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Abstract

Existing face generators exhibit exceptional perfor-
mance on faces in small to medium poses (with respect to
frontal faces) but struggle to produce realistic results for
large poses. The distorted rendering results on large poses
in 3D-aware generators further show that the generated
3D face shapes are far from the distribution of 3D faces
in reality. We find that the above issues are caused by the
training dataset’s pose imbalance. To this end, we present
LPFF, a large-pose Flickr face dataset comprised of 19,590
high-quality real large-pose portrait images. We utilize our
dataset to train a 2D face generator that can process large-
pose face images, as well as a 3D-aware generator that can
generate realistic human face geometry. To better validate
our pose-conditional 3D-aware generators, we develop a
new FID measure to evaluate the 3D-level performance.
Through this novel FID measure and other experiments, we
show that LPFF can help 2D face generators extend their
latent space and better manipulate the large-pose data, and
help 3D-aware face generators achieve better view consis-
tency and more realistic 3D reconstruction results.

1. Introduction

Since the first introduction by Goodfellow in 2014, gen-
erative adversarial networks (GANs) [11] have significantly
advanced the performance of 2D high-resolution image
generation. GANs can accomplish a variety of down-
stream image editing tasks, particularly face modification
[2, 16, 42, 43], thanks to the excellent image quality and se-
mantic features in its latent space. Recently, plenty of 3D-
aware generators [12, 30, 5, 52, 35, 9, 41, 40] have been pro-
posed to learn 3D-consistent face portrait generation from
2D image datasets. 3D-aware generators can describe and
represent geometry in their latent space while rendering ob-
jects from different camera perspectives using volumetric
rendering. Researchers carefully designed generator archi-
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Figure 1: Image and shape samples generated by EG3D
models [5] trained with the same training strategy but us-
ing different datasets (our new dataset LPFF and FFHQ for
(a) and FFHQ for (b)). The generators are conditioned by
the average camera parameters. Shapes are iso-surfaces ex-
tracted from the corresponding density fields using march-
ing cubes. Our dataset helps reduce distorted, “seam”,
“wall-mounted”, and blurry artifacts exhibited in (b).

tectures and training strategies to accelerate training, reduce
memory overheads, and increase rendering resolution.

Both the existing 2D and 3D approaches, however, are
unable to process large-pose face data. Regarding 2D face
generators, those large-pose data are actually outside of
their latent space, which prevents them from generating rea-
sonable large-pose data, thus causing at least two problems.
First, as shown in Fig. 2 (left), moving the latent code along
the yaw pose editing direction will cause it to reach the edge
of the latent space before faces become profile. Second, as
shown by the results of image inversion in Fig. 2 (right),
it is challenging to project large-pose images to the latent
space, let alone perform semantic modification on them.
One of the goals of 3D-aware generators is to model realis-
tic human face geometry, but existing 3D-aware generators
trained on 2D image datasets still have difficulty producing
realistic geometry. This issue is more serious when render-
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Figure 2: StyleGAN2 [22]’s large-pose performance when
trained on FFHQ. InterfaceGAN [38] is used to edit the
yaw angle of randomly sampled latent codes. We use
optimization-based GAN inversion to obtain the latent
codes of target large-pose real images.

ing the results at extreme poses. As shown in Fig. 3, faces
synthesized by those methods have noticeable artifacts, in-
cluding distortion, blurring, and stratification. In Fig. 1 (b),
EG3D shows a “wall-mounted” and distorted 3D represen-
tation without ears. All these indicate that the generated
face shapes are not realistic enough.

The above issues in the face generators are mainly
caused by the unbalanced camera pose distribution of the
narrow-range training dataset. Flickr-Faces-HQ Dataset
(FFHQ) is a popular high-quality face dataset used to train
those face generators, but it mainly contains images limited
to small to medium poses. As a result, 2D and 3D-aware
generators cannot learn a correct large-pose face distribu-
tion without sufficient large-pose data. To avoid artifacts
under large poses, downstream applications [42, 28, 24, 46,
16, 17, 1, 49] based on those face generators typically sam-
ple small poses, which limits their application scenarios.

It is difficult to get a pose-balanced dataset. First, large-
pose faces are nearly impossible to detect using Dlib [23], a
popular face detector, and the one used to crop FFHQ. Sec-
ond, simply replicating extremely limited large-pose data to
balance the pose distribution is insufficient to help extend
the camera distribution. As a result, it is critical to collect a
large number of large-pose, in-the-wild, and high-resolution
face images, which are lacking in existing datasets.

In this paper, we propose a novel high-quality face
dataset containing 19,590 real large-pose face images,
named Large-Pose-Flickr-Faces Dataset (LPFF), as a sup-
plement to FFHQ, in order to extend the camera pose dis-
tribution of FFHQ and train 2D and 3D-aware face genera-
tors that are free of the aforementioned problems. Given
the difficulty of large-pose face detection and the imbal-
anced distribution of camera poses in real-life photographs,
we design a face detection and alignment pipeline that is
better suited to large-pose images. Our method can also
gather large amounts of large-pose data based on pose den-
sity. We retrain StyleGAN2-ada [19] to demonstrate how
our dataset can assist 2D face generators in generating and
editing large-pose faces. We retrain EG3D [5] as an exam-

StyleNeRF StyleSDF EG3D IDE-3D

Figure 3: 3D-aware generators trained on FFHQ (StyleN-
eRF [12], StyleSDF [30], EG3D [5], and IDE-3D [42])
achieve excellent image synthesis performance on faces in
small to medium poses (Top), but exhibit obvious artifacts
at steep angles (Bottom).

ple to demonstrate how our dataset can aid 3D face gener-
ators in understanding realistic face geometry and appear-
ance across a wide range of camera poses. In order to
better evaluate the 3D-level performance of EG3D models
trained on different datasets, we propose a new FID mea-
sure for pose-conditional 3D-aware generators. Extensive
experiments show that our dataset leads to realistic large-
pose face generation and manipulation in the 2D generator.
Furthermore, our dataset results in more realistic face ge-
ometry generation in the 3D-aware generator.

Our paper makes the following major contributions: 1)
A novel data processing and filtering method that can col-
lect large-pose face data from the Flickr website according
to camera pose distribution, leading to a novel face dataset
that contains 19,590 high-quality real large-pose face im-
ages. 2) A retrained 2D face generator that can process
large-pose face images. 3) A retrained 3D-aware generator
that can generate realistic human face geometry. 4) A new
FID measure for pose-conditional 3D-aware generators.

2. Related Work
2D Face Generators. Since Goodfellow first proposed
the generative adversarial networks (GANs) in 2014 [11],
many GANs model designs [32, 13, 3, 18] have been de-
veloped to produce more impressive performance on real-
istic image synthesis. Among these GANs models, Style-
GAN [21, 22, 19, 20] is regarded as the most cutting-edge
generator of high-quality images. For face portrait images,
StyleGAN provides not only realistic image generation but
also implicit semantic features in latent space, which are
beneficial for many downstream computer vision applica-
tions [2, 7, 31]. However, the face StyleGAN is trained on
a pose-imbalanced face dataset, FFHQ. StyleGAN inherits
the pose bias from FFHQ, resulting in artifacts and distor-
tions when projecting and editing large-pose portraits. This
issue is particularly noticeable in real-world applications,
where photographs are not always forward-facing.
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Figure 4: (a) FFHQ. (b) FFHQ-rebal. (c) FFHQ+LPFF. (d) FFHQ+LPFF-rebal. The term “duplicate” refers to the number
of repetitions in data resampling.

3D-aware Face Generators. 2D generators have been
expanded to support 3D multi-view rendering. Early meth-
ods combined voxel rendering [29, 14, 53] or NeRF render-
ing [34, 12, 6] with generators to support view-consistent
image synthesis. However, those methods have a high cost
of calculation, which limits the resolution of the output.
Later, a number of studies suggested an additional super-
resolution network to enhance image quality without adding
too much computing load [5, 44, 30, 47]. Researchers
also suggested an effective optimization strategy [41] to
directly output high-resolution results without any super-
resolution module. These techniques not only produce
view-consistent results, but also learn, represent, and gener-
ate face geometry in a generative manner. Several methods
[42, 16] achieve semantic attribute editing and geometry-
appearance disentanglement in view-consistent image syn-
thesis through the integration of semantic masks into 3D-
aware generators. However, for human face training, they
rely heavily on 2D image collections (FFHQ). Because of
the pose imbalance in the training dataset, incorrect fa-
cial geometry may arise in the final results, which nega-
tively impacts the performance of downstream applications
[42, 28, 24, 46, 16, 17, 1, 49]. Researchers also try to elimi-
nate the dependency for 3D pose priors [39] or resample the
dataset to increase the density of extremely limited large-
pose data [5]. However, both of them cannot address the
root causes.

Face Image Datasets. Numerous studies have noted the
pose imbalance in current face image datasets. 300W-LP
[54] is a dataset consisting of 61,225 images across large
poses, but all the images are artificially synthesized by face
profiling. AFLW [25] contains 21,080 face images with
large-pose variations, LS3D-W [4] contains ∼230,000 im-
ages from a combination of 300-W test set [33], 300-VW
[37], Menpo [50], and AFLW2000-3D [54]. But most im-
ages in AFLW and LS3D-W are at low resolution. There
are several 3D face datasets [48, 45, 27] that contain high-
quality multi-view face images mainly for 3D face recon-

struction. However, these datasets have limited variety [48],
or are low-resolution [25, 4], or are synthesized artificially
[54]. In contrast, our dataset consists of high-resolution real
images collected from in-the-wild photographs.

3. Data Preparation
In this section, we will introduce how to build our large-

pose face dataset. First, we describe the process for extract-
ing data density from FFHQ (Sec. 3.1). Then, we introduce
a novel data processing pipeline that can produce more rea-
sonable realigned results (Sec. 3.2). In order to filter large-
pose face data from the Flickr images according to camera
distribution, we propose to employ the pose density func-
tion to collect only large-pose data (Sec. 3.3). Finally, we
introduce a novel rebalancing strategy (Sec. 3.4).

3.1. Camera Distribution

EG3D uses a face reconstruction model [10], denoted as
F in this paper, to extract camera parameters. All cameras
are assumed to be positioned on a spherical surface with a
radius r = 2.7, and the camera intrinsics are fixed. In this
paper, we only consider the camera location and ignore the
roll angle of the camera to compute the camera distribution
(detailed in the supplementary file). We convert the coordi-
nates of each camera in FFHQ from Cartesian coordinates
to spherical coordinates and get their θ and ϕ (see Fig. 4
(a)). Notice that the face with θ = 90◦ and ϕ = 90◦ is
frontal.

3.2. Data Processing

Given the difficulty of large-pose face detection and the
imbalanced distribution of camera poses in real-life pho-
tographs, we propose a novel mechanism to collect, process,
and filter large-pose data. We first collect 155,720 raw por-
trait images from Flickr1 (with permission to copy, modify,
distribute, and perform). Then we remove all the raw im-
ages that already appeared in FFHQ.

1https://www.flickr.com



Our pipeline is based on that of EG3D, and we respec-
tively align each raw image according to the image align
function in EG3D and StyleGAN. In EG3D, the authors first
predict the 68 face landmarks of a raw image by Dlib, and
then get a realigned image by using the eyes and mouth po-
sitions to determine a square crop window for cropping and
rotating the raw image. The realigned image is denoted as
Xrealigned with the eyes at the horizontal level and the face
at the center of the image. Then MTCNN [51] is used to
get the positions of the eyes, the nose, and the corners of
the mouth of Xrealigned, and the 5 feature points are then
fed into F to predict camera parameters. Finally, these po-
sitions are used to crop Xrealigned, resulting in the final
image.

In our pipeline, we first use Dlib to get 68 landmarks for
each of the 155,720 raw portrait images, and for those im-
ages that resist face detection, we additionally apply face
alignment [4] (SFD face detector) to predict landmarks.
The face alignment detector achieves better performance on
large-pose face detection than Dlib. Joining the two land-
mark predictors can help us detect as many large-pose faces
as possible. Then the predicted landmarks are used to get
the realigned imageXrealigned. In this step, we get 506,262
Xrealigned.

We find that the MTCNN sometimes cannot predict land-
marks for large-pose faces. So instead of using MTCNN,
we directly aggregate the 68 landmarks to get the 5 feature
points of the eyes, mouth, and nose.

After that, we use F to predict camera parameters. Then
we filter large-pose face data from 506,262 Xrealigned (de-
tailed in Sec. 3.3), getting 208,543 large pose Xrealigned.
We automatically filter out low-resolution images and man-
ually examine the rendering results of the reconstructed face
models, removing any failed 3D reconstructions (which in-
dicate incorrectly estimated camera parameters), as well as
blurry or noisy images. Finally, we get 19,590 high-quality
large-pose face images with correctly estimated camera pa-
rameters.

When cropping the final image, we find that some of the
5 feature points (especially when there is a face with eye-
glasses) are not accurate enough to crop Xrealigned prop-
erly, but after manual selection, the landmarks that F pro-
duces are more aligned with the input faces. So we use the
landmarks of the reconstructed face to crop Xrealigned ac-
cording to EG3D and StyleGAN functions and obtain final
images. Please refer to the supplement file for an illustration
of the image processing pipeline.

3.3. Large-Pose Data Selection

To collect only images with “low density” (at large
poses), we propose using the density function of FFHQ
to filter large pose faces. Inspired by [26], we estimate
the density of the FFHQ camera (θ, ϕ) tuples using Gaus-

sian kernel density estimation and Scott’s rule [36] as a
bandwidth selection strategy. After obtaining ρffhq , where
density = ρffhq(θ, ϕ) is the density of the camera at
(θ, ϕ), we use ρffhq to compute the density of 506,262
Xrealigned, and filter the images with a density less than
0.4 (density = ρffhq(θ, ϕ) < 0.4).

3.4. Data Rebalance

After image processing, large pose filtering, and care-
fully manual selecting, we get 19,590 large-pose face im-
ages as our LPFF dataset. We use the LPFF dataset as
a supplement to FFHQ. That is, we combine LPFF with
FFHQ, named FFHQ+LPFF. The datasets are augmented
by a horizontal flip. In Fig. 4, we show the camera distribu-
tion for both FFHQ+LPFF and FFHQ.

To improve our models’ performance on large-pose ren-
dering quality and image inversion, we propose using a re-
sampling strategy to further rebalance our FFHQ+LPFF
dataset (refer to Sec. 5 for evaluation). In EG3D, in order
to increase the sampling probability of the low-density data,
the authors rebalanced the FFHQ dataset by splitting it into
9 uniform-sized bins across the yaw range and duplicating
the images according to the bins (as shown in Fig. 4 (b)).
We denoted the rebalanced FFHQ dataset as FFHQ-rebal.

Inspired by EG3D, we also rebalance FFHQ+LPFF to
help the model focus more on large-pose data. Instead of
simply splitting the dataset according to yaw angles, we
split FFHQ+LPFF according to the data densities (Fig. 4
(d)). Similar to Sec. 3.1, we first compute the pose den-
sity function of FFHQ+LPFF (denoted as density =
ρffhq+lpff (θ, ϕ)), then duplicate our dataset as:

N = min(max(round( α
density ), 1), 4), density ≥ 0.03

N = 5, density ∈ [0.02, 0.03)
N = 6, density ∈ [0, 0.02)

(1)
where α is a hyper-parameter (we empirically set α =
0.24 in our experiments), and N denotes the number of
repetitions. The rebalanced FFHQ+LPFF is denoted as
FFHQ+LPFF-rebal.

4. Training Details

In this section, we will retrain 2D and 3D-aware face
generators using our dataset. Regarding the 2D genera-
tor (Sec. 4.1), we retrain StyleGAN2-ada using our dataset
before fine-tuning the model using the rebalanced dataset.
As for the 3D-aware generator (Sec. 4.2), we first use our
dataset to retrain EG3D, and then use the rebalanced dataset
to fine-tune the model. In order to improve image synthesis
performance during testing, we further fine-tune the model
by setting the camera parameters input to the generator as
the average camera.



4.1. StyleGAN

Retrain. In the StyleGAN training, we use the
StyleGAN2-ada architecture as our baseline, and train it on
FFHQ+LPFF from scratch. We use the training parameters
defined by stylegan2 config in StyleGAN2-ada. We denote
the StyleGAN2-ada model trained on FFHQ as SFFHQ

var1 ,
and the model trained on FFHQ+LPFF as SOurs

var1 . Our
training time is ∼5 days on 8 Tesla V100 GPUs.

Rebalanced dataset fine-tuning. We utilize the rebal-
anced dataset, FFHQ+LPFF-rebal, to fine-tune SOurs

var1 , and
denote the rebalanced model as SOurs

var2 . All training param-
eters are identical to those of SOurs

var1 . Our fine-tuning time
is ∼18 hours on 8 Tesla V100 GPUs.

4.2. EG3D

The mapping network, volume rendering module, and
dual discriminator in EG3D [5] are all camera pose-
dependent. We divided the EG3D model into three mod-
ules: Generator G, Renderer R, and Discriminator D,
please refer to the supplement file for an illustration of the
three modules. The attribute correlations between pose and
other semantic attributes in the dataset are faithfully mod-
eled by using the camera parameters fed into G. R and D
are always fed with the same camera specifications. The
camera parameters helpD ensure multi-view-consistent su-
per resolution and directR in how to render the final images
from various camera views.

In this paper, we define two types of camera parameters
that are inputted into the whole model as:

c = [cg, cr], (2)

where cg stands for the camera parameters fed into G, and
cr stands for the camera parameters fed into R and D. cg
will influence the face geometry and appearance and should
be fixed in testing. The authors of EG3D discover that main-
taining cg = cr throughout training can result in a GAN that
generates 2D billboards. To solve this problem, they apply
a swapping strategy that randomly swaps cg with another
random pose in that dataset with β probability, where β is a
hyper-parameter.

Retrain. We use FFHQ+LPFF to train EG3D from
scratch. All the training parameters are identical to those
of EG3D, where β is linearly decayed from 100%to 50%
over the first 1M images, and then fixed as 50% in the re-
maining training. We denote the EG3D trained on FFHQ as
EFFHQ

var1 (the original EG3D), denote the EG3D trained on
FFHQ+LPFF as EOurs

var1 . Our training time is ∼6.5 days on
8 Tesla V100 GPUs.

Rebalanced dataset fine-tuning.In EG3D, the au-
thors use the rebalanced dataset FFHQ-rebal to fine-tune
EFFHQ

var1 , leading to a more balanced model. We denote the
fine-tuned model as EFFHQ

var2 . For a fair comparison, we

Figure 5: Images produced by our SOurs
var1 model (Top) and

SOurs
var2 model (Bottom). We apply truncation with ψ = 0.7.

also use the same fine-tuning strategy as EG3D to fine-tune
our model EOurs

var1 on our rebalanced dataset FFHQ+LPFF-
rebal. β is fixed as 50% in training, and other training pa-
rameters are identical to those of EG3D. We denote EOurs

var1

fine-tuned on FFHQ+LPFF-rebal as EOurs
var2 . Our fine-

tuning time is ∼1 day on 8 Tesla V100 GPUs.

5. Evaluation
To show that LPFF can help 2D and 3D-aware face

generators generate realistic results across large poses, we
will first evaluate the performance of 2D face generators
(Sec. 5.1), and then demonstrate the performance of 3D-
aware face generators (Sec. 5.2).

5.1. StyleGAN

Fig. 5 shows the uncurated samples of faces generated
by the models trained on our dataset, with resolution 10242.
Our models synthesize images that are of high quality and
have large pose variance.

FID and perceptual path length. We trained the mod-
els using different datasets, so the latent space distributions
are different in our experiments. Therefore, we do not com-
pare the Fréchet Inception Distance (FID) [15] and percep-
tual path length (PPL) [21] between the models, since they
are highly related to dataset distributions. Instead, we re-
spectively measure the FID of SFFHQ

var1 , SOurs
var1 and SOurs

var2

on their training dataset. The FID of SFFHQ
var1 is 2.71 on

FFHQ, the FID of SOurs
var1 is 3.407 on FFHQ+LPFF, and

the FID of SOurs
var2 is 3.786 on FFHQ+LPFF-rebal. The

comparable FIDs show that the StyleGAN2-ada model can
achieve convergence on our datasets as it did on FFHQ. We
use the PPL metric that is computed based on path end-
points in W latent space, without the central crop. The PPL
of SFFHQ

var1 is 144.9, the PPL of SOurs
var1 is 147.6, and the PPL

of SOurs
var2 is 173.0. The PPL of SOurs

var1 is comparable to the
PPL of SFFHQ

var1 . The higher PPL of SOurs
var2 indicates that

SOurs
var2 leads to more drastic image feature changes when

performing interpolation in the latent space. We attribute
this to the larger pose variance in SOurs

var2 ’s latent space and
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Figure 6: Pose manipulation comparison between SFFHQ
var1

(Top), SOurs
var1 (Middle), and SOurs

var2 (Bottom). The images
highlighted by the blue box are generated from randomly
sampled latent codes, and all the samples are linearly moved
along the yaw editing direction with the same distance.

the FFHQ+LPFF-rebal dataset.
Pose manipulation. We compare the pose distribution

of the latent spaces by displaying the results of linear yaw
pose manipulation. For each model, we label randomly
sampled latent codes according to the camera parameters
of the corresponding synthesized images (yaw angles >90◦

as positive and ≤ 90◦ as negative) and use InterfaceGAN
[38] to compute the yaw editing direction. The pose editing
results are then obtained by moving randomly sampled la-
tent codes along the yaw editing direction, as shown in Fig.
6. Because the linear manipulation method is used with-
out any semantic attribute disentanglement, the results of
all models cannot preserve facial identity. As for SFFHQ

var1 ,
the “side face” results are far from a genuine human face,
demonstrating that the latent codes have reached the edge
of the latent space. With regard to SOurs

var1 and SOurs
var2 , our

models produce reasonable and comparable large-pose por-
traits. The comparison shows that our models’ latent spaces
are more extensive and better able to represent large-pose
data.

Large-pose data inversion and manipulation. To fur-
ther show that our models can better represent large-pose
data, we project large-pose portraits into the latent spaces
of those models (see Fig. 7), and apply semantic editing
to the obtained latent codes. We collect the testing images
from Unsplash2 and Pexels3 (independent of both FFHQ
and LPFF). We then employ 500-step latent code optimiza-
tion in W+ latent space to minimize the distance between
the synthesized image and the target image. To evaluate the
editability of the projected latent codes, we use the attribute
classifiers provided by StyleGAN [21] and employ Inter-
faceGAN to compute semantic boundaries for each model,
and then use the boundaries to edit the projected latent
codes. We also use the yaw editing directions to try to make
the large pose data face forward. Please refer to the supple-

2https://unsplash.com
3https://www.pexels.com
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Figure 7: Large-pose data projection comparison between
SFFHQ
var1 , SOurs

var1 , and SOurs
var2 . The target images (the first

row) are collected from Unsplash and Pexels websites.

ment for those semantic editing results. As shown in those
projection and manipulation results, the models trained on
our dataset have fewer artifacts and can better represent the
large pose data in their latent spaces. What’s more, SOurs

var2

outperforms SOurs
var1 because SOurs

var2 is trained on a more bal-
anced dataset, which proves the effectiveness of our data
rebalance strategy.

5.2. EG3D

Fig. 8 provides the selected samples that are generated
by the models trained on the FFHQ dataset and our dataset,
with resolution 5122. Even in large poses, our synthesized
images and 3D geometry are high-quality.

FID. In EG3D, the generator is conditioned on a fixed
camera pose (cg) when rendering from a moving camera tra-
jectory to prevent the scene from changing when the cam-
era (cr) moves during inference. However, EG3D’s authors
evaluated the FID of EG3D by conditioning the model on
cg and rendering results from cr = cg . This approach can-
not demonstrate the performance of multi-view rendering
during inference, since the generator always “sees” the true
pose of the rendering camera in evaluation, but omits other
poses. For a 3D-aware generator, we are more interested
in how a face looks from various camera views (which can
indicate the quality of face geometry to some extent). So
a more reasonable way is to let cr and cg be independent
of each other and sample them from the respective distribu-
tions that are of our interest. To achieve this, we propose
a novel FID measure, which is based on three camera sam-
pling strategies. First, we fix cg as cavg and then sample cr
from different datasets. Second, we respectively sample cr
and cg from different datasets. Third, we sample cg from
different datasets and set cr = cg (the one that was used in
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Figure 8: Image-shape pairs produced by EFFHQ
var1 ,EFFHQ

var2 , EOurs
var1 , and EOurs

var2 .
We apply truncation with ψ = 0.8.

model cg = cavg cg ∼ FFHQ cg ∼ LPFF
cr ∼ FFHQ cr ∼FFHQ cr ∼FFHQ

EFFHQ
var1 0.771 0.768 0.760
EOurs

var1 0.804 0.792 0.778

EFFHQ
var2 0.770 0.769 0.766
EOurs

var2 0.789 0.784 0.771

Table 1: Quantitative evaluation of fa-
cial identity consistency (↑).

model cg = cavg cg ∼ FFHQ cg ∼ LPFF
cr ∼ FFHQ cr ∼FFHQ cr ∼FFHQ

EFFHQ
var1 0.134 0.133 0.159
EOurs

var1 0.119 0.124 0.134

EFFHQ
var2 0.135 0.130 0.142
EOurs

var2 0.117 0.122 0.131

Table 2: Quantitative evaluation of ge-
ometry consistency (↓).

model cg = cavg cg = cavg cg ∼ FFHQ cg ∼ FFHQ cg ∼ LPFF cg ∼ LPFF cg ∼ FFHQ cg ∼ LPFF
cr ∼ FFHQ cr ∼ LPFF cr ∼FFHQ cr ∼LPFF cr ∼FFHQ cr ∼LPFF cr = cg cr = cg

EFFHQ
var1 6.523 23.598 4.273 22.318 23.698 36.641 4.025 23.301
EOurs

var1 7.997 20.896 6.623 19.738 21.300 22.074 6.093 16.026

EFFHQ
var2 6.589 20.081 4.456 19.983 19.469 30.181 4.262 23.717
EOurs

var2 9.829 16.775 6.672 15.047 13.022 14.836 6.571 12.221

Table 3: FID (↓) for EG3D generators that are trained on different datasets. We calculate the FIDs by sampling 50,000 images
using different sampling strategies and different camera distributions. We compare the models that are trained with the same
training strategy (var1/var2).

EG3D). See the calculated FID values in Tab. 3.

Models trained on our datasets exhibit improvements in
FID in most cases, particularly when the final results are
rendered from large poses (cr ∼ LPFF ), or when the
generator is conditioned on large poses (cg ∼ LPFF ).
We notice that there is an increased FID when computing
cg = cavg/cr, cr ∼ FFHQ. As explained by the au-
thors of EG3D, the pre-trained EFFHQ

var1 and EFFHQ
var2 were

achieved using buggy (XY, XZ, ZX) planes. We fix this
bug as they suggested using (XY, XZ, ZY), but the XZ-
plane representation’s dimension is halved, which weakens
the expressive capability for frontal faces.

Thanks to our dataset rebalancing strategy, EOurs
var2 can

pay more attention to large pose data and enhance the ren-
dering quality, thus further improving the FID of EOurs

var1

on large poses. When computing FID of cg = cavg, cr ∼
FFHQ, we notice that EOurs

var2 has an increased FID com-
pared to EOurs

var1 , while EFFHQ
var2 and EFFHQ

var1 have compa-
rable results. This is due to the addition of new large-pose
data, LPFF. FID is highly related to the data distribution,
and the rebalancd FFHQ+LPFF-rebal dataset changes the
data distribution when rendering from medium poses.

Facial identity consistency. We leverage ArcFace [8] to
measure the models’ performance on facial identity mainte-

nance. We render two novel views for 1,024 random faces
and use ArcFace to compute the mean identity similarity
for all image pairs. We employ three sampling strategies
for cg to evaluate the generator’s performance on the cam-
era distribution of different datasets. As for cr, we find that
the extreme rendering camera views will heavily influence
the performance of ArcFace, so we only sample cr from
the FFHQ dataset, where most of the faces have small to
medium poses. As shown in Tab. 1, our models present sig-
nificant improvements in facial identity consistency across
different sample strategies and datasets.

Geometry consistency. We employ F , which outputs
3DMM coefficients to evaluate the geometry consistency.
We employ the same camera sampling methods as in facial
identity consistency computation. We first render two novel
views for 1,024 random faces. Then for each image pair, we
compute the mean L2 distance of the face id and expression
coefficient. As shown in Tab. 2, our models present im-
provement in geometry consistency across different sample
strategies and datasets.

Image inversion. To evaluate the ability to fit multi-view
images, we use FaceScape [48] as the testing data. We use
four multi-view images (including one with a small pose) of
a single identity as the reference images. We perform latent
code optimization to simultaneously project one or four im-
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Figure 9: To fit the single-view testing image, we employ HFGI3D [46]. The obtained latent codes are then rendered using
four novel views. The inversion is carried out in W space, and the generators are conditioned on cavg .

ages intoW+ latent space. Then we use the camera param-
eters that are extracted from another 4 multi-view images
to render novel views. Please refer to the supplement for
multi-view image inversion results. Because occluded face
parts are unavoidable in single-view portraits, we perform
single-view image inversion using HFGI3D [46], a novel
method that combines pseudo-multi-view estimation with
visibility analysis. As shown in Fig. 9, the inversion results
indicate that EFFHQ

var1 and EFFHQ
var2 suffer from the “wall-

mounted” unrealistic geometry. Due to the adhesion be-
tween the head and the background, there are missing ears
in View 2 and distorted ears and necks in Views 3 and 4
(highlighted by green boxes). A pointed nose exists in View
2 (highlighted by blue boxes). Our EOurs

var1 and EOurs
var2 mod-

els produce reconstructed face geometry that is free from
those artifacts, suggesting that the learned 3D prior from
our dataset is more realistic. It also shows that after employ-
ing the data rebalance in Sec. 3.4, lips are more natural in
EOurs

var2 compared to EOurs
var1 (highlighted by an orange box).

“Seam” artifacts. The authors of IDE-3D speculate that
the “seam” artifacts in EG3D could be caused by the im-
balanced camera pose distribution of datasets, and propose
a density regularization loss to deal with the “seam” arti-
facts along the edge of the faces. Compared to the IDE-3D,
our modelEOurs

var1 is trained without requiring any additional
regularization loss or any data rebalance strategy, and is free
from the “seam” artifacts. Please refer to the supplement for
the illustration of “seam” artifacts.

6. Conclusion
In order to address the pose imbalance in the current

face generator training datasets, we have presented LPFF,
a large-pose Flickr face dataset comprised of 19,590 high-
quality real large-pose portrait images. Compared to those

models trained on FFHQ, the 2D face generators trained on
our dataset display a latent space that is more representative
of large poses and achieve better performance when project-
ing and manipulating large-pose data. The 3D-aware face
generators trained on our dataset can produce more realis-
tic face geometry and render higher-quality results at large
poses. The rendering results are also more view-consistent.
We hope our dataset can inspire more portrait generating
and editing works in the future.

Our work has several limitations. Despite having a more
balanced camera pose distribution, our dataset still has a se-
mantic attribute imbalance. For instance, we measured the
probability of smiling in FFHQ+LPFF. The plot shows that
people typically smile when they are facing the camera, so
the models trained on our dataset have the smile-posture en-
tanglement. Please refer to the supplement file for the smil-
ing probability plot. This can be overcome by building a
camera system and capturing large-scale semantic-balanced
images. Our processing pipeline uses the face detector
and face reconstruction model to align faces, but it does not
perform well under extreme conditions (for example, when
only the back of the head is visible and the face is com-
pletely occluded). As a result, we cannot obtain full-head
results. Future work that can model the full head may be
helpful to get a more extensive dataset.
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