
We will release the metadata, crops, camera param-
eters, landmarks, and raw images from our dataset, as
well as the data processing code, training code, FID eval-
uation code, and all trained models.

1. Supplementary
In this supplement, we first introduce Unsplash-Pexels,

an extra large-pose face dataset to facilitate more future
work (Sec. 1.1). We then discuss the limitations of our mod-
els (Sec. 1.2). We demonstrate that our models can elimi-
nate the “seam” artifact in EG3D in Sec. 1.3. We discuss
the problem of the original FID of EG3D (Sec. 1.4). Then
we illustrate the influence of the buggy tri-plane in Sec. 1.5.
After that, we show our data processing pipeline (Sec. 1.6)
and the details of pose density computation (Sec. 1.7), the
divided EG3D model (Sec. 1.8), and examples from our
LPFF dataset (Sec. 1.9). Finally, we provide further vi-
sual results of StyleGAN2-ada (Sec. 1.10) and EG3D mod-
els (Sec. 1.11) trained on our datasets.

1.1. Unsplash-Pexels Dataset

Besides the images from the Flickr1, we additionally
collect 19,321 images from Unsplash2 and Pexels3, and
process them using the same image processing method as
LPFF. We denote the obtained dataset as Unsplash-Pexels
(see samples in Fig. 1). We combine Unsplash-Pexels with
FFHQ, named FFHQ+Unsplash-Pexels.

Figure 1: Representative samples from Unsplash-Pexels.

We use the same training methods as EOurs
var1 , EOurs

var2 to
train models on the FFHQ+Unsplash-Pexels dataset, and
get models EUspPex

var1 , EUspPex
var2 .

However, most of the images in Unsplash and Pexels
were taken by professional photographers and processed
by image filters, while the images in Flickr were from ev-
eryday life scenes taken by Flickr users. As a result, al-
though the images in Unsplash-Pexels are processed using
the same method as LPFF and their camera distributions
are similar (Fig. 2), the domain gap between Unsplash-
Pexels and FFHQ would prevent the models trained on

1https://www.flickr.com
2https://unsplash.com
3https://www.pexels.com
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Figure 2: (a) FFHQ+LPFF. (b) FFHQ+Unsplash-Pexels.

FFHQ+Unsplash-Pexels from generating view-consistent
results.

As shown in Tab. 1 and 2, the models trained on
FFHQ+Unsplash-Pexels present much worse performance
in facial identity consistency and geometry consistency than
the models trained on FFHQ+LPFF.

Thus we do not use Unsplash-Pexels as our training data,
but propose this dataset to inspire and facilitate more work
in the future.

model cg = cavg cg ∼ FFHQ cg ∼ LPFF
cr ∼ FFHQ cr ∼FFHQ cr ∼FFHQ

EUspPex
var1 0.800 0.788 0.774
EOurs

var1 0.804 0.792 0.778

EUspPex
var2 0.774 0.773 0.764
EOurs

var2 0.789 0.784 0.771

Table 1: Quantitative evaluation of facial identity consis-
tency (↑).

model cg = cavg cg ∼ FFHQ cg ∼ LPFF
cr ∼ FFHQ cr ∼FFHQ cr ∼FFHQ

EUspPex
var1 0.135 0.135 0.142
EOurs

var1 0.119 0.124 0.134

EUspPex
var2 0.137 0.128 0.134
EOurs

var2 0.117 0.122 0.131

Table 2: Quantitative evaluation of geometry consistency
(↓).

1.2. Limitations

Our models frequently generate “mask” artifacts at faces
(Fig. 3 (a)), resulting in unsmooth cheek surfaces. We dis-
cover that this is due to improperly estimated densities. We
expect that future research incorporating genuine 3D face
priors into the model will aid in resolving this issue. Our
models tend to generate holes in faces when rendering eye-
glasses because of lens refraction (Fig. 3 (b)). There are



also fuzzy results or holes when rendering eyes from ex-
treme camera postures (Fig. 3 (c)). Although our method
can generate almost full-head 3D representations, the lack
of data on the back of the head leads to incomplete head
geometry (Fig. 3 (d)).

(a) (b) (c) (d)

Figure 3: The limitations in our EG3D models (highlighted
by blue boxes). (a) “Mask” artifacts. (b) Holes in faces
when rendering eyeglasses. (c) Blurry results and holes in
eyes. (d) Incomplete head geometry.

Inspired by EG3D, we use [3] to measure the probabil-
ity of smiling against θ coordinate in FFHQ+LPFF. Fig. 4
shows that people typically smile when they are facing the
camera, so the models trained on our dataset have the smile-
posture entanglement.
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Figure 4: The probability of smiling against θ coordinate in
FFHQ+LPFF. θ = 90◦ stands for a frontal face.

1.3. Seam Artifacts Elimination

Fig. 5 presents the illustration of “seam” artifacts in the
results of EFFHQ

var1 . Our model EOurs
var1 is trained without

requiring any additional regularization loss or any data re-
balance strategy, and is free from the “seam” artifacts.

1.4. FID

During our evaluation of the FID for the EG3D model,
we found that EG3D computes the FID by conditioning the
model on cg and then rendering results from cr = cg . In this
scenario, as shown in Fig. 6, the generator always perceives
the true pose of the rendering camera, resulting in high-
quality synthesized images. However, if we set cr ̸= cg ,
the output exhibits artifacts and distortions. Consequently,
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Figure 5: After employing PTI[2] GAN inversion, we use
EFFHQ

var1 (Top) and EOurs
var1 (Bottom) to render novel views

for the same target image. The “seam” artifacts are high-
lighted by blue boxes in the results of EFFHQ

var1 .

the original FID measurement fails to accurately assess the
quality of overall head geometry and multi-view rendering
quality. Thus, we propose sampling cr and cg from different
distributions.

latent code

latent code

Generator

Generator

Render

Render

camera A camera A=

camera A camera B≠

Figure 6: Visualization of the problem in the original FIDs
measurement. When cr = cg (Top), EG3D outputs good-
quality results. When cr ̸= cg (Bottom), the results exhibit
artifacts and distortion.

1.5. Buggy Tri-plane

In our evaluation results for the EG3D model, we found
that there was an increased FID when computing cg =
cavg/cr, cr ∼ FFHQ, and we attributed this to the
changed data variance and the buggy (XY, XZ, ZX) plane
used in EFFHQ

var1 and EFFHQ
var2 . To provide a fairer com-

parison, we retrain the EG3D model using the (XY, XZ,
ZY) plane (which was used in our models) on the FFHQ
dataset. Here, all the training parameters are identical to
those of EFFHQ

var1 and EOurs
var1 . We denote the obtained

model as EFFHQ
var1−fixed. Then we compare the performance

ofEFFHQ
var1 , EFFHQ

var1−fixed, andEOurs
var1 . Tab. 3, 4, and 5 show

the comparison results, Figs. 7 presents the samples gener-
ated by EFFHQ

var1−fixed.
The only difference between EFFHQ

var1−fixed and EOurs
var1 is

their training datasets, but EOurs
var1 exhibits improvements

in FID in most cases. When computing the FID of cr ∼



FFHQ, we obtain comparable results for EFFHQ
var1−fixed and

EOurs
var1 . In terms of view-consistency, EOurs

var1 presents com-
parable performance to EFFHQ

var1−fixed in facial identity con-
sistency, and shows improvements in geometry consistency
across different sample strategies and datasets.

model cg = cavg cg ∼ FFHQ cg ∼ LPFF
cr ∼ FFHQ cr ∼FFHQ cr ∼FFHQ

EFFHQ
var1 0.771 0.768 0.760

EFFHQ
var1−fixed 0.799 0.794 0.779
EOurs

var1 0.804 0.792 0.778

Table 3: Quantitative evaluation of facial identity consis-
tency (↑).

model cg = cavg cg ∼ FFHQ cg ∼ LPFF
cr ∼ FFHQ cr ∼FFHQ cr ∼FFHQ

EFFHQ
var1 0.134 0.133 0.159

EFFHQ
var1−fixed 0.125 0.125 0.144
EOurs

var1 0.119 0.124 0.134

Table 4: Quantitative evaluation of geometry consistency
(↓).

In sum, our LPFF dataset can help the EG3D model to
achieve higher image quality on large pose data while not
harming the performance on FFHQ, and achieve better ge-
ometry consistency.

Figure 7: Image-shape pairs produced by EFFHQ
var1−fixed. We

apply truncation with ψ = 0.8.

1.6. Data Processing Pipeline

We present the comparison between the image process-
ing pipelines of StyleGAN, EG3D, and ours in Fig. 10.

1.7. Pose Density Computation

We propose representing the 6DOF camera pose and
computing the pose density using 2DOF θ and ϕ angles.
Because all cameras in EG3D are assumed to be on a spher-
ical surface with radius r = 2.7, camera positions are de-
termined by θ and ϕ angles. To prevent faces from appear-
ing outside the image region, the faces are placed near the
original point, just like the forward vector points (or look-
at points). As a result, the camera’s forward direction is
determined primarily by its position. We also ignore the
upward direction of the cameras because all of the images
are rotated and aligned in the preprocessing step using land-
marks.

We define Cartesian coordinates as [r cos(θ),
r sin(θ) cos(ϕ), r sin(θ) sin(ϕ)] in this paper. Then
we compute θ and ϕ for each camera and compute the
pose density using kernel density estimation. When
calculating this density, θ and ϕ are weighted similarly.
Fig. 8 illustrates the visualization of θ and ϕ angles and
their corresponding camera poses.

Figure 8: Visualization of camera poses.

1.8. EG3D Pipeline

We divide the EG3D model into three camera pose-
dependent modules: Generator G, Renderer R, and Dis-
criminatorD, as shown in Fig. 11. The attribute correlations
between pose and other semantic attributes in the dataset
are faithfully modeled by feeding cg into G. R and D are
always fed with the same camera parameters, cr. cr help
D ensure multi-view-consistent super resolution and direct
R in how to render the final images from various camera
views.



model cg = cavg cg = cavg cg ∼ FFHQ cg ∼ FFHQ cg ∼ LPFF cg ∼ LPFF cg ∼ FFHQ cg ∼ LPFF
cr ∼ FFHQ cr ∼ LPFF cr ∼FFHQ cr ∼LPFF cr ∼FFHQ cr ∼LPFF cr = cg cr = cg

EFFHQ
var1 6.523 23.598 4.273 22.318 23.698 36.641 4.025 23.301

EFFHQ
var1−fixed 7.689 23.962 6.572 22.537 22.567 33.063 6.102 25.115
EOurs

var1 7.997 20.896 6.623 19.738 21.300 22.074 6.093 16.026

Table 5: FID (↓) for EG3D generators that are trained on different datasets. We fixed the buggy tri-plane in EFFHQ
var1 , and re-

trained the EG3D model using the (XY, XZ, ZY) plane on the FFHQ dataset. The obtained model is named as EFFHQ
var1−fixed.

1.9. Image Samples from LPFF Dataset

As shown in Fig. 9, we present the image samples from
our LPFF dataset. We used the official API from Flickr
to obtain image metadata (including URLs) by searching
portrait-related keywords (e.g., “portrait”, “people”), all im-
ages are under CC-BY-2.04, Public-Domain-Mark-1.0 5,
CC-BY-SA-2.0 6, or CC0-1.0 7 licenses. Because the FFHQ
dataset includes metadata for its photos (including copy-
right information and URLs), we remove the raw image
when the FFHQ metadata already includes the raw image’s
photo URL. The non-portrait images were removed by face
detectors (Dlib and face alignment), while low-resolution
images were filtered out automatically.

The images in the LPFF dataset are high-quality, large-
pose, with variations on gender, age, race, expression, and
lighting.

1.10. Additional StyleGAN2-ada Results

1.10.1 StyleGAN2-ada Inversion Results

We present StyleGAN models’ large-pose data inversion re-
sults in Fig. 12 and 13. The testing images are collected
from Unsplash and Pexels (out of the training datasets of
all the models). The inversion is achieved by employing a
500-step latent code optimization to minimize the distance
between the synthesis image and the target image. The op-
timization is performed in W+ latent space.

1.10.2 InterfaceGAN Pose Manipulation on StyleGAN
Projection Results

After projecting the real large-pose images into the Style-
GAN models’ latent space, we utilize the yaw angle editing
directions to edit the obtained latent codes (Fig. 14 and 15).

1.10.3 InterfaceGAN Attribute Manipulation on Style-
GAN Projection Results

After projecting the real large-pose images into the models’
latent space, we utilize the attribute editing directions to edit

4https://creativecommons.org/licenses/by/2.0/
5https://creativecommons.org/publicdomain/mark/1.0/
6https://creativecommons.org/licenses/by-sa/2.0/
7https://creativecommons.org/publicdomain/zero/1.0/

the obtained latent codes (Fig. 16 and 17).
We use the attribute classifiers provided by StyleGAN[1]

to label the attribute scores of random latent codes, use
InterfaceGAN to compute semantic boundaries for each
model, and then use the boundaries to edit the projected
latent codes.

1.11. Additional EG3D Results

1.11.1 EG3D Generation Results

We present the uncurated examples synthesized by models
trained on our datasets in Fig. 18 and 19.

1.11.2 EG3D Extrapolation to Steep Camera Angles

Fig. 21 shows the comparison results of the steep angle
generation results of the EG3D models trained on different
datasets.

1.11.3 EG3D Image Inversion Results

Fig. 22 and Fig. 23 show the results of EG3D multi-view
image inversion. We use 500-step latent code optimization
to fit four testing images of a single identity from FaceScape
[4]. Then we render the obtained latent codes from four
novel views. The optimization is performed in W+ space,
and the generators are conditioned on the average camera
parameters.

Fig. 26 and 27 show the additional results of EG3D
single-view image inversion. We perform PTI [2] inversion
to single-view testing images collected from Unsplash and
Pexels. The pivot latent codes are obtained by performing
a 250-step latent code optimization in W+ space, and the
models are fine-tuned using a 350-step PTI optimization.
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Figure 9: Random image samples from the LPFF dataset. The presented images are aligned using the EG3D image alignment
functions, at 5122 resolution.
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Figure 10: Image processing pipelines of StyleGAN, EG3D, and ours.
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Figure 11: We split the EG3D model into three modules: Generator, Renderer, and Discriminator. We define the two kinds
of camera parameters that are inputted into the EG3D modules as: cg fed into the Generator is used to faithfully model the
attribute correlations and will influence the face geometry and appearance. cr guides the Renderer and the Discriminator to
render the final images from different camera views while ensuring multi-view-consistent super resolution.
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Figure 12: More qualitative comparison results for StyleGAN inversion.
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Figure 13: More qualitative comparison results for StyleGAN projection.
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Figure 14: More qualitative comparison results for InterfaceGAN pose manipulation on StyleGAN inversion results.
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Figure 15: More qualitative comparison results for InterfaceGAN pose manipulation on StyleGAN inversion results.
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Figure 16: More qualitative comparison results for InterfaceGAN semantic attribute manipulation on StyleGAN inversion
results.
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Figure 17: More qualitative comparison results for InterfaceGAN semantic attribute manipulation on StyleGAN inversion
results.



Figure 18: Uncurated examples synthesized by EOurs
var1 , with truncation (ψ = 0.6).



Figure 19: Uncurated examples synthesized by EOurs
var2 , with truncation (ψ = 0.6).
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Figure 20: Extrapolation to steep pitch angles, with truncation (ψ = 0.7).
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Figure 21: Extrapolation to steep yaw angles, with truncation (ψ = 0.7).
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Figure 22: More EG3D multi-view image inversion results.
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Figure 23: More EG3D multi-view image inversion results.
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Figure 24: More EG3D multi-view image inversion results.
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Figure 25: More EG3D single-view image inversion results. Due to the adhesion between the head and the background in
EFFHQ

var1 and EFFHQ
var2 , ears are missing in View 2, and there are distortions in the ears and neck in Views 3 and 4 (highlighted

by green boxes). EFFHQ
var1 also exhibits a pointed nose (highlighted by a blue box) and “seam” artifacts (highlighted by pink

boxes). Additionally, compared to EOurs
var2 , there are some blurry skin artifacts present in EOurs

var1 (highlighted by an orange
box).
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Figure 26: More EG3D single-view image inversion results. EFFHQ
var1 has a hole on the nose (highlighted by blue boxes),

while EFFHQ
var2 exhibits adhesion between the head and the background (adhesion by green boxes).
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Figure 27: More EG3D single-view image inversion results. EFFHQ
var1 has a pointed nose (highlighted by a blue box). A

severe distortion of background exists in EFFHQ
var2 (highlighted by green boxes). EOurs

var1 exhibits unnatural lips (highlighted
by an orange box).
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Figure 28: More EG3D single-view image inversion results. The results for EFFHQ
var1 and EFFHQ

var2 exhibit distorted faces
(highlighted by blue boxes) and distorted ears and necks (highlighted by green boxes).


