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Abstract Channel pruning can reduce memory consumption and running time with least performance damage, and is

one of the most important techniques in network compression. However, existing channel pruning methods mainly focus

on the pruning of standard convolutional networks, and they rely intensively on time-consuming fine-tuning to achieve the

performance improvement. To this end, we present a novel efficient probability-based channel pruning method for depth-

wise separable convolutional networks. Our method leverages a new simple yet effective probability-based channel pruning

criterion by taking the scaling and shifting factors of batch normalization layers into consideration. A novel shifting factor

fusion technique is further developed to improve the performance of the pruned networks without requiring extra time-

consuming fine-tuning. We apply the proposed method to five representative deep learning networks, namely MobileNetV1,

MobileNetV2, ShuffleNetV1, ShuffleNetV2, and GhostNet, to demonstrate the efficiency of our pruning method. Exten-

sive experimental results and comparisons on publicly available CIFAR10, CIFAR100, and ImageNet datasets validate the

feasibility of the proposed method.

Keywords network compression, channel pruning, depthwise separable convolution, batch normalization

1 Introduction

With the tremendous development of deep learn-

ing, network compression [1] has been becoming a hot

research topic for a small memory footprint and low

runtime latency with good performance. As one

of commonly-used compression techniques, channel

pruning [2, 3] compresses the network model by remov-

ing redundant structures and parameters. It boosts

the development of artificial intelligence applications

in our daily life, such as driverless cars, robotics and

augmented reality [4].

Most channel pruning algorithms [2, 5] consist of the

following three phases: pre-training, pruning, and fine-

tuning. The pre-training phase produces the network

model with some regularization items while the pruning

phase prunes the pre-trained model by certain pruning

schemes. Usually, the model after the pruning phase

has a smaller size than the pre-trained model at the cost

of accuracy loss. The last phase is then used to recover

the accuracy by iterative parameter fine-tuning. How-

ever, the fine-tuning phase makes the whole pipeline

of network pruning very time-consuming [5]. Some

algorithms [3, 6] try to keep the accuracy performance
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while removing the time-consuming fine-tuning phase.

However, the reduction of network parameters and

FLOPs is still limited and has room for improvement.

Many applications equip with only limited compu-

tational resources and low-power batteries while re-

quiring instant response. Recent light-weight neural

networks [7–11] are built on the block of depthwise sep-

arable convolutions to achieve a balance between the

resource and accuracy for mobile and embedded vision

applications. The resource consumption of a pruned

depthwise separable convolutional network can be fur-

ther reduced and thus can be deployed in more resource-

limited devices. However, most of existing network

pruning algorithms are designed to prune redundant

channels for standard neural convolutions [3, 5, 6]. Only

a few algorithms [12] focus on depthwise separable con-

volutions pruning. However, they require additional

time-consuming fine-tuning or retraining. We observe

that depthwise convolution applies a single filter to each

channel [13] and thus does not change the number of

channels. This motivates us to develop an efficient

channel pruning algorithm for depthwise separable con-

volutional networks.

To this end, we present a novel efficient probability-

based channel pruning method for depthwise separable

convolutional networks. Our method takes full advan-

tage of the properties of batch normalization (BN) [14]

and rectified linear unit (ReLU) [15] which are contin-

uous in the depthwise separable convolution. If the

output of BN is less than or equal to zero, ReLU will

return zero. This observation gives us the intuition

to determine unimportant channels in which most of

BN’s outputs are below zero. Consequently, we can

prune these channels by developing a novel probability-

based pruning criterion by considering the scaling and

shifting factors of BN layers. If the output of a BN

layer is less than or equal to zero with a high proba-

bility, the corresponding channel is viewed as an unim-

portant channel and can be pruned effectively. Since

the channel number of input to depthwise convolu-

tion is identical to that of output, we propose to con-

sider four cases based on the proposed pruning crite-

rion to guarantee the channel consistency. In order to

avoid large errors introduced in channel pruning, we

further develop a sophisticated channel pruning algo-

rithm by performing a novel shifting factor fusion tech-

nique. We test the efficiency of our new method us-

ing MobileNetV1 [7], MobileNetV2 [8], ShuffleNetV1 [9],

ShuffleNetV2 [10], and GhostNet [11] networks on

publicly available CIFAR10 [16], CIFAR100 [16], and

ImageNet [17] datasets. The experimental results on the

above representative networks show that the proposed

method is able to achieve a high accuracy at low re-

source consumption.

In summary, our paper makes the following contri-

butions.

• A simple yet effective probability-based channel

pruning criterion is developed by considering the scal-

ing and shifting factors of BN.

• An efficient probability-based pruning algorithm

without requiring extra time-consuming fine-tuning is

proposed for depthwise separable convolutional net-

works by using a novel shifting factor fusion technique.

• The feasibility of our method is validated through

extensive experiments, and the results show that our

method outperforms the state-of-the-art on perfor-

mance.

2 Related Work

A number of network pruning algorithms have been

carried out in the past years. In this section, we will

review most related work in this topic.

Many algorithms consist of the pre-training, prun-

ing, and fine-tuning phases for effective network

pruning [3, 18–20]. The pre-training phase is used to

produce clues for the pruning phase. It trains a net-

work by adding some extra constraints, such as group-

lasso [21, 22], L1 regularization [2, 3, 23] and polarization

regularizer [24]. The pruning phase usually prunes

weights, filters, channels or layers via various prun-

ing criteria [25], respectively. Some methods [3, 26] prune

unimportant channels with scaling factors below zero in

the BN layer and other methods prune network chan-

nels by minimizing the least square reconstruction error

on output feature maps [20]. Hu et al. [18] introduced

a network trimming method by pruning unimportant

channels with a high average percentage of zeros after

the ReLU mapping and retrained the trimmed network

to enhance the performance. Yang et al. [27] chose a

sub-network that has a higher accuracy and lower re-

source consumption by removing different filters from

one layer. Since the performance of the pruned network

model is usually not so good as the pre-trained one, the

fine-tuning phase is further required to train the pruned

model [20, 21,28,29]. Zhang et al. [12] first pruned channels

of the depthwise separable convolution unit based on in-

formation gain and then restored the performance with

fine-tuning. However, these algorithms usually require

an additional time-consuming fine-tuning or retraining
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step on the pruned network in order to achieve compa-

rable performance to the unpruned one. Recently, Liu

et al. [5] conducted a number of experiments to indicate

that the benefits gained from pruning are attributed

to the architecture of the pruned network rather than

the fine-tuned weights. Moreover, the pruning crite-

rion based on a single scaling factor may prune some

important channels since both the scaling and the shift-

ing factors contribute to the BN layer. Different from

them, we investigate a new pruning criterion by consi-

dering both the scaling and the shifting factors in the

BN layer.

Some researchers focus on efficient network prun-

ing algorithms without fine-tuning or retraining. The

NFP algorithm [6] first prunes channels based on the

scaling factor and then compensates the contribution

of pruned convolutional channels to the next convolu-

tional filters. The compensation can produce a pruned

model whose accuracy is almost the same as that of the

unpruned one. He et al. [30] dynamically determined

whether a certain channel is pruned or not in a soft

manner while He et al. [31] removed filters via geomet-

ric median which minimizes the sum of Euclidean dis-

tances. Kang and Han [32] incorporated training and

soft channel pruning by introducing learnable differen-

tiable masks. Our method is different from these meth-

ods in that our pruning criterion considers both scaling

and shifting factors of BN, and no mask is required.

Our channel pruning algorithm is also related to

the neural architecture search which provides a vio-

lence search method to discover the compressed model

structure. A shared network [33] is trained with switch-

able batch normalization and can adjust the network’s

width on the fly instead of downloading and offloading

different models. A slimmable network [34] is used to

approximate the network’s accuracy of different chan-

nels and is then greedily slimmed for minimal accuracy

drop. He et al. [35] got the model compression policy

by reinforcement learning while Liu et al. [36] searched

a good-performing pruned network by the evolution-

ary procedure. However, these methods require much

training time and GPU resources to search for efficient

structures.

3 Preliminaries

Depthwise separable convolutions, initially intro-

duced in [13], are effective to reduce the neural net-

work’s computation. As shown in Fig. 1, a standard

convolution filters and combines input channels into a

new set of output channels in one step while a depth-

wise separable convolution operation employs a depth-

wise convolution for filtering and a pointwise convolu-

tion for combining. The depthwise convolution uses a

lightweight convolutional filter per input channel and

the number of output channels is the same as the one

of input channels. The pointwise convolution applies

a 1 × 1 convolution to combine all channels produced

by the depthwise convolution for building new feature

channels. The depthwise separable convolution has

much less computation than the standard convolution

at only a small reduction in accuracy [7].

(b)(a)

1  1

3  3

3  3

...

...

...

...

...

Fig.1. Illustration of (a) standard convolution and (b) depthwise
separable convolution. The data are flowing from top to down.

MobileNetV1 [7] and MobileNetV2 [8] are represen-

tative networks which use depthwise separable convo-

lutions as basic convolutional blocks. As illustrated in

Fig.2(a) and Fig.2(b), MobileNetV1 is a single-branch

network while MobileNetV2 is a multi-branch network.

Both MobileNetV1 and MobileNetV2 make heavy use

of BN and ReLU nonlinearity.

ShuffleNetV1 [9] and ShuffleNetV2 [10] employ the

channel shuffle and depthwise separable convolutions to

reduce computation. As illustrated in Fig.2(c), Shuf-

fleNetV1 inserts a channel shuffle operation between

pointwise convolution (PWConv) and depthwise con-

volution (DWConv). As illustrated in Fig.2(d), Shuf-

fleNetV2 first splits the input features into two compo-

nents, then concatenates them after convolutions, and

finally uses the channel shuffle operation to obtain the

output.

GhostNet [11] uses a novel Ghost module to gene-

rate more ghost feature maps from cheap operations.

As illustrated in Fig.2(e) and Fig.2(f), GhostNet is de-

signed by stacking Ghost bottlenecks with Ghost mod-

ules as the building block. Ghost modules make use

of depthwise separable convolutions and the shortcut

connection.

BN [14] is a linear transformation layer plugged be-

tween the convolutional layer and the activation func-

tion layer. It whitens and transforms each channel
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Fig.2. Illustration of structures of basic blocks in (a) MobileNetV1, (b) MobileNetV2, (c) ShuffleNetV1, (d) ShuffleNetV2, (e) Ghost
module, and (f) GhostNet.
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across different samples. Let x and ŷ be an input and

corresponding output of the BN layer, respectively. The

operation of BN is defined by normalizing x and then

performing an affine transformation as follows:

x̂ =
x− E[x]√
V ar[x] + ε

, (1)

ŷ = BN(x) = γ × x̂+ β, (2)

where ε = 10−5 is a parameter avoiding division by 0,

E[x] and V ar[x] represent the mean and the variance

of x respectively, and γ and β are the learnable scaling

factor and shifting factor respectively. The numbers of

γ and β are the same as the number of convolutional

filters. Notice that the values of E[x] and V ar[x] are

calculated across mini-batches during training and are

fixed during inference [14].

ReLU [15] is the rectified linear unit allowing a net-

work to easily obtain sparse representations. Formally,

ReLU is defined as:

y = ReLU(ŷ) =

{
0, if ŷ 6 0,

ŷ, if ŷ > 0.
(3)

MobileNetV2 uses a variant unit ReLU6 [8], which has

the same property when ŷ 6 0. For simplicity, we al-

ways use ReLU instead of ReLU6 in the rest of this

paper.

From (3) we can see that the output value is 0 with

the input ŷ 6 0 for ReLU. Therefore, if ŷ 6 0 holds

for a certain channel, we can prune this channel. This

observation allows us to develop an effective pruning

criterion for depthwise separable convolutions by tak-

ing advantage of BN and ReLU.

4 Proposed Method

4.1 Pre-Training

To obtain a pre-trained model for pruning, one more

regularization item is added to the objective function

for network pruning [3, 19,24], which is different from the

normal training of the original network.

We pre-train the depthwise separable convolutional

network with Kaiming initialization [37]. In addition,

we use L1 regularization on scaling factors in BN as

in [3]. Specifically, our pre-training objective function

is defined as:

min
θ

1

N

N∑
i=1

L(f(xi; θ), yi) + λL1(γp),

where N denotes the number of train samples, xi and

yi denote the train input and the target respectively,

θ denotes trainable weights, the first sum term repre-

sents the normal training loss, λ is a hyperparameter,

γp denotes the scaling factors in BN, and L1 represents

L1 regularization.

4.2 Probability-Based Pruning Criterion

If the input of the ReLU layer is less than or equal

to zero for a certain channel, the channel will have no

impact on the following convolutions and thus can be

pruned. Many deep depthwise separable convolutional

networks [7–11] employ multiple basic blocks that con-

tain a BN layer followed by a ReLU layer. Therefore,

if we know the output of a BN layer is below zero, we

can prune the corresponding channel.

We assume that x̂ in (1) follows a normal distribu-

tion by normalizing the input x from a large number of

input samples [32]. Therefore, the output ŷ of BN in (2)

is normally distributed with mean β and variance γ2,

that is, ŷ ∼ N(β, γ2). Let z be a predefined standard

score of the standard normal distribution N(0, 1), and

then the normal distribution N(β, γ2) has the upper

confidence limit:

Z(z) = β + z × |γ|. (4)

Under the assumption, the standard score z corre-

sponds to a probability of the standard normal distri-

bution:

P (ŷ 6 Z(z))

= P

(
ŷ − β
|γ|

6 z

)
= P (x̂ 6 z)

=

∫ z

−∞

e−
x̂2

2

√
2π

dx̂.

Given a normal distribution with a high probability

P , if the upper confidence limit for the output of BN is

less than or equal to zero, that is, Z = β + z × |γ| 6 0,

there is a high probability to have ŷ 6 0 to be true,

as illustrated in Fig. 3(a). On the other hand, if

β + z × |γ| > 0, then it is probably not true for ŷ 6 0,

as illustrated in Fig.3(b). If β + z × |γ| 6 0 holds, the

output of ReLU is likely to be equal to zero according

to the definition of the ReLU operation.

Therefore, we propose a novel probability-based

pruning criterion by taking advantage of the standard

score: if β+ z× |γ| 6 0 for a BN layer, the correspond-

ing channel is regarded as an unimportant channel and

can be pruned effectively. The standard score z can
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(b)(a)

β ββ+z γ β+z γ

Fig.3. Illustration of normal distributions 1○: (a) β + z × |γ| 6 0 and (b) β + z × |γ| > 0. Areas in blue represent the accumulative
probabilities for β + z × |γ|. All values below zero will be rectified to zero in the ReLU layer.

be used to adjust the probability threshold. A larger z

corresponds to a higher probability and vice versa. Ac-

tually, this is true even for general distributions other

than normal distributions between x̂ and ŷ. Conse-

quently, less channels are pruned with a larger z and

more channels are pruned with a smaller z. The per-

formance and the number of parameters of the pruned

model decrease monotonically with the decrease of z.

Therefore, the value of z is selected for a trade-off be-

tween the accuracy and the size.

Many existing algorithms [3, 6, 24] prune channels cor-

responding to the scaling factor γ in (2) below a thresh-

old. In comparison, both the scaling factor γ and the

shifting factor β are considered in our probability-based

pruning criterion. We illustrate the difference between

the widely used γ-based pruning criterion and the pro-

posed pruning criterion in Fig. 4. We can find that

channels with small γ but large β are also pruned in the

γ-based pruning criterion. Moreover, the γ-based prun-

ing criterion cannot prune channels with great |γ| but

β + z × |γ| 6 0 because the criterion views these chan-

nels as important features. In comparison, we prune

channels based on the combination of both parameters

(β and γ), β + z × |γ|, no matter which value |γ| is.

As a result, our criterion can effectively prune channels

with great |γ| but β + z × |γ| 6 0.

0.0 0.5 1.0 1.5 2.0

3

2

1

0

-1

-2

-3

β

|γ|

Pruned
Unpruned

Pruned
Unpruned

(a)

0.0 0.5 1.0 1.5 2.0

3

2

1

0

-1

-2

-3

β

|γ|

(b)

Fig.4. Illustration of the difference between (a) the γ-based criterion and (b) the proposed criterion based on both γ and β. Black
points represent pruned channels while green points represent unpruned channels, respectively.

1○https://www.calculator.net/z-score-calculator.html, Oct. 2021.
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4.3 Channel Pruning with Shifting Factor

Fusion

Depthwise separable convolutional networks are

built upon multiple identical basic blocks with depth-

wise separable convolution. In each basic block, a

depthwise convolution (DWConv) layer is followed by a

pointwise convolution (PWConv) layer. As illustrated

in Fig. 2, the bottleneck is the basic building block

for MobileNetV2 [8], ShuffleNetV1 [9], ShuffleNetV2 [10],

and GhostNet [11]. Each bottleneck block consists of

two 1 × 1 PWConv layers and a 3 × 3 DWConv layer.

The 1 × 1 layers are responsible for reducing and

then increasing (restoring) the dimensions, leaving the

3 × 3 layer a bottleneck with smaller input/output

dimensions [38]. In addition, BN and ReLU layers are

used between two convolutional layers in each basic

block. In our pruning method, channels are pruned

based on BN layers before and after the DWConv layer,

as illustrated in Fig.5. Therefore, we perform the chan-

nel pruning in the same manner for the simple case

of using a PWConv layer and a DWConv layer and the

bottleneck case of using two PWConv layers and a DW-

Conv layer.

As illustrated in Fig.5, there are three BN layers

(denoted as the (i− 1)-th, the i-th, and the (i+ 1)-

th BN layer) before and after each DWConv layer and

PWConv layer. The numbers of channels in the (i− 1)-

th and the i-th BN layer are the same since depthwise

convolution applies a single filter to each channel.

In order to guarantee the channel consistency, we

first introduce a naive channel pruning algorithm by

considering four cases based on the proposed pruning

criterion. As shown in Table 1, there are four cases for

a given channel with the channel index k in DWConv

between the (i− 1)-th and the i-th BN layer.

Case 1. Both the (i− 1)-th and the i-th BN layers

do not conform to the pruning criterion, and then both

BN layers and corresponding ReLU and DWConv lay-

ers for the k-th channel are unpruned, as illustrated in

the topmost channel in Fig.5.

Case 2. The (i− 1)-th BN layer does not conform

to the pruning criterion but the i-th BN layer does,

and then both BN layers and corresponding ReLU and

DWConv layers for the k-th channel are pruned, as il-

lustrated in the second channel in Fig.5.

Case 3. The (i− 1)-th BN layer conforms to the

pruning criterion but the i-th BN layer does not, and

then both BN layers and corresponding ReLU and DW-

Conv layers for the k-th channel are pruned, as illus-

trated in the third channel in Fig.5.

Case 4. Both the (i− 1)-th and the i-th BN lay-

ers conform to the pruning criterion, and then both

BN layers and corresponding ReLU and DWConv lay-

ers for the k-th channel are pruned, as illustrated in the

fourth channel in Fig.5.

Although we can prune depthwise separable con-

volutional networks efficiently by using the proposed

pruning criterion, the naive pruning algorithm will have

performance penalty for case 3. Let us take the channel

highlighted with the red contour in Fig.5 as an exam-

ple. For case 3, the k-th channel of the (i− 1)-th BN

..
.

..
.

..
.

DWConv BNBNBN

00

PWConv

(i-1)-th Layer (i+1)-th Layeri-th Layer

Fig.5. Illustration of the pruning process. Each curve represents a channel where light gray represents zero value outputted by ReLU.
The channel highlighted with the red contour should be further processed.
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is pruned according to the proposed pruning criterion

and the impact of xik on the k-th channel of the i-th

BN is also pruned, i.e., xik = 0. The channel numbers

of the input and output for DWConv should be consis-

tent. Therefore, we should also prune the correspond-

ing channel for the i-th BN. For cases 2–4, the k-th

channel of the i-th BN is pruned and it is equivalent

to truncating yik = 0. Based on the probability-based

pruning criterion, it is probably true for case 2 and case

4 but not true for case 3. Note that the truncation er-

ror for case 3 will be accumulated with the increase of

network layers. As a result, the network performance

decreases with the naive pruning algorithm. This moti-

vates us to investigate a sophisticated channel pruning

algorithm to get rid of such issues.

Table 1. Channel Pruning Scheme for Different Cases in DW-
Conv Between the (i− 1)-th and the i-th BN Layers

Case (i− 1)-th BN i-th BN Pruning Fusion

1 Zi−1 > 0 Zi > 0 × ×

2 Zi−1 > 0 Zi 6 0 X ×

3 Zi−1 6 0 Zi > 0 X X

4 Zi−1 6 0 Zi 6 0 X ×

Note: We suppose Zi−1 = βi−1
k +z×|γ|i−1

k and Zi = βi
k+z×|γ|ik

for the (i− 1)-th and the i-th BN layers, respectively.

For case 3, we first calculate the impact tik on the

i-th BN according to definitions of BN and ReLU:

tik = ReLU(BN(xik))

= ReLU

(
γik ×

xik − E[xik]√
V ar[xik] + ε

+ βik

)

= ReLU

(
γik ×

−E[xik]√
V ar[xik] + ε

+ βik

)
,

where there is no ReLU after DWConv in the ba-

sic block of ShuffleNets, as illustrated in Fig.2(c) and

Fig.2(d).

Let K1 and K3 be the index sets of channels for case

1 and case 3, respectively. Then the output xi+1 of the

PWConv layer can be calculated as follows:

xi+1 =
∑
k∈K1

wiky
i
k +

∑
k∈K3

wikt
i
k,

where wik denotes the PWConv weight. We can see

that the second sum term is constant, since trainable

parameters are fixed for a pre-trained network model.

The calculation of the (i+ 1)-th BN can be derived

as follows:

BN i+1
γi+1,βi+1(xi+1)

= BN i+1
γi+1,βi+1

(∑
k∈K1

wiky
i
k +

∑
k∈K3

wikt
i
k

)

= γi+1 ×
∑
k∈K1

wiky
i
k − E[xi+1]√

V ar[xi+1] + ε
+

γi+1 ×
∑
k∈K3

wikt
i
k√

V ar[xi+1] + ε
+ βi+1.

Now we have a constant βi+1
fusion defined as follows:

βi+1
fusion = γi+1 ×

∑
k∈K3

wikt
i
k√

V ar[xi+1] + ε
+ βi+1. (5)

Finally, we have the following updated formula by

fusing the truncation error to the (i+ 1)-th BN layer:

BN i+1
γi+1,βi+1(xi+1) = BN i+1

γi+1,βi+1
fusion

(xi+1).

Therefore, we can fuse the involved learnable para-

meters of pruned channels into βi+1
fusion for case 3 using

(5) which we call it as shifting factor fusion. We propose

the sophisticated channel pruning algorithm by replac-

ing the shifting factor βi+1 with βi+1
fusion in the (i+ 1)-th

BN layer for case 3. As a consequence, we can prune

all corresponding layers robustly for case 3. We visual-

ize the fusion offsets between β values before and after

shifting factor fusion in Fig.6. We can see that the pro-

posed shifting factor fusion technique effectively applies

the calculated offsets to β for the (i+ 1)-th BN layer.

The effectiveness of our pruning method with fusion off-

sets is demonstrated in Section 5 and we can see that

the novel shifting factor fusion technique effectively re-

covers the network performance.
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Fig.6. Visualization of the fusion offset between β values before
and after shifting factor fusion. The data are sampled from the
11th BN layer of the pruned MobileNetV1 trained on CIFAR100.
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4.4 Additional Processing

Residual learning [38] is widely used to ease the train-

ing of deep networks. Residual blocks with shortcut

connections are also used in multi-branch depthwise

separable convolution networks [8–11], and a residual

block is defined as the elementwise addition [38]. Let

x be the input and F (x) be its residual mapping, and

the dimensions of x and F (x) must be equal. If some

channels of F (x) are pruned, the channel number of

F (x) is different from that of x.

Similar to [39], a normal elementwise addition is ap-

plied to unpruned channels while channels of x are used

directly for pruned channels:

yk =

{
xk + F (xk), if k ∈ K1,

xk, otherwise.

The proposed probability-based method prunes

channels efficiently based on BN layers followed by

ReLU. For each BN layer after the PWConv layer, if

there is no ReLU layer, we add an associated gate as

in [23].

4.5 Pseudocode

We provide the pseudocode of our probability-based

channel pruning for depthwise separable convolution

networks in Algorithm 1.

Algorithm 1. Our Probability-Based Channel Pruning

Input: pre-trained model M0

1: for each basic block B in M0 do . Traversal
2: Obtain BN i−1, BN i, BN i+1 in B;
3: for each channel k in BN i−1 do . Pruning
4: Zi−1 = BN i−1[k].β + z ×BN i−1[k].|γ|;
5: Zi = BN i[k].β + z ×BN i[k].|γ|;
6: if Zi−1 > 0 and Zi > 0 then . Case 1
7: Mark k as unpruned;
8: else if Zi−1 > 0 and Zi 6 0 then . Case 2
9: Mark k as pruned;

10: else if Zi−1 6 0 and Zi > 0 then . Case 3
11: Mark k as pruned;
12: Ki

3.append(k);
13: else if Zi−1 6 0 and Zi 6 0 then . Case 4
14: Mark k as pruned;

15: for each basic block B in M0 do . Traversal
16: Obtain BN i−1, BN i, BN i+1 in B;
17: if Ki

3.size() > 0 then
18: for each channel k in BN i+1 do . Fusion
19: Update BN i+1[k].β using (5);

20: Clone unpruned channels of M0 to M1;
21: return pruned model M1

The proposed channel pruning algorithm takes the

pre-trained model as input. We first prune unimpor-

tant channels by using the novel probability pruning

criterion. Then, we perform the shifting factor fu-

sion technique for pruned channels. The channel prun-

ing process is implemented by creating a new channel

pruned model and cloning the corresponding weights

of unpruned channels from the pre-trained model. The

proposed channel pruning algorithm traverses the pre-

trained network twice. In the first traversal, the

probability-based pruning criterion is applied to de-

termine whether a channel should be pruned. In the

second traversal, the shifting factor fusion technique is

employed to recover the network performance.

The proposed algorithm is easy to implement on

deep learning frameworks. In Algorithm 1, we can

see that the time complexity of the proposed pruning

method is determined by the network complexity and

is irrelevant to input images. Note that our pruned

model is able to achieve competitive performance com-

pared with the original network without extra time-

consuming fine-tuning.

5 Experimental Results and Discussions

5.1 Settings

The proposed pruning method is implemented

using PyTorch. All experiments are conducted

on CIFAR10 [16], CIFAR100 [16], and ImageNet [17]

datasets.

The CIFAR10 and CIFAR100 datasets are with 10

and 100 classes, and consist of a training set and a

testing set containing 50 000 and 10 000 images, respec-

tively. The image size is 32× 32. During training, the

stochastic gradient descent optimizer is adopted for the

minimization of the objective function. We train the

models for 160 epochs with a mini-batch size of 64. We

set the initial learning rate as 0.1 and drop it by 10x

at 50% and 75% of all epochs, respectively. The hyper-

parameter λ is set as 10−4. As the image size is small,

for MobileNetV1, we reduce the network to four down-

sampling layers by replacing the first down-sampling

layer with stride = 1. For other networks, we only use

three down-sampling layers as in [34].

The ImageNet dataset is with 1 000 classes and con-

sists of a training set and a validation set contain-

ing about 1 200 000 and 50 000 images, respectively.

The image size is randomly resized and cropped to

224× 224 during data augmentation. During training,

the stochastic gradient descent optimizer is adopted for

the minimization of objective function. We train the

models for 150 epochs with a mini-batch size of 128.
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We set the initial learning rate as 0.05 and use the co-

sine learning rate decay as in [40]. The hyperparameter

λ is set as 10−5. We also employ label smoothing [41]

for better generalization.

5.2 Comparison with State-of-the-Art

Methods

In this subsection, we compare the proposed

method with state-of-the-art methods by pruning

MobileNets [7, 8], ShuffleNets [9, 10], and GhostNet [11] on

CIFAR10, CIFAR100, and ImageNet datasets respec-

tively. The compared results of PFS (Pruning From

Scratch) [23], AMC [35], MetaPruning [36], NetAdapt [27],

and NLSP (Neuron-Level Structured Pruning) [24] are

collected from the authors’ papers, respectively. The

results of Slimming [3] and NFP [6] are obtained with our

own implementations as the authors do not provide re-

lated codes or experimental results. For slimming with

fine-tuning, a learning rate of 10−3 and 30 epochs are

adopted on CIFAR100 while a learning rate of 10−5 and

30 epochs are adopted on ImageNet.

Table 2 shows the comparison statistics on the CI-

FAR100 dataset of MobileNets. NFP improves the net-

work slimming with no fine-tuning. Our model with

fusion is much better than network slimming [3] with-

out fine-tuning in both the accuracy and the size. Our

model with fusion is also better than network slimming

with fine-tuning and NFP [6]. However, fine-tuning in-

volves additional training of model weights, which is

quite time-consuming. Both network slimming and

NFP prune channels based on the scaling factor of BN.

In comparison, the proposed method takes into account

both shifting and scaling factors of BN, resulting in a

better performance in terms of the accuracy and size.

Table 3 shows the comparison statistics on the Im-

ageNet dataset of MobileNets. Our model with fu-

sion reduces 40% of parameters and 40% of FLOPs

compared with the MobileNetV1 baseline [7] but still

Table 2. Comparison of Proposed Method with State-of-the-Art Methods for Pruning MobileNetV1 and MobileNetV2 Models on
CIFAR100

Method CIFAR100

MobileNetV1 MobileNetV2

Number of FLOPs Top-1 Number of FLOPs Top-1

Parameters (×106) (×106) (%) Parameters (×106) (×106) (%)

Original model [7, 8] 3.31 46.47 71.09 2.32 88.10 75.26

Slimming w/o fine-tuning [3] 1.34 26.36 69.49 1.25 39.70 71.69

Slimming w fine-tuning [3] 1.34 26.36 71.25 1.25 39.70 74.83

NFP [6] 1.34 26.36 70.78 1.25 39.70 74.55

Ours w/o fusion 1.33 26.30 69.49 1.23 39.66 71.42

Ours w fusion 1.33 26.30 71.27 1.23 39.66 75.37

Note: “w” and “w/o” are short for the words “with” and “without”, respectively.

Table 3. Comparison of Proposed Method with State-of-the-Art Methods for Pruning MobileNetV1 and MobileNetV2 Models on
ImageNet

Method ImageNet

MobileNetV1 MobileNetV2

Number of FLOPs Baseline Top-1 Number of FLOPs Baseline Top-1

Parameters (×106) (×106) (%) (%) Parameters (×106) (×106) (%) (%)

Original model [7, 8] 4.2 569 70.6 70.6 3.5 300 71.8 71.8

AMC [35] 2.4 285 70.6 70.5 N/A 219 71.8 70.8

MetaPruning [36] N/A 281 70.6 70.6 N/A 217 72.0 71.2

NetAdapt [27] N/A 284 70.6 69.1 N/A N/A N/A N/A

NLSP [24] N/A N/A N/A N/A N/A 216 72.0 71.8

PFS [23] 4.0 567 70.9 71.6 3.5 300 71.8 72.1

Slimming w/o fine-tuning [3] 2.6 338 70.6 70.4 3.0 238 71.8 71.4

Slimming w fine-tuning [3] 2.6 338 70.6 70.5 3.0 238 71.8 71.6

NFP [6] 2.6 338 70.6 71.2 3.0 238 71.8 71.8

Ours w/o fusion 2.5 338 70.6 71.3 2.9 210 71.8 71.6

Ours w fusion 2.5 338 70.6 71.6 2.9 210 71.8 71.8

Note: “w” and “w/o” are short for the words “with” and “without”, respectively. “N/A” represents the corresponding item is unavail-
able.
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achieves a better top-1 accuracy. Our pruned model

prunes 17.1% of parameters and 30.0% of FLOPs com-

pared with the MobileNetV2 baseline [8]. Although

our pruned model has greater FLOPs than models of

AMC [35], MetaPruning [36], and NetAdapt [27] for prun-

ing MobileNetV1 [7], the top-1 accuracy is significantly

higher than theirs. The accuracy of our method is com-

parable with that of NLSP [24] but the FLOPs value of

our method is better. PFS [23] is the only one method

that has a higher accuracy than our method. Unfor-

tunately, the reduction of the number of parameters

and FLOPs is rather limited with PFS. Moreover, our

pruned model with fusion has the least number of para-

meters and FLOPs even compared with state-of-the-art

methods.

In addition, for a fair comparison, we include base-

lines of state-of-the-art methods collected from the orig-

inal papers, respectively, as shown in Table 3. We

can see that AMC [35], MetaPruning [36], NetAdapt [27],

NLSP [24], and Slimming [3] drop the performance in

the top-1 accuracy as compared with their respec-

tive baseline. In comparison, our method achieves an

even higher accuracy for MobileNetV1. Moreover, the

pruned models using our method contains less para-

meters and FLOPs than the ones using PFS [23] and

NFP [6] with similar top-1 accuracies. It is noted that

PFS [23] increases the top-1 accuracy while reducing few

parameters and FLOPs.

Table 4 shows results of ShuffleNetV1, Shuf-

fleNetV2, and GhostNet on CIFAR10, CIFAR100, and

ImageNet, respectively. On CIFAR10 and CIFAR100,

the pruned ShuffleNetV1 uses less parameters than

the pruned ShuffleNetV2 and GhostNet, while the

pruned GhostNet has less FLOPs than the pruned Shuf-

fleNetV1 and ShuffleNetV2. The pruned ShuffleNetV2

takes a balance between parameters and FLOPs com-

pared with our pruned ShuffleNetV1 and GhostNet.

The results show that our method without fine-tuning

is able to achieve better performance than Slimming [3]

and NFP [6].

From the above experimental results provided in

Tables 2–4, the proposed criterion can reduce more

parameters and FLOPs than the γ-based criterion [3, 6]

when similar top-1 accuracies are obtained. On the

other hand, the proposed criterion using both γ and β

achieves a higher accuracy than the γ-based criterion

when similar numbers of parameters are pruned. The

γ-based pruning criterion cannot prune channels with

great |γ| but β+ z×|γ| 6 0 because the criterion views

these channels as important features. On the contrary,

the proposed criterion can effectively prune these chan-

nels by taking advantage of both values of γ and β.

Therefore, the proposed criterion using both γ and β

can effectively improve the pruning performance.

From the experimental results, we can conclude that

our novel probability-based pruning method using the

shifting factor fusion technique can achieve a satisfac-

tory performance bonus compared with our method

without fusion. It should be noted that the proposed

novel shifting factor fusion allows a high accuracy with-

Table 4. Comparison of Proposed Method with State-of-the-Art Methods for Pruning ShuffleNetV1, ShuffleNetV2, and GhostNet
Models on CIFAR10, CIFAR100, and ImageNet

Network Method CIFAR10 CIFAR100 ImageNet

Number of FLOPs Top-1 Number of FLOPs Top-1 Number of FLOPs Top-1

Parameters (×106) (%) Parameters (×106) (%) Parameters (×106) (%)

(×106) (×106) (×106)

ShuffleNetV1 Original model [9] 3.50 166.49 93.17 3.67 166.68 75.32 5.4 524 73.7

Slimming [3] 0.53 40.31 93.15 0.86 49.01 75.28 4.1 391 72.5

NFP [6] 0.53 40.31 93.17 0.86 49.01 75.32 4.1 391 72.8

Ours w/o fusion 0.47 36.11 93.13 0.86 48.59 75.31 4.0 387 72.6

Ours w fusion 0.47 36.11 93.17 0.86 48.59 75.32 4.0 387 72.8

ShuffleNetV2 Original model [10] 2.47 95.17 92.55 2.56 95.27 74.59 3.5 299 72.6

Slimming [3] 1.28 43.73 92.24 1.65 52.49 74.58 3.4 284 72.6

NFP [6] 1.28 43.73 92.55 1.65 52.49 74.59 3.4 284 72.6

Ours w/o fusion 1.14 37.68 92.52 1.57 51.02 74.36 3.3 280 72.5

Ours w fusion 1.14 37.68 92.55 1.57 51.02 74.59 3.3 280 72.6

GhostNet Original model [11] 3.63 56.87 91.18 3.99 57.18 74.95 5.2 141 73.9

Slimming [3] 2.79 25.76 91.05 3.36 31.23 74.94 5.0 122 73.4

NFP [6] 2.79 25.76 91.18 3.36 31.23 74.95 5.0 122 73.5

Ours w/o fusion 2.75 22.48 89.92 3.23 26.61 74.88 4.9 120 73.4

Ours w fusion 2.75 22.48 91.18 3.23 26.61 74.95 4.9 120 73.5

Note: “w” and “w/o” are short for the words “with” and “without”, respectively.
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out requiring extra time-consuming fine-tuning. The

experimental results show that our novel probability-

based pruning method outperforms the state-of-the-art

methods in terms of both the accuracy and the size.

5.3 Visualization of Pruned Channels

The number of channels in the pruned model closely

relates to the accuracy as well as the speed. In order to

demonstrate the performance of the proposed pruning

method in pruning channels, we visualize the statistics

of numbers of channels of BN layers after each DWConv

in Fig.7.

There are four pruning cases for different BN chan-

nels in our pruning method. As shown in Fig.7, four

cases are visualized with different colors. In order to

preserve the channel consistency, two adjacent BN lay-

ers before and after the DWConv layer (see the (i− 1)-

th and the i-th layer in Fig.5) share the same pruning

scheme in our pruning method. If one BN layer does

not conform to the criterion but another BN layer does,

both BN layers and corresponding ReLU and DWConv

layers are effectively pruned with our pruning method.

Therefore, every pair of adjacent BN layers before and

after the DWConv layer have the same number of chan-

nels for each case. An impressive percent of channels

conform to case 3 that can take advantage of the pro-

posed shifting factor fusion technique. As illustrated

in Fig.2(c) and Fig.2(d), there is no ReLU after DW-

Conv in ShuffleNetV1 and ShuffleNetV2. Therefore, as

shown in Fig.7, all pruned channels are classified as case

3, which means that shifting factor fusion should be ap-

plied to all pruned channels in ShuffleNetV1 and Shuf-

fleNetV2. Channels conforming to case 1 are unpruned

and thus used for the pruned model. As a result, the

proposed pruning method is capable of pruning chan-

nels efficiently.

5.4 Ablation Study on Fine-Tuning

Here we perform the ablation study on fine-tuning

to further validate the effectiveness of the proposed

shifting factor fusion technique.

We experiment to fine-tune our pruned model

from unpruned weights [3] which are trained in the

pre-training phase. We also experiment to fine-tune

our pruned model from scratch [5]. The performance

comparison of fine-tuning from unpruned weights and

fine-tuning from scratch with our pruned models is il-

lustrated in Fig.8. We can see that the top-1 accuracy

of fine-tuning from unpruned weights fluctuates over a

very small range around the top-1 accuracy without any

fine-tuning (i.e., result with zero epoch). Fine-tuning

from scratch trains learnable weights as same as the

pre-training phase except L1 regularization. Although

the top-1 accuracy increases with the increase of fine-

tuning epoch, the top-1 accuracy is still slightly lower

than that of our pruned model without fine-tuning in

150 epochs.

As a consequence, our pruned model without

any fine-tuning has competitive performance compared

with the pruned model with unpruned weights and the

pruned model from scratch. The experimental results

demonstrate that our pruned model with the proposed

shifting factor fusion technique does not require addi-

tional fine-tuning.

5.5 Ablation Study on the Standard Score

Now we perform the ablation study on the standard

score parameter z to study the sensitivity of the pro-

posed pruning method with respect to z.

We show statistics of the top-1 accuracy, FLOPs,

and the number of parameters of the pruned mod-

els by varying the value of z in Fig. 9. The pro-

posed probability-based pruning criterion is based on

the standard score parameter z as defined in (4). A

greater standard score corresponds to a high proba-

bility and vice versa. We can see that the top-1 accu-

racy, FLOPs, and the number of parameters all mono-

tonically increase with the increase of z. The curves

of these quantities rise significantly when z < 2, rise

slowly when z ∈ [2, 4], and become stable when z > 4.

Both the accuracy and the speed are important

quantities for a pruned model. Therefore, we empir-

ically choose z ∈ [2, 4] for a trade-off between the accu-

racy and the size.

6 Conclusions

In this paper, we presented a novel efficient

probability-based channel pruning method for depth-

wise separable convolutional networks. By leveraging

the scaling and shifting factors of BN, a simple yet ef-

fective probability-based channel pruning criterion was

proposed. A novel shifting factor fusion technique was

developed to further improve the pruning performance.

We validated the efficiency of the proposed channel

pruning method on representative depthwise separable

convolutional networks including MobileNetV1, Mo-

bileNetV2, ShuffleNetV1, ShuffleNetV2, and Ghost-
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Fig.7. Statistics of numbers of channels of BN layers after each DWConv. (a) MobileNetV1 on CIFAR10. (b) MobileNetV1 on
CIFAR100. (c) MobileNetV1 on ImageNet. (d) MobileNetV2 on CIFAR10. (e) MobileNetV2 on CIFAR100. (f) MobileNetV2 on
ImageNet. (g) ShuffleNetV1 on CIFAR10. (h) ShuffleNetV1 on CIFAR100. (i) ShuffleNetV1 on ImageNet. (j) ShuffleNetV2 on CI-
FAR10. (k) ShuffleNetV2 on CIFAR100. (l) ShuffleNetV2 on ImageNet. (m) GhostNet on CIFAR10. (n) GhostNet on CIFAR100. (o)
GhostNet on ImageNet.
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Net. Promising experimental results and comparisons

showed the feasibility of the proposed method.

In the future, we would like to apply the proposed

pruning method to more depthwise separable convolu-

tional networks. Moreover, we plan to use our pruned

model as the backbone for other computer vision tasks,

such as vehicle logo recognition [42] and medical image

segmentation [43].
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