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A B S T R A C T

We present a novel approach to control the blending of line and polygon skeleton-
based convolution surfaces using locally varying Ratio of Support radius and Thick-
ness (RST). With our method, solutions for local convolution surface approximation
with prescribed surface thickness and support radii can be derived analytically. In addi-
tion, iso-surface shrinkage can be avoided by offsetting the endpoints of line skeletons
and the edges of polygon skeletons. Our RST-based blending for convolution surfaces
is local and can generate desired blending effects while approximating shapes with a
specified thickness. Moreover, our method is intuitive and users can control the blend-
ing by adjusting the skeletal radius or the support radius of the finite support kernel
independently. As our blending utilizes convolution integration only without requiring
any extra composition operators, it allows for successive convolution blending opera-
tions to create complex shapes.

c© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Due to their powerful modeling ability to represent de-
formable objects with variable topologies, implicit surfaces are
one of the most important 3D modelling techniques. To ef-
ficiently design complex shapes in an intuitive way, skeleton-
based implicit surfaces [1] are preferred for editing-intensive
applications. Convolution surface is a typical one, as it pos-
sesses some important properties such as superposition and
smoothness (Fig. 1(a)(b)).

However, the generated convolution surfaces with the same
thickness [2] usually lead to similar blending effects at branches
(e.g. Fig. 1(a)) due to their uniform Ratios of Support radius and
Thickness (RSTs) (Fig. 1(b)), and the underlying non-intuitive
blending control hinders its applications when both a predefined
thickness and a desired blending effect are required. As a useful
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implicit modelling operator, blending has been investigated in
many different applications for creating complex models from
simple ones. Although some blending techniques [3] for gen-
eral implicit surfaces could generate arbitrary blending, the im-
portant superposition property of convolution surfaces will no
longer be preserved. To this end, we propose a controllable
blending method for line (e.g. Fig. 1(c)) and polygon skeleton-
based convolution surfaces with finite support kernels, which
allows for various blends in the resulting convolution surfaces
with prescribed thickness by tuning their RSTs (Fig. 1(d)). Our
method utilizes a summation operator without any extra blend-
ing operators, which is compatible with the superposition prop-
erty. Therefore, our method allows for successive convolu-
tion surface composition and it can be easily extended to n-ary
blending.

In summary, our paper makes the following contributions:

• A novel blending control method for line and polygon
skeleton-based convolution surfaces using locally vary-
ing RSTs, and it can approximate shapes with a specified
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(a) Same blends at different intersec-
tions

(b) Uniform RST distributions along
all skeletons

(c) Different blends at different intersec-
tions

(d) Varying RST distribution along
the skeleton from left to right

Fig. 1. Our method is able to generate controllable blending at different intersections, which facilitates users to create convolution surfaces with more
control. The blue surfaces in (a)-(d) are the convolution surfaces with the same thickness, and the white regions in (b) and (d) represent the support radii
for the underlying skeletons. Prior convolution surfaces will create the same blends with the same thickness (a) because they adopt the same support
radius which indirectly depends on RST (b). In contrast, by tuning their RSTs, our method is able to achieve different blends (c) when the convolution
surface with the uniform thickness generated by the horizontal line segment skeleton blends with three convolution surfaces generated by three vertical
line segments with the same thickness (d).

thickness with local control;

• Analytical solutions for line and polygon skeleton-based
local convolution surface approximation with prescribed
surface radii and support radii are derived. In addition, nu-
merical solutions for skeletal offsets are proposed for ap-
proximating the endpoints of line skeletons and the edges
of polygon skeletons.

The remainder of the paper is organized as follows. After
introducing the related work in Section 2, convolution surfaces
with finite support are described in Section 3. Then we give a
detailed description of convolution surface blending by control-
ling the support radii in Section 4, followed by implementation
details and some modelling results with our approach in Sec-
tion 5, and our paper ends with the conclusion section.

2. Related Work

Although quite a lot of works are related to our approach, the
most related ones include convolution surfaces and the blending
of implicit surface, which will be detailed in this section.

Convolution surfaces are defined by convolving geometric
skeletons with a kernel function. It was firstly introduced in
[4] to create smooth surfaces using Gaussian kernel. In con-
trast to globally supported kernels such as Gaussian function
and Cauchy function, finite supported kernels [5, 6] are de-
veloped due to their locality property for efficient computa-
tion. Although the intensive computation of convolution in-
tegration hinders its applications, it is still feasible to employ
convolution surfaces in interactive modeling systems [7, 2, 8]
due to the closed-form solutions [9]. Theoretically, any geo-
metric primitives can serve as skeletons for convolution sur-
faces, where line segments [10, 11] are the mostly preferred
ones for producing branching structures for their simplicity and
efficiency. When shapes with a planar surface are to be mod-
eled, polygon skeletons will be a better option if their ana-
lytical solutions can be derived [7, 12, 13]. To further en-
rich the diversity of created convolution surfaces, approaches of
convolving line skeletons with smoothly varying thickness are

proposed [14, 15, 16], and extended convolution surfaces [17]
with anisotropy for 1D skeletons further increase modeling
freedom. Inspired by convolution surfaces, integral surfaces
have been proposed to design scale-invariant skeleton-based
implicit surfaces [18], which approximate prescribed radii well.
Furthermore, convolution surface has been recently employed
for producing heterogeneous objects [19] and smoothing dis-
tance fields [20] with high-quality continuity. In [21], general
barycentric coordinates are introduced to interpolate the convo-
lution surface thickness, and it successfully extends the mod-
eling ability of convolution surfaces. However, to the best of
our knowledge, no approach is available to explicitly control
the blending of convolution surface without losing its intrinsic
superposition property.

Implicit surface blending is an important technique for
modeling complex shapes with implicit surfaces, which are
commonly used in fluid simulation [22], sketch-based model-
ing [23, 7, 11, 24], cloth [25], and character skin animation [26].
In [27], an approach combining various implicit surfaces with
soft blending capacities in a CSG tree is proposed, and it allows
for integration of plane surfaces, skeletons, and many other
types of implicit surfaces. In order to control the blending,
bounded regions between components are defined to restrict
a locally blended shape [28, 3] avoiding unwanted topology
changes. In [29], a new family of binary composition opera-
tors are introduced based on both the field values and the an-
gles between the gradients of the input fields, which solve the
problems of locality, bulge, absorption, and topology. To model
inner shapes with intersections or differences, new constraints
on field functions are introduced to create continuous fields for
both inner and outer boundaries [30]. However, most of these
approaches are designed for general implicit surfaces instead of
convolution surfaces. As a result, the important superposition
property of convolution surfaces usually cannot be preserved
when extra blending operators are introduced. Specifically, for
convolution surfaces [10] and SCALIS surfaces [18], the un-
wanted blending can be avoided by neglecting topologically too
far away skeletons or scale the convolved fields. However, it is
nontrivial to satisfy the requirement of various blends within
a large skeleton, especially for polygon skeletons. Based on
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the summation operator for blending SCALIS surfaces, Zanni
et. al. introduced an approach for blending n-ary skeleton-
based implicit surfaces [31], which can control the topology
using both field values and norms of gradients. Different from
them, we propose a novel approach for control the blending of
line and polygon skeleton-based convolution surfaces by simply
controlling support radii, and it is capable of adjusting blending
regions without losing its advantageous superposition property.

3. Convolution Surfaces with Finite Support

3.1. Convolution Surfaces

A convolution surface [4] is a special implicit surface whose
potential field is generated by convolving a kernel function with
geometric skeletons. Theoretically, any geometric primitive can
serve as a skeleton V:

g(p) =

1, p ∈ V
0, otherwise.

(1)

Given a kernel function f : R3 → R, the convolution field at
p is the integral of the functions g and f :

h(p) =

∫
V

g(q) f (p-q)dV = ( f ⊗ g)(p). (2)

When series of skeletons are taken into consideration, the
convolution surface S can be defined as:

S =

p|
n∑

i=1

λihi (p) − T = 0

 , (3)

where hi and λi are the convolution field and weight of the ith

skeleton, respectively, and T is the predefined threshold of the
iso-surface.

3.2. Analytical Solutions for Convolution Surfaces

As we all know, field generation is the most computation-
intensive part in convolution surface modeling, which should
be implemented as efficiently as possible. However, convolu-
tion field generation relies on both the kernel function and the
embedded skeleton, and both of them should be taken into con-
sideration.

Many low-pass filtering kernels (such as Gaussian, Cauchy,
Inverse, Squared, and Polynomial [9] kernels) and geometric
skeletons (such as point, line, plane, arc, and triangle) can be
utilized to define a convolution scalar field, but elaborate strate-
gies are needed if an analytical solution is desired. So far,
closed-form convolution integrals exist only for limited choices
of kernels and skeletons, as derivation of arbitrary convolution
integrals is not always possible. Fortunately, more and more
analytical solutions [9, 15, 13] for pairs of kernels and skele-
tons have been derived, and they have been adopted to create a
variety of models in video games, movies, and scientific appli-
cations.

3.3. Finite Support Kernel

Fig. 2. Quartic kernel

Among all the kernels, local sup-
port kernels (e.g. polynomials)
are preferred compared to global
support ones (e.g. Gaussian and
Cauchy kernels), as a local support
kernel cuts off skeleton segments
that are far away from the current
position in question.

As far as we know, finite support
polynomial kernels could be paired with almost all common
geometric primitives (point, line, plane, arc, and triangles) to
achieve analytical solutions [9]. Moreover, the quartic polyno-
mial has been further investigated for general polygon skele-
tons [7], local and boundary approximation [11, 2], and thick-
ness interpolation using barycentric coordinates [21]. Another
advantage of quartic polynomial kernel over others is its intu-
itive support range, which is suitable for tuning blending re-
gions. Therefore, the frequently used finitely supported quartic
polynomial kernel [32, 33] in Eq. 4

f (r) =

(1 − r2

R2 )2, r ≤ R
0, r > R

(4)

is adopted in our approach (Fig. 2), where effective radius R
is employed for clipping skeletons that are far away from the
position in question.

4. Solutions for Finite Supported Convolution Surface Ap-
proximation with Varying Blends

We choose the quartic polynomial kernel for its efficiency.
We discuss here the derivation of the blending for the most fre-
quently adopted geometric primitives, including lines and poly-
gons.

4.1. Line Skeleton

Fig. 3. Convolution approximation for a line skeleton

4.1.1. Thickness Approximation with Varying RSTs
Background. For a line skeleton skeli := AB, as shown in
Fig. 3, if the distance from the iso-surface passing point p1 to
AB is di, the contribution weight λi of skeli can be calculated
using a local convolution surface approximation [11]:

Fi
(
p1

)
= λi

∫
V=lineEF

g (q) f (r) dV

= 2λi

∫ √R2
i −d2

i

0

1 − d2
i + x2

R2
i

2

dx = T,

(5)
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where EF is the skeletal segment clipped by the support sphere.
Although our local approximation is derived for a line with infi-
nite length, the method also applies if the skeleton segment has
two intersections with the support sphere, which is easy to meet
for a finite support kernel.
Analytical Solutions for Contribution Weights. As we know,
the region of influence associated with each skeleton directly
depends on the support radius. Therefore, to conveniently ad-
just the blending region, we introduce the RST t = Ri

di
to con-

trol the resulting iso-surface. From Eq. 5, the convolution field
weight λi can be resolved as:

λi =
15T

16Ri

(
1 − 1

t2

) 5
2

=
15T

16di t
(
1 − 1

t2

) 5
2

. (6)

Our method offers two different choices by either specifying
the predefined support radius or the convolution surface thick-
ness (see Eq. 6), which can be chosen according to users’ pref-
erences to fine-tune the convolution surface blending.

As illustrated in Fig. 4, all convolution surfaces in blue based
on two line skeletons are created with the same thickness.
While the support radii in white vary in these sub-figures, which
produces various blending effects.

(a) t = 2 (b) t = 1.5

(c) t = 1.1 (d) 2 ≥ t ≥ 1.1

Fig. 4. Convolution surfaces with the same thickness but different support
radii. When the RST decreases from (a) to (c), the blending regions are
constrained within smaller and smaller ranges. Varying RSTs can also be
designed to achieve different blending for convolution surfaces with uni-
form thickness (d)

4.1.2. End Offset Approximation with Varying RSTs
Background. Due to the shrinkage of the convolution surfaces
at the end of a line segment skeleton AB in Fig. 3, the extended
skeleton segment BC enables the iso-surface to pass the desired
end position p2. As described in [2], if we extend the length of
the segment as:

u = |BC| = di ∓ v, (7)

where v is the distance from p2 to C, v =
∣∣∣p2C

∣∣∣, the convolution
field at p2 can be calculated as:

F1
(
p2

)
=

∫
V=lineCD

g (q) f (r) dV =

∫ Ri

di−u

1 − x2

R2
i

2

dx

=

∫ Ri

v

1 − x2

R2
i

2

dx = −v −
v5

5R4
i

+
2v3

3R2
i

+
8Ri

15
,

(8)

and

F2
(
p2

)
=

∫
V=lineCD

g (q) f (r) dV

=

∫ Ri

0

1 − x2

R2
i

2

dx +

∫ v

0

1 − x2

R2
i

2

dx

= v +
v5

5R4
i

−
2v3

3R2
i

+
8Ri

15
,

(9)

for the “+” case and the “-” case, respectively (see Eq. 7).
Numerical Solutions for Offset Approximation. From Eq. 6-
Eq. 9, v can be solved from

∓
v5

5R4
i

±
2v3

3R2
i

∓ v +
8Ri

15
=

16
(
1 − 1

t2

) 5
2 Ri

15
. (10)

Once t is determined for approximating the thickness of a line
segment, the extended segment can be further deduced through ∓ x5

5 ±
2x3

3 ∓ x +
8−16

(
1− 1

t2

) 5
2

15 = 0,
x = v

Ri
, t > 1,

(11)

where x = v
Ri

.
Actually, Eq. 11 can be divided into two sub-equations,

± f (x) + g (t) = 0, (12)

where

f (x) = −
x5

5
+

2x3

3
− x, (13)

and

g(t) =
8 − 16

(
1 − 1

t2

) 5
2

15
. (14)

From Eq. 7, v = 0 is the critical point, and t can be solved
numerically by t = 2.032. Therefore, the intervals t ∈ (1, 2.032]
and t ∈ (2.032,+∞) correspond to the “+” case and the “-”
case, respectively (see Eq. 12), and the curves of g(t) and f (x)
are shown in Fig. 5.

As t falls within t ∈ (1,+∞), it is easy to determine the range
of g(t) ∈ (−0.533, 0.533) (see Fig. 5(a)). Although no closed-
form solution could be derived for f (x) given a specified t, it
can be seen in Fig. 5(b) and (c) that f (x) has the monotonicity
property, and therefore the Newton’s method can be employed
to find the unique numerical solution quickly.

As illustrated in Fig. 6, an obvious shrinkage occurs in (a),
which can be avoided by offsetting the line segment in (b).
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(a) g(t) (b) f (x) (c) − f (x)

Fig. 5. Curve of Eq. 11

(a) End shrinkage (b) Offset-based end approximatiion

Fig. 6. The approximation of the endpoints of line skeletons by offsetting.
The potential field generated by the embedded line skeleton (orange) usu-
ally results in iso-surface shrinkage at ends (a), which can be compensated
(b) by offsetting the skeleton.

4.2. Polygon Skeleton

4.2.1. Thickness Approximation with Varying RSTs

Background. Although convolution surface with planar sur-
faces can be approximated by convolving lots of line skeletons,
the gaps between them has to be elaborately designed and too
much integral computation will be involved. A preferred option
is to adopt polygon skeletons instead of line segments.

Fig. 7. Convolution approximation for polygon skeleton

In [2], an infinite polygon skeleton is taken into consideration
to derive an analytical solution for a local approximation of the
surface thickness. As illustrated in Fig. 7, the solutions are valid
only if the clipping circle P1 of the support sphere centered at
p1 in question is inside of the polygon skeleton ABCD. If we
want to create a convolution surface with a distance di to the
skeleton, the convolution field weight of the polygon skeleton

can be calculated as:

F
(
p1

)
= λi

∫
V=circleP1

g (q) f (r) dV

= λi

∫ 2π

0

∫ √R2
i −d2

i

0

1 − d2
i + r2

R2
i

 r dr dθ = T.

(15)

Analytical Solutions for Contribution Weights. Similar to
the line skeleton case, the RST t = Ri

di
can also be adopted to

adjust the blending region for a polygon skeleton-based convo-
lution surface. From Eq. 15, the field contribution weight of the
polygon can be computed by:

λi =
6R4

i T

2π(R2
i −d2

i )
3 = 3T

πR2
i

(
1− 1

t2

)3 = 3T

πd2
i t2

(
1− 1

t2

)3 , (16)

where the iso-surface thickness di and the support radius Ri

can both be predefined according to the modeling requirements,
based on which t can be used to control the blending.

As shown in Fig. 8, the three line skeletons in each sub-figure
are identical and they have the same thickness and support ra-
dius. In contrast, the polygon skeleton has a uniform thickness
but it is supported with smoothly varying radii. Therefore, dif-
ferent blending shapes are produced with different RSTs.

(a) Skeletons

(b) tline = 2

(c) tline = 1.5 (d) tline = 1.1

Fig. 8. Convolution surfaces based on a polygon skeleton with smoothly
varying thickness (2 ≥ tpolygon ≥ 1.2) and three line skeletons with the same
thickness. With the RST of the polygon skeleton (a) decreasing from left
to right, its influence regions are constrained within smaller and smaller
ranges in each sub-image (upper parts in (b)-(d)). When the polygon
skeleton-based convolution surfaces are blended with three identical line
skeleton-based convolution surfaces, more compact blends are created for
smaller RSTs (lower parts in (b)-(d)).
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4.2.2. Approximation of Edges with Varying RSTs
Background. Similar to the endpoints of line skeletons, each
edge (e. g., AB in Fig. 7) of the polygon should be extended
to an outer offset position A′B′ to achieve a more precise con-
volution surface approximation on the edges of polygons. If
EGF and E′GF′ are the arcs of the support sphere intersected
by polygon ABCD and its offset polygon respectively, the edge
offset distance u can be calculated as:

u = di − Ri cos
(
θ

2

)
, (17)

where θ represents the central angle formed by the arc E′GF′,
θ = ∠E′P2F′.

Then, the convolution field at p2 can be calculated based on
the approach proposed in [12]:

F
(
p2

)
=

∫
V=archE′GF′

g (q) f (r) dV

=
θ × r6

0

6R4
i

±

(
22 − 9 × cos θ + 2 × cos2 θ

)
× r6

0 sin θ

90R4
i

,

(18)

Numerical Solutions for Offset Approximation. Combining
Eq. 16 with Eq. 18, an equation for solving θ can be derived:

θ × r6
0

6R4
i

±

(
22 − 9 × cos θ + 2 × cos2 θ

)
× r6

0 sin θ

90R4
i

=
π
(
1 − 1

t2

)3

3
R2

i ,

(19)

where the projection radius r0 = Ri. Therefore, the solutions
can be derived from: θ

6 ±
(22−9×cos θ+2×cos2 θ)×sin θ

90 =
π
(
1− 1

t2

)3

3 ,
t > 1.

(20)

Similar to the line skeleton situation, we firstly divide Eq. 20
into:

f (θ) = g(t), (21)

f (θ) =
θ

6
±

(
22 − 9 × cos θ + 2 × cos2 θ

)
× sin θ

90
, (22)

and

g(t) =
π
(
1 − 1

t2

)3

3
, (23)

where the “+” case and “-” case for f (θ) correspond to θ > π
and θ < π, respectively (see Eq. 17), which indicates an outward
offset u > di and u < di. Moreover, we can find the critical point
for t = 2.202 at θ = π. We illustrate the curves of g(t) and f (θ)
in Fig. 9.

As t ∈ (1,+∞), g(t) should fall into g(t) ∈ (0, π3 ) (see
Fig. 9(a)) according to Eq. 23. Once the RST t is determined,
a definite numerical solution for θ can be obtained within a
monotonous interval (Fig. 9(b)).

As illustrated in Fig. 10 (a), there is obvious convolution sur-
face shrinkage on edges, which can be avoided (Fig. 10 (b)) by
offsetting the embedded polygon skeleton.

(a) g(t) (b) f (θ) (“-”) (c) f (θ) (“+”)

Fig. 9. Curves of Eq. 20

(a) Convolution surface shrinkage
on edges

(b) Approximation of edges of con-
volution surfaces based on offset
polygons

Fig. 10. Approximation of the edges of polygon skeleton-based convolution
surfaces. Boundary shrinkage (a) of a polygon skeleton (orange)-based
convolution surface (blue) can be solved (b) using an outward offset.

5. Experiments and Results

To validate our proposed approach, more experiments are
performed using controllable convolution surface blending. All
the results in the paper are tested on a PC with a 4.0 GHz Intel
Core i7-6700K CPU with 16 GB memory. The convolution po-
tential field calculation and the iso-surface extraction are both
performed based on the Marching Cubes [34] algorithm with a
resolution of 200 × 200 × 200. The whole algorithm is imple-
mented in the Unity3D engine and the core calculation steps are
implemented with C# language on CPU.

5.1. Varying Blending for Line Skeletons

In order to illustrate the relationship between the blending
and RST, a series of line skeleton-based convolution surfaces
are created with different blending shapes in Table 1. The hori-
zontal skeletons in the same row are all identical to each other
including their RSTs at the same positions, which produce the
same convolution surfaces. Three vertical line skeletons in each
sub-figure are identical, and we adopt the uniform convolution
surface thickness and RSTs. However, different RSTs (2, 1.5
and 1.1) in different columns are employed for blending con-
trol.

a) In the 1st row, linearly decreasing RSTs 2 ≥ th ≥ 1.1
is designed, and convolution surfaces with uniform thickness
are created. However, when they are blended with three iden-
tical line skeleton-based convolution surfaces, larger blending
regions can be easily achieved at larger RSTs. b) In the sec-
ond row, although the same ratios 2 ≥ th ≥ 1.1 as the 1st row
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Table 1. Convolution surfaces based on a line skeleton with smoothly varying RST (horizontal) and other three line skeletons with uniform RST (vertical)

th
tv 2 1.5 1.1

2 ≥ th ≥ 1.1

2 ≥ th ≥ 1.1

1.1 ≤ th ≤ 2
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are designed for the horizontal line skeletons, smoothly vary-
ing thickness along the skeletons is generated for the created
convolution surfaces. It is more obvious when there are larger
blending regions at larger RSTs which are placed at skeletons
with larger support radii. c) The convolution surfaces in the
third row are produced with a decreasing thickness similar to
the second row while increasing the ratios 1.1 ≤ th ≤ 2 which
are reverse to the previous two rows. It means that for each
horizontal line skeleton, the blending regions grow from left
to right. Therefore it can be seen that the blending regions at
the left vertical skeletons are smaller than those in the second
row, while the blending regions at the right vertical skeletons
are larger than those in the second row.

It is easy to see that plenty of continuous blending shapes
can be achieved for the same pairs of convolution surfaces with
identical shapes outside blending regions, which is beneficial to
producing complex convolution surfaces.

(a) tl = tr = 2 (b) tl = tr = 1.5 (c) tl = tr = 1.1

(d) 2 ≥ tup, tlow = 2 ≥ 1.1 (e) 1.1 ≤ tup ≤ 2, 2 ≥ tlow ≥ 1.1

Fig. 11. Line skeleton-based convolution surfaces with uniform thickness
and various RST distributions.

In addition, we design a pair of parallel line skeletons in
Fig. 11. All these convolution surfaces have the same thickness
along the skeletons, while their blending can be positioned ar-

(a) 8 ≥ tvertical ≥ 2 (b) 6 ≥ tvertical ≥ 1.5 (c) 4.4 ≥ tvertical ≥ 1.1

Fig. 12. Line skeleton-based convolution surfaces with a smoothly vary-
ing thickness and a uniform support radius (vertical) along the skeleton
are blended with two identical convolution surfaces with uniform RSTs
(thorizontal = 2)

bitrarily by adjusting RSTs. In (a)-(c), a uniform RST is offered
for each skeleton, and the two completely blended convolution
surfaces (a) depart from each other (b) and eventually are split-
ted into separated surfaces (c) when the ratio decreases from 2
to 1.5 and 1.1. Moreover, a bounded blend can also be achieved
using varying RSTs for the skeletons (c)-(d).

In each sub-figure of Fig. 12, a vertical convolution surface
with a smoothly varying thickness and a uniform support radii
along the skeleton is designed. Although the thickness of the
vertical convolution surfaces increases from top to bottom, sim-
ilar blending shapes can be generated when they are blended
with two identical horizontal convolution surfaces, only if de-
creasing RSTs are applied to the vertical skeletons.

5.2. Varying Blending for Polygon Skeletons

Similar to line skeletons, several experimental cases for poly-
gon skeletons are illustrated in Table 2, where three vertical line
skeletons with uniform thickness and RSTs are blended with a
horizontal polygon skeleton with a smoothly varying thickness
and RSTs. To approximate the desired compound skeletons
with predefined thickness in the left column, several groups of
RSTs can produce similar convolution surfaces while achieving
distinct blends between them. Therefore, the same convolution
surfaces can be produced outside the blending regions with var-
ious blends inbetween by adjusting their RSTs.

In blending regions, skeletons with larger RSTs affect other
nearby skeletons more seriously, which leads to obvious blend-
ing. As shown in Table 2: a) In the 1st row, a horizontal convo-
lution surface with a decreasing thickness from left to right and
uniform ratios tpolygon = 2 results in larger blending regions on
the left sides. b) The horizontal iso-surface with a decreasing
thickness and ratio 2 ≥ tpolygon ≥ 1.1 in the second row leads to
much larger blending regions at the leftmost vertical skeletons.
c) In the last row, although the horizontal convolution surfaces
with a similar decreasing thickness to the previous two rows are
designed, a reversely increasing ratio 1.1 ≤ tpolygon ≤ 2 to the
second row is adopted to achieve smaller blending regions for
even thicker iso-surfaces on the left sides.

Another case for placing blending between a line skeleton
and a polygon skeleton is presented in Fig. 13(a) to illustrate
varying blending positions between them. A small RST sep-
arates the components cleanly (Fig.13(b)), while a larger RST
merges them together (Fig.13(c)). Then by decreasing the RST
at the right end, a local blending will only bridge the convo-
lution surfaces (13(d)) on the leftmost side. After that, if the
RST at the left end decreases and at the same time the RST on
the right side increases, the blending position will move to the
middle (13(e)) and the right side (13(f)) of the iso-surface.

5.3. Skeletal Offset for Approximation

In order to analyze the relationship between the required off-
sets for local convolution surface approximation of the endpoint
of line skeletons, varying thickness (Fig. 14(a)-(b)) and vary-
ing RSTs (Fig. 14(c)-(d)) of convolution surface are designed
separately. It can be seen that the offset is proportional to the
convolution surface thickness (a-b) and RST (c-d). Especially
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Table 2. Convolution surfaces based on a polygon skeleton with smoothly varying support radii and other three line skeletons with uniform support radii

Skeletons 2 1.5 1.1 tline

tpolygon

tpolygon = 2

2 ≥ tpolygon ≥ 1.1

1.1 ≤ tpolygon ≤ 2
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(a) Skeletons (b) tpolygon = 2, tline = 1.2

(c) tpolygon = tline = 2.5 (d) tpolygon = tline = 2

(e) tpolygon = 2, 1.2 ≤ tline ≤ 2.5 (f) 1.2 ≤ tpolygon ≤ 2.5, 1.3 ≤ tline ≤ 3

Fig. 13. Blending control with smoothly varying support radii for polygon
skeletons

much larger offset is essential when a thicker convolution sur-
face with a larger RST are applied to a part of the surface at
the same time (e-f). The similar conclusions can be drawn for
polygon skeleton-based convolution surfaces from Fig. 15.

(a) End shrinkage for varying
thickness & uniform RST

(b) End approximation for vary-
ing thickness & uniform RST

(c) End shrinkage for uniform
thickness & varying RST

(d) End approximation for uni-
form thickness & varying RST

(e) End shrinkage for varying
thickness & varying RST

(f) End approximation for vary-
ing thickness & varying RST

Fig. 14. The approximation of line skeletons by offsetting.

5.4. Comparisons

Comparison to No Blending Control. Prior convolution sur-
faces are prone to formation of unwanted merging when two
disjoint skeletons are too close to each other, and it is non-
trivial to avoid such artifacts without introducing extra implicit
composition operators. Although such artifacts can be solved
to some extent with a subdivision policy [10] and a projection

(a) Boundary shrinkage for vary-
ing thickness & uniform RST

(b) Boundary approximation for
varying thickness & uniform RST

(c) Boundary shrinkage for uni-
form thickness & varying RST

(d) Boundary approximation for
uniform thickness & varying RST

(e) Boundary shrinkage for vary-
ing thickness & varying RST

(f) Boundary approximation for
varying thickness & varying RST

Fig. 15. Polygon skeleton boundary approximation by offset.

(a) Prior method [2, 14]

(b) Our method

Fig. 16. Unwanted blending at close branches.

point inquiry to discard skeletons far away, this method depends
on a global topology of the embedded skeletons.
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(a) Prior method [2, 14]

(b) Our method with t = 1.6

(c) Our method with t = 1.3

Fig. 17. More blending choices using our approach.

Here we present some comparative illustrations between our
blending to prior ones with fixed RST [2, 14]. As illustrated
in Fig. 16(a), unwanted merging usually arises between close
skeletons when they are not topologically connected, which
can be easily avoided using our controllable convolution sur-
face blending if a small RST is used (Fig. 16(b)).

Actually, prior blending for convolution surfaces can be
considered as a special case of our approach. As shown in
Fig. 17(a), prior methods usually create convolution surfaces
with a fixed RST, which is implemented by setting t = 2 for
practical applications. However, various blending effects can
be easily achieved by adjusting RST (Fig. 17(b)-(c)).
Comparison to Varying Blending Control. One advantage of
our controllable convolution surface blending over previous ap-
proaches is the varying blending across a large skeleton, since
our derived solutions are based on local convolution surface ap-
proximations developed in [2], which have been extended for
thickness interpolation with barycentric coordinates [21].

In Table 3, convolution surfaces based on a polygon skeleton
(horizontal) with smoothly varying support radii (rA : rB : rC :
rD = 1 : 4 : 2 : 6) and other two line skeletons (vertical) with
the same support radii (rC = rD = rE = rF) are presented for
comparison between Zanni’s [18] method and ours. As our de-
rived solutions and the barycentric convolution surfaces [21] are
both based on the same local convolution surface approxima-
tion [2], our blending possesses a similar advantage of barycen-
tric interpolation over the semi-numerical integral policy [18].
Here varying ratios (tA tB : tC : tD = 2 : 1.2 : 2 : 1.2) of poly-
gon ABCD and an identical ratio of line skeleltons EF and GH
are applied for interpolating blending on ABCD. It is obvious
that our solutions are suitable for smooth controllable convo-
lution surface blending without intensive computation, as only

Table 3. Comparison between Zanni’s method [18] and ours.
sub-
skels Skeleton Iso-surface Time (s)

Ours 1
39.258

Zanni’s

8
7.642

104
29.255

204
56.191

Table 4. Timings for experiment results.
Fig.1 (a) (a)c (c)c

Time(s) 0.859 1.158 1.007
Fig.8 (b) (b)c (c)c (d)c

Time(s) 3.636 42.204 42.417 41.571
Fig.13 (d) (d)c (b)c (c)c (e)c (f)c

Time(s) 3.559 42.252 42.563 43.388 41.651 42.068
Fig.18 (b) (b)c (c)c

Time(s) 16.398 173.302 169.124
Fig.19 (b) (b)c

Time(s) 3.184 20.052

one control parameter RST has to be calculated. However, for
semi-numerical integrals [18], the polygon skeleton ABCD has
to be subdivided into smaller sub-polygons [18] to achieve an
interpolated blending, which usually costs more time for an ac-
ceptable smooth blending interpolation.

5.5. Applications.
Using one group of compound skeletons of an airplane in

Fig. 18(a), a series of convolution surfaces with varying shapes
are produced while preserving the intrinsic superposition prop-
erty. A large RST leads to a fat cartoon plane (Fig. 18(b)) while
a thinner plane with a compact silhouette can be created based
on a smaller ratio (Fig. 18(c)). Moreover, a thin plane with
locally-inflated blending wings can be generated using large
RSTs at wings and smaller ones for other places as illustrated
in Fig. 18(d-e). From Fig. 19, it is easy to see that blending
regions can be easily placed arbitrarily along a line skeleton of
the back of a chair. The blending between the pairs of verti-
cal line skeletons at the chair back and vertical line skeletons
at chair handles can be achieved by increasing RSTs at desired
blending regions while keeping the thickness of their original
convolution surface.
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(a) Skeletons

(b) t = 2

(c) t = 1.5

(d) Locality 1

(e) Locality 2

Fig. 18. A series of airplanes

(a) Skeletons (b) Convolution surfaces

Fig. 19. A chair example

5.6. Timings for experiment results

As all our experiment results are created in the Unity3D en-
gine with C# language, we list some timings for the convolu-
tion field computation and iso-surface extraction using March-
ing Cubes in Table. 4. In the table, we present two versions

Fig. 20. Artifacts due to too small RST for low iso-surface polygonization
resolution

(a) thorizontal = 1.2 (b) thorizontal = 4 (c) thorizontal = 10

Fig. 21. Surface shrinkage for too large RST (tvertical = 1.2)

of convolution surface blending with uniform RSTs in the first
column and the second column, which represent surfaces with-
out and with controllable blending (a special case of our vary-
ing RSTs) respectively. Due to the interpolation of the field
contribution weight of each sampling position in the Marching
Cubes, the computations with controllable blending (the second
column) require more time which is 1.3∼11.9 times of the ones
without controllable blending (the first column). Similarly, the
timings in the columns behind the second column are almost
the same as the second column due to the same interpolations.

6. Conclusion and Future Work

In this paper, a controllable convolution surface blending ap-
proach is proposed based on RST. Our method allows for vary-
ing RSTs along a line skeleton or within a polygon skeleton, and
various blending effects can be produced as desired. Moreover,
as no extra blending technique is involved, our method pre-
serves the superposition property of convolution surface, which
enable successive convolution field compositions.

Our method has limitations. As shown in Fig. 20, artifacts
may arise if a voxel-based iso-surface extraction with a too low
resolution is employed when a very small RST is adopted in our
blending. Another limitation is that a too large support radius
ratio will affect both its own end shapes and other nearby convo-
lution surface components (as illustrated in Fig. 21), therefore
too large RST is not recommended in practical applications. Fi-
nally, our method focuses on line and polygon skeleton-based
convolution surfaces only, and it is worthwhile to extend our
approach to curve, surface and volume skeleton-based convolu-
tion surfaces.
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