to detect in the final result by
considering object segments and their topological relations.
Tong et al. [TZHM11] propose a system for creating hidden
images. Their approach first finds the place where an object
will be embedded within the scene using shape matching by
considering object contour and edge information, then uses
a modified Poisson blending approach to generate the result-
ing hidden image. Our approach also uses an image blending
approach to create camouflage results. However, we intro-
duce a data term for measuring the background information
to the original Poisson blending and formulate the problem
as a new optimization equation. Moreover, by considering
the structural importance of the object, we use fewer non-
coherent edges and less silhouette information to provide an
appropriate degree of cues for recognizing the object while
producing similar effect of subject contours.

Our work also relates to image blending which embeds an
object from a source image into a target image. Alpha blend-
ing is a classical method of image blending, which usually
need an accurate alpha matte of the object in order to ob-
tain a high quality blending result. However, artifacts will
arise when different illumination conditions exist between
the source and target images. Gradient-based image blend-
ing methods, which are originally introduced by Pérez et
al. [PGB03], usually produce seamless cloning results by
solving a Poisson equation. Jia et al. [JSTS06] improve the
gradient domain method by optimizing the region boundary.
Chen et al. [CCT∗09] introduce a hybrid image compositing
method which combines Poisson blending with alpha blend-
ing. A similar result to the original Poisson blending is ob-
tained by using mean value cloning proposed by Farbman et
al. [FHL∗09]. Their method uses mean value coordinates in-
stead of solving Poisson equations for image cloning. Tao
et al. [TJP10] propose an error-tolerant cloning approach
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Figure 2: The flowchart of our approach. ∆ denotes our large-scale nonlinear blending. + denotes weighted addition. Our

approach consists of four main steps: layer decomposition, nonlinear blending for the large-scale layer, detail management and

layer composition. The answer is shown on the bottom right.

which can prevent color bleeding artifacts without chang-
ing the boundary location. Sunkavalli et al. [SJMP10] recon-
struct blending images from a large set of filter outputs and
integrate harmonization into the composite result. Ding et
al. [DT10] present a content-aware image blending method
by combining combining alpha matting with Poisson meth-
ods. Xie et al. [XSMC10] propose an optimized mean value
cloning method to eliminate discoloration artifacts. Zhang et
al. [ZT11] improve the gradient-based method by taking the
global feature of the target scene into account.

3. Synthesis of Camouflage Images

Vision science research shows that the luminance of an im-
age provides sufficient visual clues for identifying the ob-
jects of a scene [Pal99]. Therefore, we focus on the process
of the luminance channel of the image.

Now we explain our camouflage image generating algo-
rithm in detail. Camouflage effect has two goals. (1). Re-
taining the elements of the original scene of the background
image. (2). Inserting the feature of the foreground object into
the final result. To reach the goal, our approach makes a
compromise between retaining texture information from the
background image and applying the texture from the source
image consisting of the foreground object. To achieve a per-
ceptually plausible result, we consider the preservation of
the foreground object’s structure and the background im-
age’s texture. This can be formulated as an optimization
problem by minimizing an energy function in terms of least-

squared error. The workflow of our approach is illustrated in
Figure 2. A user first chooses a region by painting strokes
or using Lazy Snapping method [LSTS04] to obtain the ob-
ject in the source image. The chosen region or the segmented
object is then automatically embedded into the background
image using the algorithm.

3.1. Layer Decomposition

CIELAB color space is approximately perceptually uniform
and better to separate lightness from color than other color
spaces. Therefore, our algorithm first decomposes the fore-
ground object and the background image into lightness and
chroma channels by converting them into CIELAB color
space. Then, the lightness channels of the object and the
background image are decomposed to the large-scale and
detail layers by applying an edge-preserving filter opera-
tor [GO11]. The large-scale layer (structure layer) denot-
ing large features carries low frequency information of the
image. The detail layer denoting small features carries high
frequency information of the image. The detail layer is gen-
erated by subtracting the large-scale layer from the lightness
channel.

3.2. Large-Scale Layer Blending

Camouflage images are created by blending foreground ob-
jects with surrounding. That is, a camouflage result should
be very similar to the background image on texture and color

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.



Hui Du & Xiaogang Jin & Xiaoyang Mao / Digital Camouflage Images Using Two-scale Decomposition

Figure 3: Comparisons using different parameter constraints. (a) The background image; (b) the foreground object; (c) the

result without edge and gradient constraints (the same ω = 0.05 for all the pixels in the object region), which leads to obvious

structural clues for recognizing; (d) the result of only using edge constraints (κ = 0.07, one fourth shorter edges are removed),

which produces halo artifacts near strong edges; (e) the result of using both edge and gradient constraints (β = 0.1). In this

example, the detail parameter α is set to 0.

while preserving some structural information of the fore-
ground object for human recognition. To preserve the im-
portant structure of the foreground object, we use a novel
blending approach for the large-scale layer. Specifically, our
large-scale layer blending algorithm is considered as an opti-
mization problem by minimizing an energy function in terms
of least-squared error:

∑
p∈Ω

ω(F(p)−T(p))2 +(1−ω)|∇F(p)− µ ·g(p)|2

with F|∂Ω = T |∂Ω (1)

where F and T represent the large-scale layer of the result-
ing image and the background image, respectively. Ω is the
hidden region specified by the user and ∂Ω is the boundary
of the region. ∇ denotes a gradient operator. ω is used to
control the hidden level of the foreground object.The speci-
fication of ω will be described in Section 3.3. The resulting
F is more similar to the background T when we increase the
value of ω, which leads to more difficulties in recognizing
the object. µ is a gradient constraint which is used to prevent
halo artifacts. g is a gradient field defined as:

g =

{

∇T, if |∇T | > |∇S|
∇S, otherwise

(2)

where ∇T and ∇S denote the gradient fields of large-scale
layers of the background image and the foreground object in
the hidden region respectively. Note that we solve the opti-
mization for the large-scale layer only.

Unlike the standard mixing gradient cloning prob-
lem [PGB03], we add a data function term to the optimiza-
tion functional. According to the Euler-Lagrange equation,
we can rewrite equation 1 so that the minimization problem

can be defined as the solution of the following linear system:

ωF − (1−ω)∆F = ωT − (1−ω)µ∇·g (3)

where ∆ is the Laplacian operator. Interestingly, equation 3
is a screened Poisson equation. This hints that we can use
the method of Farbman et al. [FFL11] to solve the equation.

3.3. Structural Edge Constraint

The unified hidden level of the object is achieved by set-
ting the same ω for all the pixels in the region. To perceive
the foreground object, some structural contours of the object
must be preserved in the camouflage result. Our approach
identifies the relevant image structure represented by a hier-
archy of edges in the Gaussian scale space, which has been
developed by computer vision community to deal with struc-
ture identification in images with no priori information. We
start from using a Canny edge detector to find the edges of
the object. However, these edges have no concept of edge
importance. We therefore compute the lifetime of each edge
pixel in the Gaussian scale space [OBBT07] and use the
lifetime as a measure of structural importance. The edges
with larger lifetime correspond to more stable and impor-
tant structures. We obtain a binary mask M which indicates
important structural edge locations of the object based on
a certain lifetime threshold. As a result, we can manipulate
edges in a structure-aware way.

Another concern is to deal with edge lengths. Perception
studies [BM03, EM98] show that long coherent-edges are
perceptually salient to the HVS even they are faint. Long
edges may reveal the important information about the object.
As shown in Figure 3(c) and Figure 3(d), many long edges in
the results provide too many obvious visual clues. In order to
better hide the foreground object, the process for long edges
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must be considered. Our main idea is to divide long and im-
portant edges of the object into smaller parts and remove
some of the parts. According to the law of closure of Gestalt
psychology’s grouping theory, a viewer will fill in the gaps
between unconnected edges and analyze scenes as a whole
rather than as a set of unconnected features. Specifically, the
algorithm first collects the edges longer than a certain thresh-
old according to the mask M. Here we use 30 pixels as the
threshold. Then the algorithm dilates these collected edges
using a 5 × 5 window, casts some sample points on the col-
lected long edges randomly and divides dilated long edge
patches into shorter edges patches Ei in terms of the sample
points. We expect that some of shorter edges will not emerge
in the hidden result. The algorithm randomly hits a percent-
age (specified by the user, default 20%) of shorter edges. In
addition, we also assure ω changes smoothly over each di-
lated edge. Thus, we define ω as

ω(p) =







max(κ +(1−κ)e
−(p−q)2

2σ2 ), if Ei is hit

max(κ(1− e
−(p−q)2

2σ2 )), otherwise
(4)

where p indexes the pixel over each dilated edge patch, q

indexes the pixel at the corresponding chosen shorter edge
in the dilated edge patch; κ denotes a value specified by
the user. The value of σ2 is set to min(width,height)/25
where width and height denote the width and the height of
the source image respectively. After this step, we break long
edges and give viewers less structural clues for identifying
the object. However, the viewer can still identify the object
using their imagination although parts of important edges
and silhouettes are absent in the final result.

3.4. Gradient Constraint

As shown in Figure 3(d), applying the mixing gradient of
the object and background image naively on the optimiza-
tion leads to halo artifacts near strong edges. To avoid the
artifact, we use a gradient constraint to reduce the coeffi-
cient µ according to the magnitudes of the gradients to avoid
halo artifacts.

Removing the halo artifacts can be modeled as a Gaussian
distribution formula:

µ(p) = exp(
−β(1−ω(p))||∇S||2

2σ2
2

), (5)

σ2
2 = mean(||∇S||2)Ω, (6)

where mean(·) denotes the mean value over the hidden do-
main Ω. The default value for β is 0.3. The weighting µ is
low when the gradient ||∇S|| is very high, which reduces
halo artifacts.

3.5. Detail Management

By now, we have obtained the large-scale layer F of the re-
sult by solving the linear system (3). The detail information
of the foreground object and the background image should
also be integrated into the final result. Otherwise, the result
will not be realistic due to the lack of the detail. We define
the resulting detail layer DR as a weighted sum of the object
detail DS and the background detail DT , i.e.

DR(p) = DT (p)+ t(p)DS(p), (7)

where 0 ≤ t(p) ≤ α. α ∈ [0,1] is a user given constant for
controlling the contribution of the foreground object detail.
We expect that the value of t varies depending on the value
of ω. That is, the detail of the object should not appear in the
result where the parts of the foreground object are hidden
completely. Thus, we define t as

t(p) =

{

α, ω(p) = κ

(1−ω(p))α, otherwise
(8)

For different pixels, different t values are used. Pixels with
large ω values imply small t values, and the resulting pixels
are much closer to the background pixels.

Once the large-scale and detail layers are obtained, we
sum them to obtain the resulting lightness channel. By inte-
grating the chroma channels of the background image, we
can convert them back to the RGB color space to obtain
the final synthesized image to faithfully preserve the orig-
inal background color.

4. Experiments

4.1. Results and Discussion

In this section, we show the results generated by our al-
gorithm and compare our approach to previous algorithms.
Our experimental environment involves a computer with a
2.67GHz CPU of Intel Core 2 Duo and 2GB memory, 32-
bit Windows operating system, and Matlab version 7.7. The
experiments show that the camouflage results produced by
our algorithm are visually pleasing. The computation time of
our implementation and parameter values are shown in Table
1. The computation of the edge importance and the solving
of the linear system consumes most of the CPU time. We
believe that the performance of our method can be further
improved using GPU acceleration.

As stated above, the object becomes more difficult to rec-
ognize when κ increases and the result involves more de-
tails of the foreground object when α increases. Experiment
results show that the foreground object is too obvious for
κ < 0.02 and is almost completely hidden for κ > 0.5. Figure
4 and Figure 6 show some results. We use different κ values
(see Table 1) to generate different difficulty levels for the ob-
jects. Note that the exact recognition of the hidden object by
viewers is a subjective issue. Different viewers may have dif-
ferent answers for the same camouflage image if they have
no prior knowledge of the objects.

c© 2012 The Author(s)
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Figure 4: Comparisons with Tong et al.’s method. From left to right: our results, the results of Tong et al.’s approach, background

images, the foreground objects. Please zoom in the camouflage images to better recognize the hidden objects.
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Figure 5: Seamless transparency composition. (a) The direct

pasting result; (b) the background image; (c) the result of

seamless cloning followed by alpha blending (α = 0.16); (d)

our result. Our result includes more detail information of the

foreground region while guaranteing the transparent effect.

In Figure 4, we compare our results to those of Tong et
al.’s approach [TZHM11]. Important structural features of
the object are preserved since we integrate structural im-
portance of the object into our algorithm. Therefore, we
may place the foreground object on any location in the
background image according to user’s desire. In addition,
the shape matching step becomes unnecessary in our algo-
rithm while it is a very important step in Tong et al.’s ap-
proach [TZHM11]. In their approach, the hidden results may
include obvious artifacts when matching edges are not found
in the background. For instance, the luminance in the synthe-
sized region is altered after applying their approach, which
leads to luminance difference (Figure 4(a) and 4(b)). The lu-
minance difference between the synthesized region and the
background leads to unnatural hidden results and provides
significant visual clues for recognizing the hidden object.
As shown in Figure 4(c), the texture of the background in
the region becomes fuzzy in their approach. On the contrary,
our approach always guarantees that the resulting texture is
realistic and coherent because of the employment of a two-
scale computation scheme. From the comparisons, we can
find that the advantages of our algorithm are twofold. Firstly,
our approach produces natural results with coherent texture,
consistent color and luminance with surroundings. Secondly,
our approach is faster since the shape matching step is not
used.

We also compare our results to those in Chu et al.’s
method [CHM∗10]. Figure 6 shows the comparison with
their approach. Our approach is quite different from their
approach. Chu et al.’s method [CHM∗10] generates new tex-
ture of the object according to the texture of the background
image and the structure of the foreground object. Instead of
emphasizing on the relative luminance of the regions of the
hidden object, our method emphasizes on the edges of the
hidden object. Our method uses different ways to process
the structural layer and the detail layer by using a two-scale
decomposition scheme. When the luminance contrast of the
foreground object is quite low, their approach may fail. On
the contrary, our approach can still generate natural hidden
effects. More hidden results are shown in Figure 7.

4.2. Applications

While our focus is on the generation of camouflage images,
we can also obtain the seamless result allowing for trans-
parency effects. To handle seamless transparency composi-
tion, we set ω in formula 1 to a unified value and set the gra-
dient g to that of the foreground region. A single alpha value
leads to obvious seam using the traditional alpha blending. In
contrast, seamless results are generated since we perform the
process in the gradient domain. Meanwhile, our result owns
the texture information of both the foreground and back-
ground images in the composition region. Figure 5 shows
an example of seamless transparency composition.

4.3. Limitations

Some viewers may fail to find the hidden objects in some
of our hidden results. We understand that recognizing the
hidden object in a camouflage image is a highly subjective
issue depending on the human viewer. Our approach can
generate visually pleasing hidden results at different diffi-
culty levels in most cases. However, as shown in the top row
of Figure 8, our approach may produce unsatisfactory re-
sults. In this example, the method of Tong et al. [TZHM11]
generates better results with harmonious edges, since their
method strengthens the background image edges matched
with those of the transformed object. To sum up, our ap-
proach has the following limitations. (1) Our algorithm may
fail to hide objects if the edge detection fails. In this case, the
method of Chu et al. [CHM∗10] is a good choice since they
use object segmentation and texture synthesis techniques to
generate hidden images. (2) When the background image is
fully occupied with strong edges, the edges of the hidden
object can be overwhelmed with the textures of the back-
ground image (middle row of Figure 8). In this case, the
existing methods [CHM∗10, TZHM11] produce better re-
sults. For instance, the method of Tong et al. [TZHM11] can
help the viewer to recognize the object by strengthening the
matched edges within the background image. (3) Texture ar-
tifacts may occur if the texture of the hidden object is highly
distinctive from that of the background image, as illustrated
in the bottom row of Figure 8.

The above discussion reveals that our approach is an alter-
native to the previous camouflage image techniques. For dif-
ferent images, a user may choose an appropriate technique
to generate camouflage images. For example, our approach
and Tong et al.’s method are better for background images
with low texture variation or for foreground objects with low
constrast.

5. Conclusions and Future Work

We have presented an alternative perception-driven approach
to generate digital camouflage images. By integrating the
edge-preserving decomposition, the non-linear analysis on
the large-scale layer and the linear analysis on the detail

c© 2012 The Author(s)
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Figure 6: Comparisons with the method of Chu et al. [CHM∗10]. (a) Our results; (b) the results of Chu et al.’s approach; (c)the

background images; (d)the foreground objects. Please zoom in the camouflage images to better recognize the hidden objects.

Table 1: Parameter values and algorithm performance. percentage denotes the amount of shorter edges that are hit in structural

edge constraints.

Example
Background
image

Foreground
object

Parameter values Computing
lifetime (s)

Solving
system (s)

Total
time (s)κ α β percentage

Fig.3 358 × 545 138 × 183 0.07 0.0 0.10 1/5 0.88 0.05 0.93
Fig.4(a) 735 × 559 393 × 341 0.20 0.20 0.30 1/5 5.02 0.29 5.31
Fig.4(b) 999 × 736 226 × 424 0.10 0.20 0.10 1/5 3.29 0.23 3.52
Fig.4(c) 662 × 786 252 × 353 0.04 0.50 0.10 1/5 2.1 0.25 2.35

Fig.4(d.left) 1024 ×768 219 × 217 0.05 0.50 0.15 1/3 1.76 0.09 1.85
Fig.4(d.right) 1024 ×768 249 × 226 0.20 0.00 0.60 1/3 2.08 0.11 2.19

Fig.4(e) 680 × 510 606× 383 0.10 0.00 0.30 none 8.40 0.53 8.93
Fig.7(a) 1024 × 768 254 × 278 0.10 0.30 0.15 none 1.7 0.18 2.88
Fig.7(b) 564 × 585 174 × 231 0.05 0.40 0.30 1/5 1.53 0.10 1.63
Fig.7(c) 996 × 742 354 × 442 0.30 0.0 0.15 1/5 3.74 0.41 4.15

Fig.7(d.left) 1024 × 768 264× 277 0.10 0.15 0.30 1/3 1.73 0.16 1.89
Fig.7(d.right) 1024 × 768 313 × 407 0.15 0.30 0.30 1/3 3.05 0.25 3.3
Fig.7(e.left) 544 × 401 202 × 205 0.10 0.50 0.40 1/5 0.93 0.10 1.03

Fig.7(e.right) 544 × 401 179 × 188 0.20 0.30 0.50 1/5 0.76 0.10 0.86

layer, our approach can control both the large-scale struc-
ture and the detail over an image. Our approach effectively
hides the foreground object, preventing it from standing out
from its surroundings. Our algorithm can produce good re-
sults even with low contrast objects, which is problematic
in [CHM∗10].

Our approach uses inconsistency edges to reduce the vi-
sual cue for recognizing the object. An alternative idea is to
model the subject contour in optical illusions and integrate
this computational model into our camouflage approach. In
our current implementation, α and κ are two independent
parameters. Since parameter α plays a role in detail blend-
ing, its correlation with κ is worth evaluating to better un-

derstand the difficulty setting. Given a foreground object,
automatically finding the best hidden location can enhance
a camouflage image and the degree of difficulty of camou-
flage image. Hence, another future work is to combine our
approach with previous shape matching methods at cost of
increasing computational time.
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Figure 7: More results. Left: camouflage images created by our method. Middle: original background images. Right: the

foreground objects. Please zoom in the camouflage images to better recognize the hidden objects.
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Figure 8: Limitations. Top row: (a) the foreground object;

(b) the background image; (c) our method generates an un-

satisfactory result; (d) a better result by Tong et al.’s method.

Middle row: a male head has been hidden. (e) The fore-

ground object; (f) the background image; (g) the result with

α = 0; (h) the result with α = 1. Since the background image

is fully occupied by strong edges, the structural edges of the

object are completely overwhelmed with the textures of the

background image. As a result, the head is almost invisible

even we add the full detail of the head. Bottom row: a star

with hatching patterns (i) is hidden into the background im-

age (j) which also has hatching patterns. The texture of the

star is highly distinctive from that of the background image,

which leads to obvious texture artifacts with our result (k).

no. Z1110154), and the National Natural Science Founda-
tion of China (Grant no. 60933007).
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