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Abstract

Vehicle logo recognition (VLR) is essential in intelligent transportation systems. Although many VLR algorithms have been
proposed, efficient and accurate VLR remains challenging in machine vision. Many VLR algorithms explicitly detect the coarse
region of the vehicle logo either by offsetting the detected location of the license plate or by training on numerous images with
manual bounding-box annotations. However, the results of license plate detection can significantly influence the VLR accuracy,
whereas bounding-box annotations are considerably labor-intensive. Thus, we propose a novel category-consistent deep network
learning framework for accurate VLR. A convolutional-neural-network-based vehicle logo feature extraction model is proposed
to extract deep features by considering both high- and low-level features in an image. Moreover, a novel category-consistent
mask learning module is proposed to help the framework to focus on category-consistent regions without relying on license plate
detection or manual box annotations. The deep network is trained and optimized iteratively with the objective function incorporating
classification loss and category-consistency loss. Extensive experimental evaluations and comparisons on the publicly available
HFUT, XMU, CompCars, and VLD-45 datasets demonstrate the feasibility and superiority of the proposed algorithm.
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1. Introduction

Image recognition is an interesting topic in the field of com-
puter vision. Owing to the increasing demand for automatic
identification of vehicles, computer-aided intelligent technolo-
gies play an important role in improving the performance of
various transportation systems [1, 2]. The detection of vehi-
cle license plates and the recognition of vehicle manufacturers
are crucial components in these systems [3, 4]. In the recogni-
tion process, the vehicle logo is certainly the clearest indicator
of a vehicle’s manufacturer [5], as vehicle logos with the same
maker usually have a unique and standard visual design.

Vehicle logo recognition (VLR) has garnered considerable
attention over recent decades, and many algorithms have been
proposed to address this problem. By taking advantage of con-
volutional neural networks (CNNs), Huang et al. [6] proposed a
CNN-based VLR system that uses an efficient pretraining strat-
egy to reduce the high computational cost of kernel training. Yu
et al. [7] presented a novel learning-based multilayer pyramid
network for recognizing vehicle logo images. These methods
require additional segmentation of vehicle logo regions based
on some prior knowledge, such as license plate detection. How-
ever, if the location of the license plate is not accurately de-
tected or if a vehicle has no license plate, the accuracy of sub-
sequent recognition decreases significantly.

Certain CNN-based methods that support the recognition of
vehicle logos from frontal images of vehicles have recently
been studied. Yang et al. [8] recognized vehicle logos by using
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the YOLOv3 [9] framework. Yu et al. [10] presented a novel
two-stage VLR framework with a region proposal network and
convolutional capsule network. All these methods are based on
the detection of vehicle logos and, thus, rely on a large quantity
of manually annotated bounding boxes with image-level cat-
egory labels. However, bounding-box annotations of vehicle
logos are considerably labor-intensive.

In addition to vehicle logos, frontal faces of vehicles with
the same vehicle maker share visual correlations. As shown
in Fig. 1 (middle-left), the sample vehicle images of the same
make (Acura) are captured under different conditions, such as
vehicle model, vehicle color, and illumination. Because these
vehicle images belong in the same Acura category, their frontal
faces exhibit similar visual characteristics. Such an observation
allows us to utilize these common characteristics to improve
the performance of VLR. This motivates us to design a new
VLR learning framework that automatically focuses on com-
mon category-consistent regions without explicitly knowing the
locations of vehicle logos. Moreover, we are interested in de-
veloping a unified network learning framework for accurately
recognizing vehicle logos from both vehicle logo images and
frontal images of vehicles. Consequently, our algorithm can
not only recognize frontal images of vehicles directly but also
be used to improve the recognition performance for segmented
vehicle logo patches.

To this end, we propose a novel category-consistent deep net-
work learning framework for accurate VLR. Specifically, we
propose a novel vehicle logo feature extraction CNN (called
VLF-net) to extract hierarchical features automatically, and
then, we use the extracted high- and low-level features to recog-
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nize a vehicle logo given an input vehicle logo image. VLF-net
reuses extracted intermediate features to reduce both computa-
tional cost and the number of parameters by taking advantage
of the identity shortcut connection [11] and dense connection
[12]. To further improve the recognition performance, a novel
category-consistent mask learning (CCML) module is devel-
oped to learn the category-consistent regions without knowing
accurate vehicle logo regions. Instead of using license plate
detection techniques or manual bounding-box annotations of
vehicle logos, our framework enforces a deep neural network
to distinguish the common regions from uncorrelated back-
grounds for each matching vehicle make in an image. Thus,
our new algorithm can recognize vehicle logos from frontal im-
ages of vehicles without the explicit detection of vehicle logo
locations. Our proposed algorithm achieves high accuracy on
publicly available datasets of vehicle logo images (HFUT-VL
[13] and XMU [6]) and vehicle images (CompCars [14] and
VLD-45 [15]).

In summary, our study makes the following contributions:

• A novel feature extraction CNN called VLF-net is pro-
posed to robustly extract multiple levels of vehicle logo
features.

• A novel CCML module is proposed to help the network
to focus on category-consistent regions without relying on
license plate locations or manual box annotations.

• Classification loss and category-consistency loss are in-
corporated, and a new category-consistent deep network
learning framework is proposed for accurate VLR.

• Various experimental results show that the proposed uni-
fied algorithm can achieve better performances in recog-
nizing vehicle logos from both vehicle logo images and
frontal images of vehicles.

The remainder of this paper is organized as follows. A brief
review of the related work is provided in Section 2. Then, the
details of our algorithm are introduced in Section 3. Section
4 describes the experimental setup. Experimental comparisons
and discussions are presented in Section 5. Finally, the last sec-
tion concludes the paper and provides a scope for future work.

2. Related work

Existing VLR methods can be roughly categorized into shal-
low learning-based and deep learning-based methods. Shallow
learning-based methods usually do not require a large number
of samples and efficiently extract visual features, such as edges,
grayscale, and shapes, to describe vehicle logos. Deep learning-
based methods can automatically learn multiple stages of in-
variant vehicle logo features by using CNNs.

In shallow learning-based methods, traditional handcrafted
low-level features and shallow visual features have been widely
used by leveraging a specific classification to solve the VLR
problem. Pan et al. [16] first segmented the regions of interest
that cover the logo based on the position of the license plate and

then used AdaBoost and support vector machine (SVM) classi-
fiers to localize and detect the logo. Peng et al. [17] proposed a
novel feature representation strategy named statistical random
sparse distribution to treat low-resolution and low-quality im-
ages and used multiscale scanning to locate and classify logos.
Tafazzoli et al. [18] incorporated logo detection into their sys-
tem to boost the reliability of vehicle make and model recogni-
tion. They trained their SVM classifier to recognize the regions
provided by a sliding window technique, but their approach is
computationally slow. Zhao et al. [19] applied the modified Hu
invariant to extract vehicle logo features and then used the grey
wolf optimization algorithm to optimize the SVM to identify
logos. Yu et al. [13] employed patterns of oriented edge magni-
tudes to enhance the feature representation and employed col-
laborative representation-based classification to achieve satis-
factory recognition results. Oriented texture patterns were also
used for object matching in [20]. By using the histogram of
oriented gradients (HOG) to describe the visual characteristics
of an object, Lu et al. [21] presented a hierarchical multi-stage
classification method to recognize vehicle models at the brand
level for a given logo sub-region. Recently, Yu et al. [7] pro-
posed a multilayer pyramid network based on learning. They
mapped pixel difference matrices extracted from input images
with different resolutions to binary matrices to obtain code-
books, and then they applied a multi-codebook-based classifica-
tion method to solve the VLR problem. However, handcrafted
features and shallow visual features are influenced by various
imaging conditions, such as rotation and translation, poor illu-
mination, viewpoints variation, and degradation by noise.

Because of the powerful expression ability of deep features,
many deep learning-based VLR algorithms have achieved ex-
cellent performance. Deep learning-based methods can auto-
matically learn multiple stages of invariant vehicle logo features
by using CNNs [22]. Thubsaeng et al. [23] applied their CNN
to detect candidate regions and recognize vehicle logos based
on a pyramid of HOG and SVM. Soon et al. [24] used the
stochastic method of particle swarm optimization to automati-
cally search and optimize a CNN model and hyper-parameters.
The fine-tuned and trained CNN ensures good convergence and
classification performance. Recently, Soon et al. [25] further
used a 7-layer CNN model and the whitening transformation
technique to remove redundant adjacent image pixels. The
extracted features were sufficiently discriminative to improve
recognition accuracy. Recently, a joint framework that simul-
taneously performs image restoration and recognition was pro-
posed by Chen et al. [26], and it was shown to effectively im-
prove the accuracy of VLR. Many general object recognition
algorithms [11, 12] achieved competitive results on general ob-
ject recognition tasks by using very deep networks; however,
they were not designed specifically for VLR. These CNN-based
methods do not fully utilize the advantages of low- and high-
level features, which contain helpful information to identify dif-
ferent categories to enhance the network robustness.

Some existing VLR systems rely on license plate detection
to obtain a coarse region of the vehicle logo using experience-
based prior knowledge and then apply a vehicle logo classifi-
cation technique to perform the VLR task. Huang et al. [6]
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Figure 1: Overall pipeline of the proposed category-consistent deep network learning framework. We take images in the same category to generate category-
consistent masks by using a pre-trained VGG-19 model and deep descriptor transformation algorithm. Then, each pair of image and mask is fed into the proposed
category-consistent deep network for training. The feature map extracted with the VLF-net module is further fed into the classification module and CCML module.
After end-to-end training, these modules can jointly optimize the representation learning of the backbone network.

proposed a new CNN model and used a pretraining strategy
based on principal component analysis (PCA [27]) to reduce
the computational cost and improve the VLR performance. Li
et al. [28] developed a novel distributed system framework
and designed a new weight initialization approach to train a
MapReduce-based CNN model. The method can not only in-
crease the recognition accuracy but also reduce the computa-
tional cost. However, these methods may not work well if there
is no license plate in the vehicle logo image or the license plate
location is not detected accurately.

Many methods require labor-intensive bounding-box anno-
tations of vehicle logos for training the position and category
of vehicle logos based on a general object detection frame-
work [29, 30, 31, 9]. Some algorithms [32, 33, 34] locate the
positions of predicted objects by using a region proposal net-
work and then recognize objects based on Faster-RCNN [31].
Other algorithms [35, 36, 8] locate and recognize predicted ob-
jects simultaneously based on different versions of the you only
look once (YOLO) algorithm [29, 30, 9] and have an advantage
over the aforementioned two-stage algorithms in terms of de-
tection speed. Yang et al. [8] designed a modified version of
the YOLOv3 model [9] and trained it on their vehicle logo de-
tection dataset. Their YOLOv3-based algorithm achieved good
performance on complex scenes. Yu et al. [10] proposed a
cascaded deep convolutional network and applied it to their op-
timized detection framework to detect and recognize vehicle lo-
gos precisely. Zhang et al. [37] introduced a novel multi-stage
training policy and lightweight network structure with separa-
ble convolution for the accurate real-time detection of vehicle
logos. Zhou et al. [38] proposed an algorithm to detect vehi-
cle logos under motion blur based on YOLOv3. However, their
vehicle logo dataset containing bounding-box annotations re-
quired much time to collate. Manual bounding-box annotations
of vehicle logos are considerably labor- and cost-intensive. In
comparison, our proposed algorithm is a deep learning-based
method that can recognize vehicle logos from frontal images of
vehicles without the explicit detection of vehicle logo locations.

3. Proposed algorithm

In this section, we introduce the proposed category-
consistent deep network learning framework in detail. As illus-
trated in Fig. 1, our framework consists of three main modules:

• Vehicle logo feature extraction network module (VLF-
net): a backbone that extracts high-dimensional deep fea-
tures from an input image. We use θvl f to represent the
learnable network parameters in VLF-net.

• Classification module (CM): a module that maps the
learned feature map produced by VLF-net to a probability
distribution vector, C(I|θvl f , θcls), and outputs the vehicle
logo category, where θcls denotes the learnable parameters
in the CM.

• Category-consistent mask learning (CCML) module: a
module that learns a predicted category-consistent region
mask, M′(I|θvl f , θmask), based on the feature map produced
by VLF-net, where θmask represents the learnable parame-
ters in the CCML module.

Let I ∈ Rh×w×3 be an input image containing the vehicle logo,
where h and w denote the width and height of I, respectively.
In the preprocessing step, we employ an unsupervised deep
descriptor transformation (DDT) algorithm [39] to generate a
category-consistent mask, M(I) ∈ Rh′×w′×1, that coarsely cov-
ers the common visual regions for the same category, where h′

and w′ denote the width and height of M(I), respectively. Then,
a deep feature map for I is extracted by using VLF-net. Next,
given the number of vehicle logo categories, n, a probability
vector, C(I|θvl f , θcls) ∈ Rn×1, is obtained from the feature map
by the CM to indicate the predicted probability for each cate-
gory. The vehicle logo in the input is classified as belonging
to the category with the maximum probability. The generated
mask, M(I), is fed to the CCML module to enforce VLF-net to
pay attention to the common region to learn a better feature rep-
resentation. The predicted mask, M′(I|θvl f , θmask) ∈ Rh′×w′×1,
indicates the category-consistent region for I.

3



During training, the CM and CCML module jointly opti-
mize the representation learning of VLF-net with classifica-
tion loss and category-consistency loss, respectively. During
inference, only VLF-net and the CM are activated for the VLR
task. Therefore, the DDT algorithm is not required for infer-
ence. Note that the proposed algorithm can automatically rec-
ognize vehicle logos from frontal images of vehicles without
the explicit detection of vehicle logo locations, which requires
time-consuming manual annotations.

3.1. Vehicle logo feature extraction network module

Owing to the requirements for robust vehicle logo features
used in VLR, we leveraged the advantages of the CNN, which
can extract object features, effectively to design VLF-net. In
this subsection, we describe our VLF-net in detail by making
the best use of high- and low-level features.

We consider that a single image, x0, is input into a block
of a CNN containing L layers. Each layer, l, is defined by a
non-linear transformation, Hl(·), composed of multiple consec-
utive operations. The operations in Hl(·) usually include con-
volution (Conv), batch normalization (BN), and rectified linear
unit (ReLU). An example of a basic network block is shown in
Fig. 2 (a).

Let xl be the output of the lth layer. For a basic convolutional
feed-forward network block, the output of the (l − 1)th layer,
xl−1, is the input to the lth layer. Therefore, the transition of
basic connections can be denoted as

xl = Hl(xl−1). (1)

The identity shortcut connection was introduced in Res-
block [11] for improving the accuracy of image recognition.
As shown in Fig. 2 (b), the identity shortcut connection adds
an identity function to the output of the non-linear transforma-
tion. The output, xl, of the identity shortcut connection is then
defined as

xl = Hl(xl−1) + xl−1. (2)

This means that if the identity mapping from xl−1 is closer to the
optimal function, it should be easier for the remaining transfor-
mations (e.g., Hl(xl−1)) to find the perturbations between the
optimal function and identity mapping. Moreover, it can help
the gradients and other information to flow easily between the
next and previous layers.

In the dense connection block [12], each layer receives all
outputs of preceding layers as input, and its feature maps are
used as input to all subsequent layers. The output of the dense
connection block can be defined as

xl = Hl([x0, x1, · · · , xl−1]). (3)

As shown in Fig. 2 (c), all preceding layers, x0, x1, · · · , xl−1, are
used as inputs to the lth layer, where [x0, x1, · · · , xl−1] refers to
the concatenation operator for x0, x1, · · · , xl−1.

In this paper, we propose a new VLF network block by taking
advantage of both the identity shortcut connection and dense
connection. These connections have been proven in ResNet
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Figure 2: Illustration of (a) basic block, (b) Res-block, (c) dense block, and (d)
proposed VLF-block. The Res-block, dense block, and VLF-block are com-
posed of multiple basic blocks. The number of basic blocks can be adjusted
flexibly.

[11] and DenseNet [12] to efficiently strengthen gradient prop-
agation and alleviate the degradation problem. The proposed
VLF-block is defined as

xl = Hl([x0, x1, · · · , xl−1]) + xl−1. (4)

First, we employ a basic block with a composite function
that contains six successive operations, namely, 1×1 Conv, BN,
ReLU, 3×3 Conv, BN, and ReLU. Next, the basic block is used
to construct a Res-block [11] based on Eq. 2. The basic block
and Res-block are then combined to construct the VLF-block.
The proposed VLF-block is illustrated in Fig. 2 (d).

The proposed VLF-net is constructed based on the Res-block
and VLF-block. The detailed network structure of VLF-net is
presented in Table 1. As shown in Fig. 2 (a), each Conv opera-
tion is followed by BN and ReLU operations in the basic block.
The Res-block and VLF-block are constructed based on the ba-
sic block, as shown in Figs. 2 (b and d). As shown in Table 1,
we set a dropout probability of 0.5. Layers of “Residual” and
“Concat” in Table 1 represent the identity shortcut connection
and concatenation operations in Eqs. 2 and 3, respectively. In
each VLF-block, we add a 1 × 1 Conv as a bottleneck layer be-
fore each 3× 3 Conv, as in ResNet and DenseNet, to reduce the
number of input feature maps and improve the computational
efficiency. To reduce the dimensionality of the feature maps
and improve model compactness, the 1×1 Conv and 2×2 max-
pooling (MaxPool) operations are inserted as a transition layer
[12] between each VLF-block and Res-block. Table 1 shows
that there are 47 convolution layers in VLF-net.

By leveraging the advantages of the shortcut connection and
dense connection, VLF-block can prevent the deep network
degradation problem and help the network strengthen feature
propagation. Therefore, the proposed VLF-net encourages fea-
ture reuse in VLR tasks. In the following subsections, we de-
scribe how VLF-net is integrated into our framework.

3.2. Classification module

As shown in Fig. 1 (top-right), the proposed CM is based on
the feature map extracted by VLF-net. The feature map is taken
as input, and the CM outputs the category of the vehicle logo.
For example, the vehicle logo of the input image is recognized
as the “Acura” category in Fig. 1 (top-right).

The CM adds a global average pooling operator and fully
connected (FC) layer to the end of VLF-net. The FC layer acts
as a nested linear classifier in this recognition model. In addi-
tion, to handle multiple vehicle logo categories, the soft-max
function is employed at the end of the CM. The output of the
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Table 1: List of detailed operations in the proposed VLF-net. For simplified an-
notation, each “Conv” layer corresponds to the sequence Conv, BN, and ReLU.

Layer No. of filters Size Output size
Conv 32 3×3 h × w
MaxPool 32 2×2 / 2 h/2 × w/2

VLF-
block

Conv 32 1×1

×3Conv 32 3×3
Residual
Concat
Conv 64 1×1
MaxPool 64 2×2 / 2 h/22 × w/22

Res-
block

Conv 64 3×3
Conv 64 3×3
Residual

VLF-
block

Conv 32 1×1

×3Conv 64 3×3
Residual
Concat
Conv 128 1×1
MaxPool 128 2×2 / 2 h/23 × w/23

Res-
block

Conv 128 3×3
Conv 128 3×3
Residual

VLF-
block

Conv 64 1×1

×3Conv 128 3×3
Residual
Concat
Conv 256 1×1
MaxPool 256 2×2 / 2 h/24 × w/24

Res-
block

Conv 256 3×3
Conv 256 3×3
Residual

VLF-
block

Conv 128 1×1

×3Conv 256 3×3
Residual
Concat
Conv 512 1×1
MaxPool 512 2×2 / 2 h/25 × w/25

Res-
block

Conv 512 3×3
Conv 512 3×3
Residual

VLF-
block

Conv 256 1×1

×3Conv 512 3×3
Residual
Concat
Conv 1024 1×1
MaxPool 1024 2×2 / 2 h/26 × w/26

Conv 512 3×3
Conv 1024 3×3
Conv 512 3×3 h/26 × w/26

soft-max function is a probability feature vector, C(I|θvl f , θcls),
containing the probabilities of all vehicle logo categories for the

input image. Therefore, the dimension of C(I|θvl f , θcls) is equal
to the number of vehicle logo categories, n. The category of the
vehicle logo can be recognized by choosing the maximum prob-
ability in the predicted probability feature vector, C(I|θvl f , θcls).

The classification loss function, Lcls, used in the CM is de-
fined as

Lcls = −
∑
I∈I

l(I) · log C(I|θvl f , θcls), (5)

where I denotes the image set for training, and the label vector,
l(I) ∈ Rn×1, is the ground-truth one-hot category label for each
input image, I.

3.3. Category-consistent mask learning module

Objects in images from the same category usually share some
visual commonality, which has been proven to help a learning
model to recognize objects [40]. In our work, different im-
ages with the same vehicle maker usually have the same visual
patterns in the vehicle logo. Therefore, the foreground vehi-
cle logo regions have high correlations among images from the
same category of vehicle logo. Here, we enforce our network
to emphasize the visually common regions for the same vehicle
logo category to further improve the recognition performance.
Specifically, a novel CCML module is proposed to help the net-
work to distinguish common regions from the background.

First, we adopt the DDT algorithm [39] to automatically gen-
erate category-consistent masks for our deep network learn-
ing. The process of this unsupervised image co-localization
method is illustrated in Fig. 1 (left). First, we take as input
the images with the same vehicle logo categories based on the
image-level labels. Then, given a set of images, S , contain-
ing m images with the same category, the pre-trained VGG-19
model [41], which was trained on ImageNet, generates a feature
map, F(I|θvgg) ∈ Rh′′×w′′×d, for each image, I ∈ S , in the final
CNN layer, where width h′′ = h/25, height w′′ = w/25, depth
d = 512, and θvgg are the pre-trained VGG-19 parameters. A
large feature set is obtained by gathering these feature maps to-
gether. Next, PCA [27] is applied to the feature set along the
depth dimension to obtain d eigenvectors and their correspond-
ing eigenvalues. Eigenvector ξ ∈ Rd×1 with the largest eigen-
value is applied to each spatial location of F to obtain a heat
map, H ∈ Rh′′×w′′×1. Formally, H is expressed as

Hi, j =

d∑
k=1

Fi, j,kξk, 1 ≤ i ≤ h′′, 1 ≤ j ≤ w′′. (6)

H is then upsampled by nearest interpolation to the original in-
put size to obtain the upsampled version, H′ ∈ Rh×w×1. The
nearest interpolation will not change the signs of the numbers
because it is a zero-order interpolation method.

Zero thresholding and max connected component analysis
[39] are applied on H′ to generate a binary category-consistent
mask, M(I) ∈ Rh×w×1. As a consequence, with the image-level
category labels and pre-trained VGG-19 model, we can auto-
matically generate category-consistent masks for all training
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Figure 3: Detailed architecture of the proposed network. The structures of the VLF-blocks and Res-blocks are represented by dashed rectangles. Note that the
CCML module is neglected with a simple conditional jump instruction in the forward propagation during inference.

Table 2: List of detailed operations in our CCML module.
Layer # Filters Size Output size
Conv 128 3×3 h/26 × w/26

Upsampling 128 2×2 / 2 h/25 × w/25

BN
ReLU
Conv 128 3×3
Conv 1 1×1
Sigmoid h/25 × w/25

images. Note that mask M(I) is used to guide our category-
consistent deep network learning, and thus DDT is performed
only once as a preprocessing step for the network training.

After generating the category-consistent masks using DDT,
we present the novel CCML module. Here, we directly reuse
the feature map produced by the VLF-net module as input to
the CCML module. As shown in Table 2, the CCML mod-
ule has 7 successive operations: 3 × 3 Conv, bilinear upsam-
pling, BN, ReLU, 3 × 3 Conv, 1 × 1 Conv, and sigmoid. The
CCML generates predicted mask M′(I|θvl f , θmask) ∈ Rh′×w′×1

with learnable parameters θmask for the 7 successive operations.
Therefore, size w′ × h′ of the predicted mask, M′(I|θvl f , θmask),
is not equal to that of the category-consistent mask, M(I). Be-
cause M(I) is generated from the upsampled heat map, H, with
the nearest interpolation, we now employ the nearest dowsam-
pling interpolation scheme on M(I) to obtain the downsampled
version, MD(I) ∈ Rh′×w′×1, without loss of information.

Now that we have the category-consistent mask, MD(I), and
predicted mask, M′(I|θvl f , θmask), and we define a new category-
consistency loss function, Lmask. Cross-entropy loss has been
widely used in many image segmentation applications [42, 43].
Because the category-consistent mask is actually a binary mask,
we calculate Lmask with the binary cross-entropy loss. For-
mally, Lmask is expressed as

Lmask = −
∑
I∈I

{MD(I) · log
(
M′(I|θvl f , θmask)

)
+ (1 − MD(I)) · log

(
1 − M′(I|θvl f , θmask)

)
}.

(7)

By end-to-end training, our CCML enforces the proposed
network to focus on learning the common visual features of
images from the same vehicle logo category. As a result,
the category-consistent regions are effectively captured with
the predicted mask, M′(I|θvl f , θmask). As illustrated in Fig. 1,
the learned values in M′(I|θvl f , θmask) naturally distinguish the
category-consistent regions from the background. CCML facil-
itates the learning of discriminative category features and helps
the network to learn a better representation to improve the VLR
performance.

3.4. Category-consistent deep network learning
The three modules of VLF-net, CM, and CCML in the pro-

posed category-consistent deep network learning framework
are trained together in an end-to-end manner.

The final objective function, L, of the proposed framework
is now defined as

L = Lcls + αLmask, (8)

where the weight parameter, α, is used for tuning between
the classification loss, Lcls, and the category-consistency loss,
Lmask. We set α = 0.01 for all experiments reported in this
paper.

Fig. 3 shows the detailed architecture of the proposed CNN.
During training, the whole network framework is optimized by
minimizing the objective function, L. CCML effectively en-
forces the network to focus on the category-consistent regions
while decreasing the influence of irrelevant background. Dur-
ing inference, only VLF-net and the CM are needed for efficient
VLR. This is easily implemented using a simple conditional
jump instruction in the forward propagation with CCML ne-
glected. Therefore, CCML is only used to learn a better repre-
sentation and does not introduce additional computational cost
at inference time.

4. Experimental setup

4.1. Datasets
We used publicly available datasets containing vehicle logo

images (HFUT-VL [13] and XMU [6]) and images of vehicles
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Figure 4: Sample images from the five datasets for experimental evaluation: (top-left) HFUT-VL1 [13], (middle-left) HFUT-VL2 [13], (top-right) XMU [6],
(middle-right) CompCars [14], and (bottom) VLD-45 [15].

(CompCars [14] and VLD-45 [15]) to evaluate the performance
of our VLF-based VLR algorithms and the superiority of our
proposed framework. These datasets are described as follows:

1. The HFUT-VL1 dataset contains 16,000 vehicle logo im-
ages with 80 categories of vehicle logos, as shown in Fig. 4
(top-left). Each category consists of 200 images of size
64×64.

2. The HFUT-VL2 dataset has 16,000 images with 80 cate-
gories of vehicle logos, as shown in Fig. 4 (middle-left).
Each category includes 200 images of size 64 × 96. Each
image contains a vehicle logo and is segmented with a
coarse location scheme.

3. The XMU dataset contains 11,500 vehicle logo images
with 10 categories of vehicle logos, as shown in Fig. 4
(top-right). Each category includes 1,150 images of size
70 × 70.

4. The CompCars dataset contains data from two scenarios,
one of web nature and another of surveillance nature. In
our experiment, the surveillance nature data captured from
a front view by surveillance cameras were used as the ex-
perimental dataset. The surveillance nature data in Comp-
Cars contain 50,000 vehicle images covering 281 vehicle
models and 68 categories of vehicle makes, as shown in
Fig. 4 (middle-right).

5. The new VLD-45 dataset was built from websites using
web crawler technology and Pascal VOC dataset, as shown
in Fig. 4 (bottom). The dataset contains 45,000 images
and 50,359 vehicle logos with 45 categories. It includes
several research challenges, such as small-sized objects,
shape deformation, brightness variations, and background
noise. The image size varies with a large interval. The
largest image size is 7, 359 × 4, 422, whereas the smallest
image size is 610 × 378.

For a fair comparison, for the HFUT-VL1, HFUT-VL2,
XMU, and CompCars datasets, we used the same settings as
Yu et al. [10], who split each dataset into a training set and
testing set without overlap. For each dataset, the training set
and testing set accounted for 70% and 30% of images in each
category by random selection, respectively.

For the HFUT-VL1, HFUT-VL2, and XMU datasets, during
both the training and testing stages, original image sizes were

Figure 5: Statistics of the number of images across 68 categories in the surveil-
lance nature data of CompCars.

used for HFUT-VL1 and XMU, while images in HFUT-VL2
were resized to 112 × 112.

For the CompCars dataset, we show the statistics of the num-
ber of images across 68 categories in the surveillance nature
data in Fig. 5. We can see that the distribution of the number of
images across categories is not balanced. To reduce the influ-
ence of data imbalance, we first apply a random augmentation
scheme to categories containing less than 1,000 images in the
training set by randomly selecting a random operation, such as
vertical and horizontal translation from -0.15 to 0.15, rotation
angle from -15◦ to 15◦, horizontal reflection probability of 0.5,
HSV saturation from -0.5 to 0.5, and HSV intensity from -0.5
to 0.5. We then sample 1,000 images for each category from
the augmented set for training. All images in both the training
and testing sets are resized to 256 × 256. During training, we
employ additional random cropping with a size of 224 × 224.

For the VLD-45 dataset, we follow the settings of Yang et al.
[15] for the task of classification. Specifically, we first select
30,000 images with a single object at random. Then, we ran-
domly split images in each category into the training and testing
sets with a ratio of 1:1. Therefore, both the training and testing
sets contain 15,000 images. All images are resized to 512×512.

During training, we normalize all image data using channel
means and standard deviations. An additional random horizon-
tal flip is employed for data augmentation in all datasets.

4.2. Implementation details

The proposed VLR model is programed using Python based
on the PyTorch framework. In the training optimization stage,
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Table 3: Comparison of our algorithm with general CNN recognition models on the HFUT-VL1, HFUT-VL2, XMU, and CompCars datasets. “CM” denotes
classification only, while “CM + CCML” denotes classification combined with the proposed CCML module. Top-2 scores are highlighted in bold for each column.
An underlined value denotes the greatest performance gain with “CM + CCML” compared to the case with only “CM” for the same network on each test dataset.

Model
Accuracy

HFUT-VL1 HFUT-VL2 XMU CompCars
CM CM + CCML CM CM + CCML CM CM + CCML CM CM + CCML

ResNet-34 [11] 98.52% 98.83% 95.67% 96.17% 100.0% 100.0% 99.86% 99.86%
ResNet-50 [11] 97.98% 98.44% 94.90% 97.31% 99.91% 99.97% 99.86% 99.90%

ResNet-152 [11] 98.29% 98.96% 94.75% 95.40% 94.26% 99.83% 99.86% 99.86%
DenseNet-121 [12] 99.21% 99.38% 97.75% 98.21% 100.0% 100.0% 99.86% 99.88%
DenseNet-169 [12] 99.29% 99.31% 97.50% 97.92% 100.0% 100.0% 99.86% 99.88%

DarkNet53 [9] 96.46% 98.54% 91.21% 93.19% 99.16% 99.91% 99.84% 99.86%
Yang [8] 99.17% 99.23% 97.83% 98.19% 100.0% 100.0% 99.89% 99.89%
VLF-net 99.38% 99.56% 97.79% 98.73% 100.0% 100.0% 99.87% 99.92%

Table 4: Comparison of our algorithm with general CNN recognition models on the VLD-45 dataset. “Top-1” and “Top-5” represent the top-1 and top-5 accuracies,
respectively. Frames per second (FPS) are averaged over all testing images at inference.

Model CM CM + CCML
Top-1 Top-5 FPS Training # Params Top-1 Top-5 FPS Training # Params

ResNet-34 [11] 76.14% 91.54% 79.0 16.12h 21.30M 84.10% 95.27% 80.7 17.25h 21.53M
ResNet-50 [11] 72.35% 90.55% 51.9 28.50h 23.60M 77.86% 93.07% 52.4 29.75h 24.45M

ResNet-152 [11] 76.61% 92.49% 22.9 62.50h 58.23M 84.39% 95.75% 23.1 64.00h 59.08M
DenseNet-121 [12] 86.17% 96.18% 35.3 35.88h 7.000M 88.61% 96.94% 34.1 36.76h 7.433M
DenseNet-169 [12] 78.35% 92.96% 26.3 44.58h 12.56M 88.25% 96.68% 26.5 46.22h 13.25M

DarkNet53 [9] 75.37% 91.65% 49.6 33.20h 40.63M 83.57% 94.96% 49.7 34.12h 41.06M
Yang [8] 65.93% 86.30% 104.9 12.25h 4.739M 72.51% 89.75% 104.8 13.08h 4.965M
VLF-net 79.27% 93.03% 57.8 27.63h 29.05M 92.63% 98.02% 57.9 28.50h 29.27M

the back-propagation and stochastic gradient descent algo-
rithms are employed for loss function minimization. The mini-
batch size of 128 is used on the HFUT-VL1, HFUT-VL2, and
XMU datasets, while a mini-batch size of 32 is used on Com-
pCars. On the VLD-45 dataset, we use a mini-batch size of 8.
All datasets and models are trained with 150 epochs. We set the
initial learning rate to 0.1 and decay it by a factor of 10 every
30 epochs. Following ResNet [11] and DenseNet [12], we use
a weight decay of 10−4 and momentum of 0.9.

5. Experimental results and discussion

In this section, we evaluate the performance of the proposed
VLR algorithm by comparing it to state-of-the-art algorithms
on the aforementioned publicly available HFUT-VL1, HFUT-
VL2, XMU, CompCars, and VLD-45 datasets. Several experi-
mental results are presented and extensively discussed.

5.1. Comparison with general CNN recognition models

As shown in Table 3, we compare our algorithm to state-of-
the-art general CNN object recognition models on the HFUT-
VL1, HFUT-VL2, XMU, and CompCars datasets. Note that all
CNN models in Table 3 use the same settings mentioned in Sub-
section 4.2 and are trained without using pre-trained weights. In
addition, we replaced our VLF-net with the compared models in
our framework to demonstrate the effectiveness of the proposed
CCML. Yang et al.’s algorithm [8] and YOLOv3 [9] recognize

objects based on the detection pipeline, and their experimen-
tal results are obtained using their backbone networks with our
own implementation. Gradients in ResNet [11] and DarkNet [9]
flow easily by using identity shortcut connections. DenseNet
[12] reuses extracted features to strengthen gradient propaga-
tion with dense connections. By combining the advantages
of both identity shortcut connections and dense connections,
our VLF-based algorithm without CCML achieved recogni-
tion accuracies of 99.38%, 97.79%, 100%, and 99.87% on
HFUT-VL1, HFUT-VL2, XMU, and CompCars, respectively.
By emphasizing the category-consistent common regions, our
category-consistent algorithm further improves the VLR accu-
racies with scores of 99.56%, 98.73%, 100%, and 99.92%, re-
spectively. This experiment also shows that our CCML can
benefit most of the compared models. Images in test datasets
contain category-irrelevant background information, and thus
their corresponding category-consistent masks can provide use-
ful category-consistent indication for recognition. We can see
that our proposed CCML improves the performance more ob-
viously on the HFUT-VL1 and HFUT-VL2 datasets than the
XMU and CompCars datasets. Because the overall recogni-
tion accuracies without CCML for HFUT-VL1 and HFUT-VL2
are lower than those for XMU and CompCars, there are more
performance gains with CCML in HFUT-VL1 and HFUT-VL2.
Nevertheless, our novel CCML can notably improve the VLR
accuracy on all these datasets.

We recorded the frames per second (FPS) for the inference
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Figure 6: Comparison of recognition accuracy for each category on the (a) HFUT-VL1, (b) HFUT-VL2, (c) XMU, (d) CompCars, and (e) VLD-45 datasets,
respectively. Please zoom in for better visualization.

phase on a PC with a 2.80 GHz Intel® CoreTM i3-8400 CPU,
16 GB memory, NVIDIA GeForce RTX 2080 GPU, and 64-
bit Ubuntu 16.04 operating system. The average performances
on HFUT-VL1, HFUT-VL2, XMU, and CompCars were 54.5,
51.3, 53.7, and 34.0 FPS, respectively.

Table 4 shows the comparison of our algorithm to general
CNN recognition models on the VLD-45 dataset performed on
an NVIDIA Tesla P100 GPU. Because VLD-45 contains a set
of images with complex backgrounds, small-scale vehicle lo-
gos, shape deformation, and brightness variations, it is diffi-
cult to recognize them precisely. We show the top-1 accuracy,
top-5 accuracy, FPS at inference, training time, and number
of parameters for a comprehensive comparison. Because the
degradation problem is alleviated using identity shortcut con-
nections, networks such as ResNet and Darknet achieve good
performance for classification. When the networks become
deeper, these types of models require more parameters and time
to train. By densely reusing shallow features, condensed mod-
els, such as DenseNet, can learn more accurate models and con-

tain less trainable parameters but still requiring significant train-
ing time. VLF-net takes advantage of both identity shortcut
connections and dense connections to achieve top-1 and top-
5 accuracies of 79.27% and 93.03%, respectively. With the
indication of category-consistent regions provided by CCML,
VLF-net can extract more discriminative features to enhance
recognition performance with the best top-1 and top-5 accura-
cies of 92.63% and 98.02%, respectively. The proposed VLF-
net uses a combination of DenseNet and ResNet style networks.
As shown in Table 4, the number of parameters of VLF-net is
slightly larger than that of ResNet-50 and less than that of Dark-
Net53. VLF-net is also above average in both inference speed
and training time. Besides, Table 4 validates that the VLR per-
formance of all compared models is boosted by equipping them
with the proposed CCML with only a slight increase in training
time (ranging from 0.5 to 1.5 h). Note that our CCML con-
tains only three convolutional layers with 0.22M parameters,
which is only approximately 0.76% of the parameters in the
whole VLF-net. During inference, only the VLF-net module
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Figure 7: Comparison of validation accuracy for each training epoch on (a)
HFUT-VL1, (b) HFUT-VL2, (c) XMU, (d) CompCars, and (e) VLD-45.

and CM are required, and our CCML module can be disabled.
Therefore, CCML can effectively improve the recognition per-
formance without introducing extra computation at the infer-
ence phase.

We also show comparison of the recognition accuracy for
each category on testing datasets in Fig. 6. Overall, our
novel category-consistent algorithm outperforms these com-
pared recognition algorithms on these datasets, and our CCML
notably improves the model performance in many cases.

To better illustrate the performance of the proposed frame-
work, we compare the validation accuracy for each training
epoch on the tested datasets in Fig. 7. We can see that many
models fluctuate sharply before the 40th epoch on the HFUT-

Table 5: Comparison of our algorithm with state-of-the-art VLR algorithms on
the HFUT-VL1 and XMU datasets.

Method Accuracy
HFUT-VL1 XMU

Huang [6] 98.90% 99.20%
Peng [17] 97.30% 97.90%
Yu [13] 96.30% -
Lu [21] 97.80% 98.40%
Yu [7] 98.92% 99.98%

Yang [8] 99.17% 100.0%
Yu [10] 99.50% 99.80%

Soon [25] - 99.13%
Chen [26] - 100.0%

Ours 99.56% 100.0%

VL1, HFUT-VL2, and XMU datasets and before the 60th epoch
on the CompCars and VLD-45 datasets. Due to the influence of
the image background noise, some models do not converge eas-
ily during training but are stable at the end, such as ResNet-152
on XMU and DarkNet53 on HFUT-VL2. Although DenseNet-
121 and DenseNet-169 converge faster on the HFUT-VL1 and
HFUT-VL2 datasets, our algorithm can achieve the highest ac-
curacy after the 40th epoch. In XMU, many models achieve
100% accuracy after convergence, but DenseNet-121, Yang et
al.’s [8], and our algorithm can learn faster. On VLD-45, most
of the compared models struggle with the extremely complex
backgrounds and vehicle logos of small size before the 60th

epoch, while our model increases in validation accuracy fast.
The highest accuracy on each dataset performed by our algo-
rithm indicates that the feature gradients flow easily with our
network, and the learned discriminative category features also
help to obtain accuracy gains.

5.2. Comparison with vehicle logo recognition algorithms
Table 5 shows the comparison of our algorithm with state-

of-the-art VLR algorithms. In this table, the results of Huang et
al. [6], Peng et al. [17], Lu et al. [21], and Yu et al. [10] are
taken from the paper of Yu et al. [10]. The results of Yu et al.
[13], Yu et al. [7], Soon et al. [25], and Chen et al. [26] were
obtained directly from the authors’ papers.

The algorithms of Peng et al. [17], Yu et al. [13], and Lu et
al. [21] are based on a traditional handcrafted feature scheme,
and the algorithm of Yu et al. [7] uses non-CNN-based learn-
ing of shallow visual features. These methods require a small
number of training data. However, their algorithms have dif-
ficulty dealing with a wide range of different imaging condi-
tions. The algorithms of Huang et al. [6], Yang et al. [8], Yu et
al. [10], Soon et al. [25], and Chen et al. [26] employ CNNs
to achieve better performance in general. However, the algo-
rithms of Huang et al. [6], Soon et al. [25], and Chen et al.
[26] still have difficulties in extracting high-level logo features
with moderate numbers of CNN layers. Although sufficiently
deep CNN models are employed by Yang et al. [8] and Yu et
al. [10], their algorithms do not take the category-consistent vi-
sual commonalities into consideration. By making the best use
of high- and low-level features, our VLF-based algorithm can
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Table 6: Comparison of model generalizability. All models were trained on
VLD-45 and tested on CompCars.

Model Accuracy
CM CM + CCML

ResNet-34 [11] 42.04% 50.82%
ResNet-50 [11] 34.56% 43.01%
ResNet-152 [11] 44.99% 53.53%

DenseNet-121 [12] 54.00% 54.76%
DenseNet-169 [12] 45.92% 54.20%

DarkNet53 [9] 47.31% 51.82%
Yang [8] 38.82% 41.34%
VLF-net 51.01% 64.94%

notably improve the VLR accuracy. Furthermore, with the help
of CCML, our VLR algorithm achieves the highest scores of
99.56% and 100% on the HFUT-VL1 and XMU, respectively.
In comparison, the methods of Huang et al. [6], Peng et al. [17],
and Lu et al. [21] rely on the license plate location to obtain
approximate vehicle logo regions for further recognition. The
methods of Yu et al. [13], Yu et al. [7], Soon et al. [25], and
Chen et al. [26] must train on vehicle logo images segmented
by some logo location schemes. The methods of Yang et al. [8]
and Yu et al. [10] can recognize vehicle logos from frontal im-
ages of vehicles without license plate location, but they require
manually annotated bounding boxes for vehicle logos. On the
contrary, our novel algorithm does not require the license plate
location or manual annotation of bounding boxes. Our algo-
rithm is able to achieve good VLR performance on both vehicle
logo images and frontal images of vehicles.

5.3. Model generalizability

Here, we evaluate the model generalizability by training on
the VLD-45 dataset while testing on the CompCars dataset. To
deal with the inconsistency issue of vehicle logo categories be-
tween VLD-45 and CompCars, we set up a category mapping
table and eliminated inconsistent categories.

We employed the models trained on VLD-45 to test the per-
formance on CompCars. Table 6 shows the comparison of gen-
eralizability of our algorithm with general CNN recognition
models. From the table, we can see that the performances of
all tested models decrease when testing on CompCars. Note
that there are wide disparities between VLD-45 and CompCars
in collecting resources, viewpoints, data resolutions, etc., and
they belong to different underlying distributions. These mod-
els can effectively learn the data distribution of VLD-45 after
training, as presented in Table 4. However, the performance re-
duction may occur because of the inconsistency of distributions
between the two datasets. Nevertheless, the proposed VLF-net
and DenseNet-121 can still achieve higher performances com-
pared with the other models. Moreover, all tested models can
obtain performance benefits from CCML by enforcing inter-
mediate layers to learn more discriminative category-consistent
features. As a result, both the proposed VLF-net and CCML
have good model generalizability compared with other models.

 Figure 8: Intersection over union curves with regard to the threshold
between DDT-generated category-consistent baseline masks and CCML-
predicted masks for the five testing datasets.

5.4. Discussion of CCML
Considering that intersection over union (IoU) is a quantita-

tive measure for evaluating the quality of predicted category-
consistent masks, we first generate binary masks by threshold-
ing the soft CCML-predicted masks and then plot IoU curves
with regard to the threshold between DDT-generated baseline
masks [39] and CCML-predicted masks, as shown in Fig. 8. In
this figure, we can see that all IoU scores are greater than 2/3
when the threshold value is 0.5. This means that our predicted
masks can effectively cover most of the category-consistent re-
gions for the testing datasets. As a result, CCML can help the
backbone network pay attention to discriminative features in
category-consistent regions. Nevertheless, as demonstrated in
Tables 3 and 4, CCML can be integrated into existing recogni-
tion CNNs to improve the VLR performance.

To validate the influence of the weight parameter α and the
proposed category-consistency loss, we conducted an ablation
study on HFUT-VL1, HFUT-VL2, XMU, and CompCars with
different values of α. The corresponding recognition accuracy
results are shown in Table 7. Note that when α = 0, CCML is
actually not used in the network. The VLF-net module without
CCML achieves an accuracy of 100% for XMU, and we can see
that the introduction of CCML does not lower the recognition
performance. For the HFUT-VL1, HFUT-VL2, and CompCars
datasets, the recognition accuracies increase with slight fluctu-
ations for α ∈ [0.001, 0.01], which disappear for α ∈ [0.1, 1].
For VLD-45, the accuracy grows steadily for α ∈ [0.001, 0.5]
and further improves at α = 1. There are many images with
complex scenes in VLD-45, and CCML can effectively boost
the recognition capability of VLF-net by emphasizing category-
consistent regions.

Here, we visualize the category-consistent masks generated
by DDT and our corresponding predicted masks generated by
CCML. Some samples are shown in Fig. 9. To verify the stabil-
ity of predicted masks in practical applications, where input im-
ages may not be fully aligned, we add random rotation and off-
set to the test images. From the figure, we can see that CCML
can automatically generate soft category-consistent masks sim-
ilar to those generated by DDT. Both DDT and CCML are able
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Table 7: Ablation study on the influence of α on recognition accuracy.

Dataset Weight parameter α
0 0.001 0.005 0.01 0.05 0.1 0.5 1

HFUT-VL1 99.38% 99.38% 99.46% 99.56% 99.42% 99.21% 98.85% 98.69%
HFUT-VL2 97.79% 98.62% 97.92% 98.73% 98.04% 98.25% 98.10% 97.06%

XMU 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
CompCars 99.87% 99.92% 99.92% 99.92% 99.92% 99.90% 99.90% 99.89%
VLD-45 79.27% 89.43% 91.63% 92.63% 92.86% 92.82% 94.05% 93.98%

Figure 9: Sample category-consistent masks from experimental datasets col-
ored in green: (top) binary category-consistent baseline masks by DDT, and
(bottom) predicted soft masks by CCML.

to coarsely find the category-consistent regions. CCML pro-
vides an automatic way to emphasize category-consistent re-
gions, which makes the goal of learning more targeted. CCML
helps the network backbone to distinguish the common re-
gions shared by each same vehicle logo category from irrele-
vant backgrounds to reduce the influence of noise. As a result,
category-consistent masks enforce the backbone to focus on the
per-category common regions and effectively improve the VLR
performance.

5.5. Discussion of recognition under extreme conditions

Now, we discuss VLR performance under extreme condi-
tions. We show some examples of success and failure cases
under various extreme conditions collected from the five test-
ing datasets in Fig. 10.

From Fig. 10 (a), we can see that many images are captured
under various challenging conditions, such as low illumination,
obscuration, shape deformation, and background noise. Our
method can still perform well in recognizing these vehicle logo
images.

Although our method works well for various vehicle logo im-
ages, as demonstrated earlier, it may fail under some extreme
conditions. In Fig. 10 (b), we show some examples of failure
cases. Note that some misclassified examples are extremely
blurry or under very low illumination, and they are difficult to
recognize even for human eyes. There are a small number of
images containing different kinds of objects instead of vehicles,
such as vehicle wheel, motorbike, and steering wheel, and these
images may also be misclassified. Some other extreme condi-
tions, such as a side or top view of a car or extremely complex
background, would also influence the VLR performance.

6. Conclusions and future work

In this paper, we proposed a novel category-consistent deep
network learning framework for enhancing the performance of
VLR. By using the characteristics of both the identity short-
cut connection and dense connection, our framework can ex-
tract hierarchical visual features from a vehicle logo image.
Without any experience-based prior knowledge, such as license
plate detection or manual bounding-box annotations, our frame-
work can effectively help the backbone to focus on category-
consistent regions by localizing discriminative regions in the
same category. Consequently, our framework can significantly
improve the performance of VLR in both vehicle logo images
and frontal images of vehicles. Extensive experimental evalu-
ations and comparisons demonstrated that our novel algorithm
can achieve more accurate VLR than existing state-of-the-art
algorithms.

In the future, we would like to further improve the VLR ac-
curacy using fine-grained recognition schemes. Moreover, we
plan to apply our new VLF-net and the CCML module to other
image recognition applications and focus on more challenging
recognition tasks with complicated imaging conditions.
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