
Feature Article

78 March/April 2007 Published by the IEEE Computer Society 0272-1716/07/$25.00 © 2007 IEEE

M arbling is a traditional art that people
all over the world have loved for cen-

turies. Started in either Turkey or Persia in the 12th cen-
tury for decorative purposes, the craft migrated to
Europe in the 16th century, where it became an essen-
tial part of bookbinding. Marbled papers’ intricate pat-
terns decorate the inside covers of fine books; cover the
folds, strings, and glue marks of the bindings; and serve
as an aesthetic transition from the dark leather covers
to the white pages inside. Used as book edges, they pre-
vent erasure and forgery; any pages removed from the

book would interrupt patterns.
Today, more practitioners of this
beautiful art exist than ever before
in history—we can see marbling
designs on picture frames, note
cards, collages, origamis, lamp-
shades, and many other items in our
daily lives.

The marbling process is charac-
terized by the manipulation of float-
ing pigment, and the transfer of the
resulting design onto paper or some
other material. It’s not as trivial a
task as it seems. With traditional
marbling, the design process and
the resulting design quality are

largely constrained by various physical conditions—
such as pigment floatability, liquid viscosity, or even
environmental humidity. The resulting designs aren’t
directly useable for seamless tiling and the design size
is constrained by the size of the trays used to hold the
liquid. If the resulting design is not satisfactory, a mar-
bler has to skim all the liquid from the tray and restart
the designing process from scratch. This article there-
fore provides an exploration into the marbling process
and shows how we can algorithmically simulate this tra-
ditional art. We then present an interactive computer
system for creating various marbling textures.

Traditional marbling process and our
approach

A traditional marbling process consists of the follow-
ing three steps:1

1. After preparing a shallow tray, marblers add paint
colors, which disperse onto the thickened liquid’s
surface to create a basic design. Eyedroppers,
pipettes, and bamboo brushes act as color applica-
tors. The liquid should be thick enough to keep color
paints floating on its surface.

2. Marblers use sticks, combs, or other tools to make
patterns. As they wield the combs back and forth
across the tray, the drops of paint are pulled into elon-
gated shapes. An intricate pattern usually requires
running through the color several times. Combs of
differing spacing will produce a different effect, as
will the manner of drawing the comb down the tray.

3. Once the pattern is complete, marblers carefully
lower a sheet of paper (or fabric, wood, leather, and
so on) onto the liquid’s surface to absorb the float-
ing colors, and then lift it off, rinse it, and dry it. That
particular design can never again be created.

Although the last step contributes to the quality of the
final design appearing on the paper or fabric, the pat-
tern itself is mainly determined during the first two
steps. Based on such an observation, we currently focus
on the first two steps in our simulation. Our designing
system offers many contributions. First, we relieve mar-
blers from physical constraints, letting them control the
liquid’s property by changing the viscosity coefficient,
designing their own patterning tools, and providing the
ability to undo or redo each step of the design process to
exploit the best results through trial and error. We treat
different colored inks as independent layers to prevent
color mixing, a desirable feature of real-world marbling.

Next, a physically based marbling simulation
process—that is, a 2D fluid dynamics simulation—

A computer system for
interactively creating marbling
textures is built on the physical
model of the traditional
marbling process. The
approach generates marbling
designs as the result of color
advection in the 2D flow fields
obtained by numerically solving
the Navier-Stokes equations on
the GPU with a multigrid solver.

Xiaogang Jin and Shaochun Chen
Zhejiang University

Xiaoyang Mao
University of Yamanashi

Computer-
Generated
Marbling Textures:
A GPU-Based
Design System

enables realistic marbling designs. Our system provides
intricate designs through color advection in the 2D flow
field obtained by numerically solving the Navier-Stokes
equations, mainly based on the stable fluids method.2,3

Due to the large amount of parallelism in graphics
hardware, modern GPUs demonstrate significantly high-
er performance than CPUs in most numerical applica-
tions. We further exploit these advantages by employing
a multigrid solver on the GPU for solving the Navier-
Stokes equations more efficiently. With our system, users
can get a real-time system response to their operations,
in the same way as they work with real-world marbling.

Finally, our computer marbling system makes it pos-
sible to integrate the design process into modern
CAD/CAM systems. Procedurally generated marbling
textures can be directly used for rendering objects and
scenes decorated with marbling designs.

GPU-based marbling simulation
During the marbling process, either applying colors to

the liquid or moving a patterning tool causes the liquid to
flow. As a result, the fluid carries colors to form various
designs. Therefore, depending on the velocity field of the
liquid resulting from user operations, we can generate the
marbling design as the result of color advection in the
fluid. Several papers address the development of efficient
fluid solvers tailored for computer graphics.2-4 Since the
colors actually float on the liquid surface, we use a 2D fluid
dynamics simulation based on Stam’s stable solver.3 How-
ever, we have implemented our simulation on the GPU
instead of the CPU for achieving the best time efficiency.

Incompressible Navier-Stokes
In the fluid dynamics field, the incompressible fluid’s

motion at any given time is governed by its velocity
field u, which satisfies the following Navier-Stokes
equations:

(1)

� � u � 0 (2)

where � denotes the fluid density, v the kinetic viscosity,
p the local pressure, and F represents any external forces
that act on the fluid. The four terms on the right-hand
side of Equation 1 are accelerations, while Equation 2,
the continuity equation, enforces the incompressibility
assumption by ensuring that the fluid always has zero
divergence. We can only solve analytically the Navier-
Stokes equations for a few simple physical configura-
tions. However, while engineering problems require an
accurate result for accuracy and safety purposes, we are
more interested in the visual effects in our application.
Thus, an incremental numerical solver suits our needs.

To solve the equations numerically, we discretize the
computational domain—which corresponds to the area
of the tray—to a grid of m � n cells. Both the velocity and
local pressure are defined at the center of each cell. To
use all four channels in the floating point units, the com-
putational domain is then divided into four quadrants,
which are layered into the (x, y, z, w) channels of a sin-

gle texture with half the size in each dimension. The key
to the solution is to take steps in time and update the
velocity field at each time step via four computations,
as described later.

Advection. Intuitively, advection is the process by
which a fluid’s velocity transports itself and other parti-
cles along with the flow. The nonlinear term �(u � �)u
in Equation 1 stands for this self-advection of the
velocity field. To determine the velocity at a point x at
the new time t � 	t, we trace the trajectory from it back
in time for its former position x
 at time t, and copy
the velocity at point x
 to point x. With this method, no

∂
∂

= − ⋅∇() − ∇ + ∇u
u u u F

t
p v

1 2

ρ
+

IEEE Computer Graphics and Applications 79

Related Work
In recent years, there has been increasing interest in

nonphotorealistic rendering techniques that aim to simulate some
particular artistic styles or media. We can classify existing
techniques into roughly three distinct approaches. The first
approach works directly from meshes or other 3D geometries. The
second approach takes source images or photographs as input and
converts them into renderings with a painterly look. Lastly,
interactive systems, such as computer-generated watercolor,1

depend on user-defined input. Different approaches can also be
combined together, to leverage the strengths of each.

Mao’s AtelierM system was the first published work on a featured
digital marbling system.2 It’s built on the physical model of the
traditional marbling process. The approach models marbling’s
patterning process as a 2D computational fluid dynamic problem,
which is then solved numerically. As an interactive system,
however, AtelierM cannot afford a real-time response. The pattern
manipulation process is approximately modeled as a 2D steady
flow. Users must design the full path of one particular operation
beforehand, wait for a few seconds for the resulting static pattern,
and then design another. Akgun as well as Acar and Boulanger
have used similar methods, the latter introducing an improved
multiscale fluid model, but still with low time efficiency.3,4 By
adopting the idea of Harris,5 we extended Mao’s work to perform
the fluid dynamics simulation on the GPU and implemented a real-
time designing system. Our system provides a virtual environment
that allows users to experience the process of moving tools in
liquid and see the patterns change gradually. It’s also possible for
users to make several operations simultaneously and watch the
interactions among them.

References
1. C.J. Curtis et al., “Computer-Generated Watercolor,” Proc. Siggraph, ACM

Press, 1997, pp. 421-430.
2. X. Mao, T. Suzuki, and A. Imamiya, “AtelierM: A Physically Based Interac-

tive System for Creating Traditional Marbling Textures,” Proc. 1st Int’l Conf.
Computer Graphics and Interactive Techniques in Australasia and South East
Asia, ACM Press, 2003, pp. 79-86.

3. B.T. Akgun, “The Digital Art of Marbled Paper,” Leonardo, vol. 37, no. 1,
2004, pp. 49-51.

4. R. Acar and P. Boulanger, “Digital Marbling: A Multiscale Fluid Model,” IEEE
Trans. Visualization and Computer Graphics, vol. 12, no. 4, 2006, pp. 600-614.

5. M.J. Harris, “Fast Fluid Dynamics Simulation on the GPU,” GPU Gems:
Programming Techniques, Tips, and Tricks for Real-Time Graphics, Addison-
Wesley, 2004, pp. 637-665.

matter how large 	t, the velocity at the new time step
obviously does not exceed the maximum value of the
velocity field at the previous time step. This makes the
solver always stable. This technique is known as the
method of characteristics.2

Diffusion. We obtain the diffusion term v�2u from
Equation 1 by solving the viscous diffusion equation
�u/�t � v�2u using an implicit formulation:

(I � v	t�2)u(x, t � 	t) � u(x, t) (3)

where I is the identity matrix. This is a Poisson equation
for velocity. Like the implicit method for computing
advection, this formulation is stable for arbitrary time
steps and viscosities.

Force application. The force application step is as
simple as adding the external forces directly to the cur-
rent velocity. The forces are in the tangential directions
of the paths and their magnitudes are a given constant
specified by users. One special case is creating the ini-
tial pattern: when applying colors to the liquid, a previ-
ously dropped spot can be pushed aside by the
subsequently dropped spots, changing its shape. Also,
a spot can be dropped right within an existing spot and
force it to spread to the surroundings. The initial pat-
tern is created as procedural textures in Mao’s AtelierM
system,1 while ours uses physical simulation for that
step, too. To produce the effect that color spots push
each other, we assign an external force of constant mag-
nitude (1 in our current implementation) to each parti-
cle of the currently dropped spot, which points outward
from its center.

Projection. After the previous three computations,
the result is a new divergent velocity field w. We end
each time step with a projection operation that projects
w onto its divergence-free component u. As stated by
the Helmholtz-Hodge Decomposition Theorem,5 we can
correct the divergence of the velocity by subtracting the
gradient of pressure field w = u + �p. Applying the
divergence operator to both sides of this equation yields
another Poisson equation:

�2p = � � w (4)

which is a Poisson equation for pressure. We can solve
both Equations 3 and 4 using a V-cycle multigrid
scheme, which we’ll describe later. After we arrive at

the pressure p, we can use it to compute the divergence-
free field u, which is the final result of a single time step.

For the initial conditions, the velocities and pressures
are set to zero at all cells. When zero Dirichlet boundary
conditions are used, velocity goes to zero at the bound-
aries, while the rate of change of pressure in the direction
normal to the boundary is set to zero. This is a natural
simulation to the real marbling. Since we aim to create
seamless marbling textures, we have eliminated the
boundaries by identifying the opposite sides of the com-
putational domain instead, so that the velocity and pres-
sure at the boundaries of the domain are equal to those
at the opposite side. That is, the fluid flow out of the tray
enters the tray again from the other side of the tray.

Multigrid solver for Poisson equations. We
can discretize the Laplacian operator in Equations 3 and
4 using the finite difference form:

�2Uij � Ui � 1,j � Ui � 1,j � Ui,j � 1 � Ui,j � 1 � 4Ui,j

where U is the current solution, and subscripts i and j
refer to the grid’s row and column indices. The standard
solution for Poisson equations is a simple relaxation
scheme that starts with an approximate solution and
improves it through a number of Jacobi iterations, using
the results of the previous iteration as input to the next.
Earlier GPU-based fluid simulators have used the Jaco-
bi iteration because of its simplicity and easy implemen-
tation.6 But some more sophisticated methods—such as
conjugate gradient and multigrid—converge faster.7-10

We adopted a V-cycle multigrid algorithm in our current
implementation.

Figure 1 shows an illustration of two levels in the multi-
grid algorithm. Our approach performs an iteration
toward a solution at the finest level by starting with an
initial guess and improving it through repeated applica-
tion of the V-cycle algorithm. A multigrid V-cycle starts
with a few presmoothing steps. After that, we calculate
the residual value at each grid cell by applying the Lapla-
cian operator to the current resolution and restrict the
residual value to a coarser grid. We then perform a V-cycle
on this restricted residual and so on recursively to some
coarsest level. For simplicity we use the Jacobi iteration
for the coarsest level solver. Finally, we interpolate back
the approximate solution to a higher resolution grid and
perform postsmoothing. Both pre- and postsmoothing
steps use the Jacobi iteration as well. For our simulation,
we only use two V-cycles, with two presmoothing steps,
two postsmoothing steps, and ten iterations (default) on
the coarsest grid. Since the major part of iterations occurs
on the low-resolution grid, the multigrid algorithm
demonstrates much higher performance. More details
about the solver are available elsewhere.7,9

Multilayer density field
Until now, the simulation gives only the fluid velocity.

A straightforward way to represent color paints in the flow
field is to maintain an additional density field, which is
only carried along by the fluid, but does not affect the flow
itself. Other approaches use a scalar field as the density
field to show a gray-scale fluid,3,10 while another method

Feature Article

80 March/April 2007

1 A multigrid V-cycle.

Interpolate

RestrictResidual

Smooth

Smooth

Smooth

Fine level

Coarse level

In
cr

ea
si

ng
 t

im
e

uses three scalar fields corresponding to the RGB compo-
nents of color.6 Because a texture has four channels, these
three scalar fields can be layered into a single texture.

An accurate simulation to the advection of colors
requires solving the advection diffusion equations taking
into consideration color paint properties, such as the dif-
fusion and dissipation of color paints in the fluid. In the
case of marbling, the liquid viscosity is usually large.
Therefore, the diffusion and dissipation rates of each color
should be quite low. Therefore, currently we only consid-
er the color advection, using the following equation:

where d is the density field that represents color con-
centration carried by the fluid. We can solve this equa-
tion just like the advection step for velocity. To generate
marbling designs suitable for seamless tiling, color
advection should also satisfy the periodic condition.

As shown in Figure 2, to calculate the color for a point
x, we trace back from x to x
 and perform bilinear inter-
polation of the four cells closest to x
. If we use the most
straightforward approach—that is, represent the color
with three scalar fields corresponding to RGB components
and interpolate each scalar field independently—the
resulting color at x would be a mixture of the colors at the
four cells. This, however, is physically incorrect, because
different paint types usually don’t mix together due to the
effect of ox gall, which acts as color separator in marbling.
To prevent the blending of different paints, we define a
multilayer density field. A multilayer density field is com-
posed of an arbitrary number of layers (virtually, 8 to 16
is enough), each corresponding to a special paint color the
user applies. To use all four channels in the floating point
units, we use one texture for four layers. We generate the
final effect by composing the colors for the layers accord-
ing to their densities. Another advantage of the multilay-
er method is that users can easily adjust the paint colors on
each layer—they can even change the color schemes of a
ready-made marbling texture.

Image sharpening
In real-world marbling, ox gall added to the paint forms

a wall of fat around each color and prevents colors from
blending with each other. This is an important property
contributing to the sharp and vivid impression of marbling
designs.1 Although, as introduced previously, we succeed-
ed in preventing the mixture of different colors by using a
multilayer density field, the colors still diffuse into the
background and can result in a texture without sharp
boundaries among different colors. An accurate simula-
tion to the ox gall effect involves modeling the surface ten-
sion and interaction among different materials. However,
we have chosen to keep the sharpness of marbling tex-
tures through a simpler way—that is, shock filtering.

Shock filtering’s underlying principle is based on dif-
fusing energy among neighboring pixels.11 A dilation or
erosion process is applied depending on whether the pixel
belongs to the influence zone of a maximum or a mini-
mum. A sharp shock is created between two zones after
several passes.12 Compared to other image sharpening

schemes—for example, high-pass filtering—the shock
filter method is more appropriate for transforming
smooth transitions resulting from texture interpolation,
which is the main cause of blurriness in our algorithm.

We apply the shock filter on the composition of the mul-
tilayer density field with eight iterations. Notice that the
result of image sharpening is only used for displaying, but
not as the input for the simulation at the next time step,
so that it doesn’t affect the physical model’s accuracy.

Interactive designing system
We have implemented an interactive marbling sys-

tem as a Windows application using Visual Studio.NET
and OpenGL. We implemented the fluid solver as a
series of pixel shaders, using the Cg language coupled
with an Nvidia GeForce FX 7800 GS GPU. Figure 3 (next
page) shows a snapshot of our designing system.

The control panel in Figure 3 contains all the parame-
ters that users can specify. Besides the comb pattern,
which we’ll discuss later, users can also determine the
paint color and drop size, patterning operation strength,
liquid viscosity, and time step and coarsest-level iterations
used in the fluid solver. Many earlier GPU implementa-
tions of fluid simulation did not perform diffusion (v � 0)
on the velocity field, because visually the numerical dif-
fusion is sufficient.4,6,7 On the contrary, the marbling
process requires high viscosity. In our application we use
v � 0.05 as the default setting. We recommend a higher
viscosity when the magnitude of patterning force is large.

Our system supports the following functions:

■ color application,
■ stick/comb patterning,
■ swirl patterning,
■ tool design,
■ history function,
■ color scheme, and
■ image sharpening.

For the color application, users apply paint colors onto
the liquid to create a basic design. Our system provides
two color applicators: a pipette for dropping color spots,
and a bucket for pouring a continuous stream of dye. Each
color can also be cleared to empty according to its layer.

For the stick and comb patterning, users make pat-
terns by dragging the mouse in the simulation window.

∂
∂

= − ⋅∇()d
t

du

IEEE Computer Graphics and Applications 81

2 Advection of colors. Colors at the four cells closest
to x
 are interpolated to get the new color of x at time
t � 	t.

'x

x

(,)t tδ−u x

(,)tu x

With comb patterning, users can choose one of the pre-
defined combs or design a new comb with the tool design
function. The comb pattern in current use is displayed
in the middle of the control panel. In Figure 4, we pre-
sent a pattern created using only the stick patterning tool.

To make swirl patterns, users create clockwise or
counterclockwise marbling patterns with a user-
specified radius. Figure 5 shows a swirl pattern creat-
ed with this function.

The tool design function cooperates with the comb
patterning function to let users design patterning tools.
The control window in Figure 6 shows a comb with stag-
gered teeth, which is suitable for creating the classic
bouquet patterns.

With the history function turned on, users can undo
or redo their previous operations, and select a particu-
lar step to continue the designing process.

In addition, users can change the paint color scheme
on each layer. With this function, it’s convenient for
users to alter the color scheme of a ready-made mar-
bling texture.

In image sharpening mode, the marbling texture
looks more vivid with an additional image sharpening
step. Since this operation does not really affect the sim-
ulation, we recommend that users turn this mode off
during the designing process to get a higher frame rate,
and only turn it on to see the improved visual effect.

Here we demonstrate the process of generating the
bouquet pattern, one of the most popular and famous
marbling patterns. Figure 7a is a real-world example of
the bouquet pattern that has been combed five times;
Figure 7b shows a similar design created using our sys-
tem. Once the basic design has been made (see Figures
7c through 7e), then we draw a comb in a straight line
from bottom to top (see Figure 7f). The pattern generat-
ed by this action is called nonpareil, a commonly used
intermediate step during the marbling process. We then
draw back the same comb in the other direction, the
teeth passing in between where they have passed before,

Feature Article

82 March/April 2007

3 Screen capture of our real-time marbling system.

4 (a) A real marbling design. (b) The similar pattern
generated with our interactive designing system. We
ran the simulation with a domain size of 384 � 512
pixels.

(a) (b)

5 A green swirl
pattern with a
domain size of
512 � 512 pixels.

6 Control window for the tool design function. The red
dots denote teeth on the comb; the blue one stands for
the handle (the mouse position when holding the tool).

forming the gel git pattern (see Figure 7g). Repeating
the last two steps in the orthogonal direction yields
another gel git (see Figures 7h and 7i). We perform the
final combing using a comb with two staggered rows of
teeth, such as the one shown in Figure 6. A side-to-side
motion while combing produces the curved shapes (see
Figure 7j). We finally open the image sharpening mode
and tune the color scheme. All the images shown in Fig-
ure 4b, Figure 5, and Figures 7b through 7j satisfy the
periodic condition, and we can directly use them for
seamless texture mapping—this is the case with all
images created with our system.

In Figures 8 and 9 we demonstrate the potential appli-
cations of computer-generated marbling textures to 3D
image synthesis. The top-left image in Figure 8 is a mar-
bling texture that our system created. The top-right
image in Figure 8 is a 2 � 2 tiling of the marbling texture,
which we’ve applied to the Venus model using projec-
tion mapping. The seamless feature of our created mar-
bling texture can be easily observed. In Figure 9, we apply
our created texture to the design of a facial tissue box.

We have run a series of marbling simulations using
our designing system, and compared the performance
of our multigrid–multilayer solver to a standard Jacobi
solver on the GPU (see Table 1). Both implementations
are reasonably optimized, and comparable in visual
effect. All tests used a 3-GHz Pentium 4 and an Nvidia
GeForce FX 7800 GS graphics card.

Conclusions and future directions
Marbling is fun and easy at the beginner level. Unlike

many artistic media, with decent instruction users can
produce some fine papers on their first few tries. There
is such an infinite variety of patterns and color combina-
tions that it never gets boring. It’s even easier for begin-
ners to start with a virtual environment, because they
can simply undo their misoperations, and discover the
right way through trial and error.

An extended application of our marbling system is
texture synthesis. We might not start every designing
process from scratch, but take a refined texture image
as input. Then we can use the system to apply some
marble-like effect onto it, without disturbing the
seamless-tiling property of the original texture image.
Figure 10 (next page) demonstrates an example of this.
Currently we don’t support the third step of the tradi-
tional marbling process in our implementation. Adding
this function involves modeling the absorption and

IEEE Computer Graphics and Applications 83

Table 1. A standard Jacobi solver using 20 iterations per pass
versus our multigrid–multilayer solver using the 10 coarsest-
level iterations.

Domain Sizes Jacobi Ours (frames per second)
(pixels) (frames

per No Image With Image
second) Sharpening Sharpening

256 � 256 37.6 64.3 37.6
512 � 512 12.2 24.4 15.0
1,024 � 1,024 3.1 6.3 4.2

7 (a) A real-world bouquet pattern. (b) A design similar to that in (a) created with our system. (c – j) Images showing the steps in the
bouquet pattern-generation process. We ran the simulation with a domain size of 512 � 256 pixels.

8 Design application to 3D image synthesis.

9 Design application to a facial tissue box design.

(a) (b)

(g)(f)

(c) (d)

(i)(h)

(e)

(j)

(a) (b)

(g)(f)

(c) (d)

(i)(h)

(e)

(j)

diffusion of colors on the paper or other materials,
which is our next goal.

On the other hand, we have yet to perfect the model of
the first two steps. For example, we still suffer from blurred
color boundaries using shock filtering. In a newly pub-
lished paper on digital marbling, the advection model is
improved by the combination of a high-order spatial inter-
polation and a sharp interface method to match the high-
ly detailed, sharp fluid interfaces in marbling patterns.13

This suggests a potential way to overcome this limitation
in our future work. Another future research direction is to
further improve the system’s speed. Although we have
mapped the fluid solver to the GPU coupled with a multi-
grid Poisson solver, the performance is not yet satisfac-
tory under high grid resolutions. We believe that per-
formance can be boosted largely if we further exploit the
parallelism provided by today’s graphics hardware. ■

Acknowledgments
This project is supported by the National Natural Sci-

ence Foundation of China (grant nos. 60340440422,
60573153, and 60533080) and the Natural Science
Foundation of Zhejiang Province (grant no. R105431).

References
1. X. Mao, T. Suzuki, and A. Imamiya, “AtelierM: A Physical-

ly Based Interactive System for Creating Traditional Mar-
bling Textures,” Proc. 1st Int’l Conf. Computer Graphics and
Interactive Techniques in Australasia and South East Asia,
ACM Press, 2003, pp. 79-86.

2. J. Stam, “Stable Fluids,” Proc. Siggraph, ACM Press, 1999,
pp. 121-128.

3. J. Stam, “Real-Time Fluid Dynamics for Games,” Proc.
Game Developer Conf., 2003, http://www.dgp.toronto.
edu/people/stam/reality/Research/pub.html.

4. R. Fedkiw, J. Stam, and H.W. Jensen, “Visual Simulation of
Smoke,” Proc. Siggraph, ACM Press, 2001, pp. 15-22.

5. A.J. Chorin and J.E. Marsden, A Mathematical Introduction
to Fluid Mechanics, 3rd ed., Springer, 1993.

6. M.J. Harris, “Fast Fluid Dynamics Simulation on the GPU,”
GPU Gems: Programming Techniques, Tips, and Tricks for
Real-Time Graphics, Addison-Wesley, 2004, pp. 637-665.

7. J. Bolz et al., “Sparse Matrix Solvers on the GPU: Conju-
gate Gradients and Multigrid,” ACM Trans. Graphics, vol.
22, no. 3, 2003, pp. 917-924.

8. C. Garcia et al., “Beowulf Performance in CFD Multigrid
Applications,” Proc. 10th Euromicro Workshop Parallel, Dis-
tributed and Network-Based Processing, IEEE CS Press,
2002, pp. 7-14.

9. N. Goodnight et al., “A Multigrid Solver for Boundary Value
Problems Using Programmable Graphics Hardware,” Proc.
Eurographics/Siggraph Workshop Graphics Hardware,
Eurographics Assoc., 2003, pp. 102-111.

10. J. Kruger and R. Westermann, “Linear Algebra Operators
for GPU Implementation of Numerical Algorithms,” ACM
Trans. Graphics, vol. 22, no. 3, 2003, pp. 908-916.

11. F. Guichard and J.M. Morel, “A Note on Two Classical
Shock Filters and Their Asymptotics,” Proc. 3rd Int’l Conf.
Scale-Space and Morphology in Computer Vision, Springer,
2001, pp. 75-84.

12. S. Osher and L.I. Rudin, “Feature-Oriented Image Enhance-
ment Using Shock Filters,” SIAM J. Numerical Analysis, vol.
27, no. 4, 1990, pp. 919-940.

13. R. Acar and P. Boulanger, “Digital Marbling: A Multiscale
Fluid Model,” IEEE Trans. Visualization and Computer
Graphics, vol. 12, no. 4, 2006, pp. 600-614.

Xiaogang Jin is a professor at the
State Key Laboratory of CAD & CG at
Zhejiang University, People’s Repub-
lic of China. His research interests
include implicit surface computing,
cloth animation, crowd and group
animation, computer animation, and
digital geometry processing. Jin has a

BSc in computer science, and an MSc and PhD in applied
mathematics, all from Zhejiang University. Contact him
at jin@cad.zju.edu.cn.

Shaochun Chen is a software engi-
neer at Ubisoft Shanghai. Her
research interests include computer
games, texture design, and computer
animation. Chen has an MS in com-
puter science from Zhejiang Universi-
ty. Contact her at chenshaochun@
cad.zju.edu.cn.

Xiaoyang Mao is an associate pro-
fessor at the University of Yamanashi
in Japan. Her research interests
include flow visualization, texture
synthesis, nonphotorealistic render-
ing, and human–computer interac-
tions. Mao has an MS and PhD in
computer science from Tokyo Univer-

sity. Contact her at mao@yamanashi.ac.jp.

Article submitted: 16 May 2006; revised: 17 Aug. 2006;

accepted: 17 Aug. 2006.

Feature Article

84 March/April 2007

10 Application to texture synthesis: (a) the original texture and (b) the
marbled one.

Web Extra
For a video of the virtual marbling system in use, go to

http://opac.ieeecomputersociety.org/opac?year=�

�&volume=
��&issue=�&acronym=cga.

(a) (b)

