
HeterSkinNet: A Heterogeneous Network for Skin Weights
Prediction

XIAOYU PAN, State Key Lab of CAD&CG, Zhejiang University; ZJU-Tencent Game and Intelligent Graphics
Innovation Technology Joint Lab, China
JIANCONG HUANG, Tencent Games Lightspeed & Quantum Studios, China
JIAMINGMAI, State Key Lab of CAD&CG, Zhejiang University; ZJU-Tencent Game and Intelligent Graphics
Innovation Technology Joint Lab, China
HE WANG, School of Computing, University of Leeds, United Kindom
HONGLIN LI, Quanzhou Medical College, China
TONGKUI SU, Tencent Games Lightspeed & Quantum Studios, China
WENJUN WANG, Tencent Institute of Games, China
XIAOGANG JIN*, Corresponding author, State Key Lab of CAD&CG, Zhejiang University; ZJU-Tencent
Game and Intelligent Graphics Innovation Technology Joint Lab, China

Fig. 1. Given a character mesh and skeleton, HeterSkinNet builds a heterogeneous graph network to estimate
skin weights. From left to right: example character model, per-vertex HollowDist to the dress bone (red
sphere), the heterogeneous graph our network operates on, predicted skin weights of the dress bone, a pose
with our estimated skin weights.

Authors’ addresses: Xiaoyu Pan, State Key Lab of CAD&CG, Zhejiang University; ZJU-Tencent Game and Intelligent
Graphics Innovation Technology Joint Lab, Hangzhou, China, panxiaoyu6@gmail.com; Jiancong Huang, Tencent Games
Lightspeed & Quantum Studios, Shenzhen, China, bbbhuang@tencent.com; Jiaming Mai, State Key Lab of CAD&CG,
Zhejiang University; ZJU-Tencent Game and Intelligent Graphics Innovation Technology Joint Lab, Hangzhou, China,
maijmwq@126.com; He Wang, School of Computing, University of Leeds, Leeds, United Kindom, H.E.Wang@leeds.ac.uk;
Honglin Li, Quanzhou Medical College, Quanzhou, China, lihonglin79@qq.com; Tongkui Su, Tencent Games Lightspeed
& Quantum Studios, Shenzhen, China, tongkuisu@tencent.com; Wenjun Wang, Tencent Institute of Games, Shenzhen,
China, jamesonwang@tencent.com; Xiaogang Jin*, Corresponding author, State Key Lab of CAD&CG, Zhejiang University;
ZJU-Tencent Game and Intelligent Graphics Innovation Technology Joint Lab, HangZhou, China, jin@cad.zju.edu.cn.

© 2021 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive
Version of Record was published in Proceedings of the ACM on Computer Graphics and Interactive Techniques, https:
//doi.org/10.1145/3451262.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 4, No. 1, Article . Publication date: May 2021.

https://doi.org/10.1145/3451262
https://doi.org/10.1145/3451262

2 Xiaoyu Pan, Jiancong Huang, Jiaming Mai, He Wang, Honglin Li, Tongkui Su, Wenjun Wang, and Xiaogang Jin*

Character rigging is universally needed in computer graphics but notoriously laborious. We present a new
method, HeterSkinNet, aiming to fully automate such processes and significantly boost productivity. Given a
character mesh and skeleton as input, our method builds a heterogeneous graph that treats the mesh vertices
and the skeletal bones as nodes of different types and uses graph convolutions to learn their relationships. To
tackle the graph heterogeneity, we propose a new graph network convolution operator that transfers informa-
tion between heterogeneous nodes. The convolution is based on a new distance HollowDist that quantifies the
relations between mesh vertices and bones. We show that HeterSkinNet is robust for production characters
by providing the ability to incorporate meshes and skeletons with arbitrary topologies and morphologies
(e.g., out-of-body bones, disconnected mesh components, etc.). Through exhaustive comparisons, we show
that HeterSkinNet outperforms state-of-the-art methods by large margins in terms of rigging accuracy and
naturalness. HeterSkinNet provides a solution for effective and robust character rigging.

CCS Concepts: • Computing methodologies→Mesh models.

Additional Key Words and Phrases: Character Rigging, Graph Neural Networks, Distance Measurement

ACM Reference Format:
Xiaoyu Pan, Jiancong Huang, Jiaming Mai, He Wang, Honglin Li, Tongkui Su, Wenjun Wang, and Xiaogang
Jin*. 2021. HeterSkinNet: A Heterogeneous Network for Skin Weights Prediction. Proc. ACM Comput. Graph.
Interact. Tech. 4, 1 (May 2021), 19 pages. https://doi.org/10.1145/3451262

1 INTRODUCTION
There is a surging growth of need for high-quality character animation in film and video game
productions. To animate a character mesh, rigging is a popular solution that is widely adopted in
industry, where animators first create a skeleton hierarchy and then bind the mesh to the skeleton
with the mesh vertices associated with the bones under some weighting schemes, i.e., skin weights.
Although methods have been developed to automatically compute skin weights, they are still often
painted by hand to enable fine control of the mesh deformation caused by bone transformations.
Consequently, when the models and motions become complex, this step becomes time-consuming
even for skilled animators.
Existing efforts have been made to automatically compute the skin weights by hand-crafted

functions [Baran and Popović 2007; Jacobson et al. 2011; Wareham and Lasenby 2008] and learned
functions [Liu et al. 2019; Xu et al. 2020] of vertex features with respect to bones. However, different
bones influence areas of various sizes to different extents. While the spine of a character can
influence vertices on the torso which are far from it, finger bones only influence close-by vertices.
Further, the bone-influence relation changes with the skeleton morphology of characters, shown by
Figure 2 which contains characters of different species with both in-body and out-of-body bones.
In extreme cases, the skeleton structure might be totally arbitrary, e.g., out-of-body bones used to
deform cloths. The majority of existing methods often simplify the heterogeneous relations between
mesh vertices and bones, by homogeneously considering them in one model (e.g., one function or
network) to capture different bones influencing different areas, downplaying the importance of the
intrinsic shape features of these areas and the connections of the bones. A few attempts [Liu et al.
2019] have been made to apply different functions to different bones by semantically labeling the
bones. However, they are designed for one type of skeletal morphology and therefore unable to
generalize to characters with different skeletal morphologies.

In this paper, we present a deep-learning-based method, HeterSkinNet, to automatically estimate
skin weights of character models with diverse meshes and arbitrary skeletal morphologies. Our
network extracts both vertex features and bone features and estimates skin weights according to
their relations. It starts by recognizing the different roles of the mesh and the skeleton in rigging,
representing them in two graphs, Mesh Graph and Skeleton Graph respectively. Graph convolution
operations are used to extract node features. To model the interaction between the mesh and

Proc. ACM Comput. Graph. Interact. Tech., Vol. 4, No. 1, Article . Publication date: May 2021.

https://doi.org/10.1145/3451262

HeterSkinNet: A Heterogeneous Network for Skin Weights Prediction 3

Fig. 2. Example characters with their skeletons. The out-of-body bones controlling thin features are colored
blue. Most of them are ending bones, which start and end at the same leaf joints.

the skeleton, we propose a new intrinsic distance named "HollowDist", which is robust for ill-
conditioned situations in production models. Finally, to enable information passing between the
two graphs, we propose a new convolution operator, which convolutes between the two kinds of
nodes and builds interactions between them. We evaluate HeterSkinNet on a large dataset with a
wide variety of meshes and skeletons. The qualitative and quantitative results show that our method
can handle the mesh and skeleton diversity well, even for out-of-body bones and disconnected
mesh components. We also extensively compare our method with state-of-the-art methods where
the quantitative results are improved by large margins.

Formally, our technical contributions include:
• The first heterogeneous graph neural network that estimates skin weights for character
models with diverse skeletal morphologies and body meshes.

• A new graph convolution operator that handles heterogeneous nodes in a graph.
• A new distance to quantify vertex-bone relations which can handle ill-conditioned situations
including out-of-body bones and disconnected meshes.

2 RELATEDWORK
Skin Deformations. Various skinning techniques have been proposed for character rigging. Among

them, Linear Blend Skinning (LBS) [Alexa 2002] and Dual Quaternion Skinning (DQS) [Kavan
et al. 2007] are widely used in real-time applications due to their simplicity and computational
efficiency. In these methods, vertices on the mesh are deformed by weighted transformations of
bones. The weights associating vertices with bones determine the quality of deformation. Several
attempts have been proposed to automatically estimate high-quality skin weights, which can be
categorized into geometry-based and data-driven methods. Geometry-based methods estimate skin
weights based on hand-crafted functions of vertex features with respect to bones, such as methods
utilizing heat diffusion [Baran and Popović 2007], illumination model [Wareham and Lasenby 2008],
Laplacian energy [Jacobson et al. 2011] and volumetric geodesic distance [Dionne and de Lasa
2013; Dionne and De Lasa 2014]. The hand-crafted functions deployed in these methods make
assumptions for the weight distributions. Therefore, it is hard for these methods to capture the
anatomic information intrinsic in the input meshes, such as skin flexibility and spine disparity.

Data-driven methods can successfully capture anatomic information of meshes by learning from
a set of character models with artist-painted skin weights. NeuroSkinning [Liu et al. 2019] is the
first work predicting skin weights of production characters with complex garments. Their network

Proc. ACM Comput. Graph. Interact. Tech., Vol. 4, No. 1, Article . Publication date: May 2021.

4 Xiaoyu Pan, Jiancong Huang, Jiaming Mai, He Wang, Honglin Li, Tongkui Su, Wenjun Wang, and Xiaogang Jin*

performs graph convolution on graphs represented by meshes to extract high-level features of
vertices and predicts the vertex weights as outputs. However, their network assumes that the bones
should be labeled semantically as human bones or cloth bones, which restricts its generalization to
models with different skeletal morphologies. RigNet [Xu et al. 2020] provides an end-to-end method
of rigging models of arbitrary categories, which predicts the model skeleton and corresponding skin
weights jointly. To this end, in the skinning stage of their network, they take intrinsic vertex-bone
distances as inputs, which catch the implicit mesh shape information. However, their method
does not differentiate the skin weights functions applied for different bones. Different from the
two methods mentioned above, our method can be applied to models with arbitrary skeletal
morphologies while considering the different situations of bones. Our approach also takes intrinsic
vertex-bone distances as network inputs and estimates skin weights using vertex features and bone
features extracted by our heterogeneous network.

Graph Neural Networks. Graph Neural Networks (GNNs) have shown superior power on deep
learning tasks processing data represented by graphs [Bronstein et al. 2017; Wu et al. 2020; Zhang
et al. 2020; Zhou et al. 2018]. There is an increasing interest in applying GNNs on geometric data of
different representations [Xiao et al. 2020], especially for meshes. These GNNs can be generally
categorized into spectral approaches [Boscaini et al. 2016; Monti et al. 2017; Yi et al. 2017] and spatial
approaches [Hanocka et al. 2019; Liu et al. 2019; Masci et al. 2015; Verma et al. 2018; Xu et al. 2020].
Spectral approaches operate on a graph’s spectral domain by performing eigen decomposition
of the graph Laplacian. They fail to generalize to meshes with different topologies, which have
different graph Laplacians. Spatial methods operate on spatially neighboring graph nodes, so that
they can generalize to unseen graphs. Our network performs convolution on spatially connected
nodes and thus can process character models with different meshes and skeletal morphologies.

In contrast to the above networks operating on homogeneous graphs, other networks focus on
handling heterogeneous graphs. Wang et al. [Wang et al. 2019a] proposed a graph neural network
based on a hierarchical attention mechanism for general graph analysis tasks. Similarly, Hu et
al. [Linmei et al. 2019] deployed a dual-level attention mechanism on heterogeneous graphs for
short text classification. However, our method applies a heterogeneous graph neural network
on a different task using different convolution operations, which builds heterogeneous graphs
constituted of vertex and bone nodes and learns their high-level features by transferring features
with their homogeneous neighbors and heterogeneous neighbors alternatively.

Deep-Learning-based Deformation. Several deep learning methods have been proposed for mesh
deformation. Some methods process mesh animation sequences. Tan et al. proposed Mesh VAE
[Tan et al. 2018] to extract spatially localized deformation components of mesh deformation, which
can be used for shape analysis and synthesis tasks. Qiao et al. introduced [Qiao et al. 2018] a
long-short-term-memory (LSTM) based network to synthesize new mesh animation sequences
based on the input sequence.

Some researchers adopt neural networks as non-linear modules to enhance the linear deforma-
tions of meshes. Luo et al. [Luo et al. 2020] proposed a network mapping linear displacements
to corresponding nonlinear displacements for simulation of elastic materials. Similarly, Bailey
et al. [Bailey et al. 2018] used a fully-connected neural network to approximate the nonlinear
deformations of a specific character. Li et al. leveraged a densely connected graph attention network
[Li et al. 2020] for generalization, which can be adopted to human character models with unseen
meshes and the same skeleton as those in the training set. Our network estimates the skin weights
as the linear portion of deformations, which can be complementary to the above methods.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 4, No. 1, Article . Publication date: May 2021.

HeterSkinNet: A Heterogeneous Network for Skin Weights Prediction 5

Fig. 3. The structure of our network. The network operates on a heterogeneous graph composed of Mesh
Graph and Skeleton Graph. Intra-graph convolution components operate within the two subgraphs, and
inter-graph convolution components transfer features between them. The detail of inter-graph convolution
components is shown in Figure 5.

3 METHODOLOGY
Given a character mesh and skeleton, our method aims to obtain the skin weights associating
the mesh vertices with the skeleton, which represent the influences of bone transformations on
the vertices. First, we present a new distance named ‘HollowDist‘, which quantifies vertex-bone
relations. Its calculation is based on surface voxelization and the breadth-first search algorithm. Next,
we construct the graph that our network operates on. The graph is constituted of two subgraphs:
Mesh Graph, whose nodes and edges represent vertices and mesh edges respectively, and Skeleton
Graph, whose nodes and edges indicate bones and joints respectively. The connections between
nodes on the two subgraphs are built by HollowDist between corresponding vertices and bones.

Our network is shown in Figure 3 and is composed of intra-graph and inter-graph convolution
components: the former operate within subgraphs, i.e., Mesh Graph and Skeleton Graph, and
the latter transfer information between the two subgraphs. The network first transfers the node
attributes between the two subgraphs via an inter-graph convolution component and then processes
the transferred features separately within the two subgraphs by intra-graph components. In each
subgraph, the learned features are fed into two branches: a global branch and a local branch. The
global branch of each subgraph consists of a max-pooling layer and anMLP layer, which extracts the
overall feature of the corresponding subgraph. The local branch is composed of alternatively stacked
intra-graph and inter-graph components, which extracts the features of each vertex and bone nodes.
At the end of our network, the bone nodes’ features are scattered to their neighboring vertex nodes
with the concatenation of the two subgraphs’ global features, and the resulting features are sent
into a stack of MLPs to get the skin weights. The loss function of our network not only minimizes
the difference between the predicted skin weights and the ground truth, but also encourages the
skin weights to distribute smoothly on the mesh.
In the following subsections, we will first describe the calculation of HollowDist, and then we

will introduce the construction of our graph, the individual components of our network and the
loss function.

3.1 HollowDist
To model vertex-bone relationships, NeuroSkinning [Liu et al. 2019] uses the Euclidean distance
which ignores the shape of the mesh and therefore can represent paths that may penetrate the
mesh. Thus a restriction needs to be imposed which dictates that the path cannot penetrate the
mesh, resulting in a restricted distance. Several distances [Rustamov et al. 2009; Solomon et al. 2014]

Proc. ACM Comput. Graph. Interact. Tech., Vol. 4, No. 1, Article . Publication date: May 2021.

6 Xiaoyu Pan, Jiancong Huang, Jiaming Mai, He Wang, Honglin Li, Tongkui Su, Wenjun Wang, and Xiaogang Jin*

have been proposed in calculating such distances for manifold meshes. But they cannot handle
meshes containing non-manifold geometries and intersected triangles. To tackle these meshes, we
adopt the idea introduced in [Dionne and de Lasa 2013], which voxelizes the mesh and calculate
the distances between bones and vertices via paths inside the mesh. However, their method cannot
handle out-of-body bones and meshes with disconnected parts. Different from their method, our
approach does not assume that the bones are inside the mesh. We divide the space into mesh cells,
bone cells and hollow cells and find paths across hollow cells, which can be either inside the mesh
or outside the mesh. Moreover, to tackle disconnected mesh parts, our method restarts the search
for unreachable mesh cells.

Fig. 4. Calculation of the HollowDist. (a) A Path from a bone
cell to a mesh cell. The cells are colored to indicate their Hol-
lowDist to the bone, in which bone cells are colored white. Mesh
surfaces are represented by blue lines, and cells intersecting
with it are mesh cells, which have bold boundaries. (b) Restart
the search for unconnected mesh cells.

We first identify the mesh cells by
voxelizing the mesh via the GPU-based
surface voxelization method proposed
in [Schwarz and Seidel 2010], which
fills cells intersecting with mesh trian-
gles and keeps the remaining cells hol-
low. Compared with other rasterization-
based methods [Eisemann and Décoret
2008], this approach does not miss im-
portant thin structures in production
models, such as garments and hair.
Then, we find the path from bone cells
to mesh cells via the breadth-first search
algorithm, which iteratively traverses
from seed cells to their neighboring un-
traversed cells and marks them as new
seeds for the next iteration, extending
the path to the new seed cells. Our algo-
rithm is illustrated in Algorithm 1 and
is visualized in Figure 4. We denote 𝑐s
as cells, with side length of the cell 𝑠𝑐 .
For each bone 𝑏𝑖 , we identify the bone
cells as cells intersecting with it. The
distances of bone cells are set to zero,
and those of the remaining cells are set to infinity (lines 2-9). The path starts from the bone cells
and will not penetrate the mesh boundaries which are represented by mesh cells (lines 11-19). For
mesh cells that cannot be reached, we find the nearest mesh cell neighboring to any untraversed
hollow cell and restart the search from one of its neighboring untraversed hollow cells (lines 20-24).
The length of such a path is named HollowDist, as it is mostly on the hollow cells.

The HollowDist for each vertex is calculated based on the length of the path found above. For
vertex 𝑣𝑖 in cell 𝑐 , its HollowDist to bone 𝑏 𝑗 is computed as follows:

𝑑
𝑏 𝑗
𝑣𝑖 = 𝑑

𝑏 𝑗
𝑐𝑝𝑟𝑒𝑣 + ||𝑝𝑐𝑝𝑟𝑒𝑣 − 𝑝𝑣𝑖 | |2, (1)

where 𝑐𝑝𝑟𝑒𝑣 is the cell neighboring to 𝑐 , which is the previous cell on the path, and 𝑝𝑐𝑝𝑟𝑒𝑣 is its
center position.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 4, No. 1, Article . Publication date: May 2021.

HeterSkinNet: A Heterogeneous Network for Skin Weights Prediction 7

Algorithm 1: HollowDist Computation
Input: Cell grid G, side length of cell 𝑠𝑐 and Character skeleton S
Output: Distance between each bone and mesh cells d

1 foreach bone 𝑏𝑖 in S do
// Initialize cell distances

2 foreach cell 𝑐𝑖 of G do
3 𝑑

𝑏𝑖
𝑐𝑖 = ∞;

4 end
5 Create empty cell queue 𝑄 ;
6 foreach cell 𝑐𝑖 intersecting with bone 𝑏𝑖 do
7 𝑑

𝑏𝑖
𝑐𝑖 = 0;

8 Push 𝑐𝑖 to 𝑄 ;
9 end

// Compute distance

10 while exists untraversed mesh cell do
11 while 𝑄 is not empty do
12 Pop 𝑐𝑖 from 𝑄 ;
13 foreach untraversed cell 𝑐 𝑗 neighboring to 𝑐𝑖 do
14 if not (𝑐𝑖 is mesh cell and 𝑐 𝑗 is not a mesh cell) then
15 𝑑

𝑏𝑖
𝑐 𝑗 = 𝑑

𝑏𝑖
𝑐𝑖 + 𝑠𝑐 ;

16 Push 𝑐 𝑗 to 𝑄 ;
17 end
18 end
19 end

// Restart the search

20 Find the nearest mesh cell 𝑐𝑖 neighboring to any untraversed hollow cell;
21 foreach Untraversed hollow cell 𝑐 𝑗 neighboring to 𝑐𝑖 do
22 𝑑

𝑏𝑖
𝑐 𝑗 = 𝑑

𝑏𝑖
𝑐𝑖 + 𝑠𝑐 ;

23 Push 𝑐 𝑗 to 𝑄 ;
24 end
25 end
26 end

3.2 Graph Construction
Given a mesh M with 𝑁 vertices and its associated skeleton S with 𝐵 bones, we construct a
heterogeneous graph G = (G𝑚,G𝑠 ,A𝑚𝑠), which is comprised of Mesh Graph G𝑚 , Skeleton Graph
G𝑠 and the adjacency matrixA𝑚𝑠 representing edges between the two subgraphs. The Mesh Graph
is denoted as G𝑚 = (V𝑚, E𝑚), where V𝑚 is the set of graph nodes indicating vertices on the mesh,
and E𝑚 ∈ V ×V represents its edges. We also denote 𝑣𝑖 as the 𝑖-th node in V𝑚 . To construct the
Skeleton Graph G𝑠 = (V𝑠 , E𝑠), we first add zero-length helper bones at leaf joints for skinning at
the end of limbs, then treat each bone as a node and each joint as an edge, and thus V𝑠 and E𝑠
have similar meanings as those in the Mesh Graph G𝑚 . A𝑚𝑠 ∈ [0, 1]𝑁×𝐵 is the connectivity matrix
between the Mesh Graph and the Skeleton Graph, A𝑚𝑠 [𝑖, 𝑗] = 1 if vertex 𝑣𝑖 is influenced by bone
𝑏 𝑗 . We assume a vertex is influenced by its nearby bones and thus set A𝑚𝑠 [𝑖, 𝑗] = 1 if bone 𝑏 𝑗 is in

Proc. ACM Comput. Graph. Interact. Tech., Vol. 4, No. 1, Article . Publication date: May 2021.

8 Xiaoyu Pan, Jiancong Huang, Jiaming Mai, He Wang, Honglin Li, Tongkui Su, Wenjun Wang, and Xiaogang Jin*

the Top-𝐾 closest bones to vertex 𝑣𝑖 according to HollowDist. 𝐾 is the max number of influential
bones to a vertex, which is set manually.
The inputs of our network are attributes of nodes. The attribute of a vertex node also captures

its relationship with the bones. For vertex 𝑣𝑖 , its calculated HollowDist to all bones are denoted
as {𝐷𝑖, 𝑗 } 𝑗=1,...,𝐵 , where 𝐷𝑖, 𝑗 is the HollowDist from 𝑣𝑖 to the bone 𝑏 𝑗 . We select the Top-𝐾 nearest
bones in the ascending order: {𝑛𝑖, 𝑗 } 𝑗=1,...,𝐾 , in which 𝑛𝑖, 𝑗 indicates the index of the 𝑗-th nearest
bone to vertex 𝑣𝑖 . The vertice’s attribute is the concatenation of its position and the inverse of
HollowDists to the Top-𝐾 closest bones: 𝑓𝑣𝑖 = [𝑝𝑇𝑣𝑖 , 1/𝐷𝑖,𝑛𝑖,1 , ..., 1/𝐷𝑖,𝑛𝑖,𝐾] ∈ 𝑅

𝐾+3. For bone nodes,
we use their starting and ending joint positions as attributes: 𝑓𝑏 𝑗 = [𝑝𝑇

𝑏 𝑗,𝑠𝑡𝑎𝑟𝑡
, 𝑝𝑇
𝑏 𝑗,𝑒𝑛𝑑

] ∈ 𝑅6.

3.3 Individual Components
Intra-graph Convolution Components. The intra-graph convolution components are built based

on EdgeConv [Wang et al. 2019b], which aggregates nodes’ local features of their homogeneous
neighbors. The operations on the Mesh Graph G𝑚 and the Skeleton Graph G𝑠 are slightly different.
For the Skeleton Graph, we simply use EdgeConv, which is shown as follows:

𝑓 ′
𝑏𝑖

= 𝐸𝑑𝑔𝑒𝐶𝑜𝑛𝑣 (𝑏𝑖 ,N(𝑏𝑖))
= max
𝑏 𝑗 ∈N(𝑏𝑖)

𝑀𝐿𝑃 (𝑓𝑏𝑖 | | (𝑓𝑏𝑖 − 𝑓𝑏 𝑗);𝑊𝑠). (2)

Here, | | is the concatenation operator. 𝑓𝑏𝑖 ∈ 𝑅𝐹𝑏 and 𝑓 ′𝑏𝑖 ∈ 𝑅
𝐹 ′
𝑏 are the input feature and the output

feature of 𝑏𝑖 , whose dimensions are 𝐹𝑏 and 𝐹 ′𝑏 , respectively.N(𝑏𝑖) is the set of bones connecting to
bone 𝑏𝑖 , and𝑊𝑠 ∈ 𝑅2𝐹𝑏×𝐹

′
𝑏 is the trainable weight matrix of the component.

When applying convolution operations on the mesh graph, a node’s receptive field is determined
by the distances to its one-ring neighbors, which are influenced by the mesh tessellation. To make
the network less sensitive to the mesh tessellation, we adopt the operation introduced in [Xu
et al. 2020], which separately conducts EdgeConv within nodes’ geodesic neighbors and one-ring
neighbors and gets the result by processing the concatenation of the results through an MLP. The
geodesic neighbors of a vertex are vertices whose geodesic distances from it are within a threshold
(0.06). The operation is shown as follows:

𝑓 ′𝑣𝑖 = 𝑀𝐿𝑃 (𝐸𝑑𝑔𝑒𝐶𝑜𝑛𝑣 (𝑣𝑖 ,N𝑚 (𝑣𝑖)) | | 𝐸𝑑𝑔𝑒𝐶𝑜𝑛𝑣 (𝑣𝑖 ,N𝑔 (𝑣𝑖));𝑊𝑣), (3)

where N𝑚 (𝑣𝑖) and N𝑔 (𝑣𝑖) are the one-ring neighbors and geodesic neighbors of the vertex node 𝑣𝑖 ,
𝑊𝑣 ∈ 𝑅2𝐹

′
𝑣×𝐹 ′𝑣 is the trainable weight matrix of the component, and 𝐹𝑣 and 𝐹 ′𝑣 denote the dimensions

of input features and output features, respectively.

Inter-graph Convolution Component. Within this component, the vertex and bone nodes aggregate
features from each other mutually. Due to the unbalanced property of G’s two subgraphs, whose
numbers of nodes differ greatly, i.e., G𝑚 contains thousands of vertex nodes while G𝑠 have dozens
of bone nodes, we design the vertex-to-bone and bone-to-vertex convolution operations differently.
For the vertex-to-bone convolution, the bone nodes gather information from their influenced

vertex nodes. A lossless way to gather features is to directly concatenate their features. However,
the numbers of vertices influenced by bones vary greatly, which makes the dimensions of resulting
features indeterminate and thus is unfeasible in a neural network. Inspired by [Wen et al. 2019],
we instead concatenate the maximum, mean and variance pooled from all their influenced vertex
nodes’ features to make the resulting features’ dimensions fixed. This convolution operation also

Proc. ACM Comput. Graph. Interact. Tech., Vol. 4, No. 1, Article . Publication date: May 2021.

HeterSkinNet: A Heterogeneous Network for Skin Weights Prediction 9

Fig. 5. Illustration of the inter-graph convolution operator. Within this operator, the bone-to-vertex convo-
lution and the vertex-to-bone convolution are performed sequentially. In the bone-to-vertex convolution,
the vertex nodes in the Mesh Graph concatenate their features with the features of their Top-𝐾 nearest
bone nodes. In the vertex-to-bone convolution, the bone nodes in the Skeleton Graph concatenate their
features with the maximum, mean and variance of their influenced vertex nodes’ features. Each convolution
is followed by an MLP layer for the convolution operator’s nonlinearity.

encourages the network to learn information from the correlations among these vertex nodes’
features besides learn from the nodes’ individual features.
For the bone-to-vertex convolution, the vertex nodes gather features from their corresponding

bone nodes. Different from the vertex-to-bone convolution, a vertex is set to be influenced by its
nearest 𝐾 bones, directly concatenating their features can result in fixed-sized features. For a vertex
node 𝑣𝑖 , we first sort the bone nodes according to their HollowDists to it and then concatenate
their features with the vertex node’s feature and process the concatenated feature via an MLP.

The aforementioned two convolution operations are shown as follows:

𝑓 ′
𝑏 𝑗

= 𝑀𝐿𝑃 ((𝑓𝑏 𝑗 | | 𝑚𝑎𝑥
𝑣𝑖 ∈I(𝑏 𝑗)

(𝑓𝑣𝑖) | | 𝑚𝑒𝑎𝑛
𝑣𝑖 ∈I(𝑏 𝑗)

(𝑓𝑣𝑖) | | 𝑣𝑎𝑟
𝑣𝑖 ∈I(𝑏 𝑗)

(𝑓𝑣𝑖));𝑊𝑣2𝑏), (4)

𝑓 ′𝑣𝑖 = 𝑀𝐿𝑃 (𝑓𝑣𝑖 | |𝑓𝑏𝑛𝑖,1 | |...| |𝑓𝑏𝑛𝑖,𝐾 ;𝑊𝑏2𝑣) . (5)

Here, I(𝑏 𝑗) = {𝑣𝑖 |A𝑚𝑠 [𝑖, 𝑗] = 1} represents the set of vertices that bone 𝑏 𝑗 influences and
𝑊𝑣2𝑏 ∈ 𝑅𝐹𝑏×(𝐹𝑏+3𝐹𝑣) and𝑊𝑣2𝑏 ∈ 𝑅𝐹𝑣×(𝐹𝑣+𝐾𝐹𝑏) are learnable weight matrices to make the feature
dimensions unchanged after operations.

3.4 Loss Function
To make the animation satisfactory, the skin weights should satisfy several constraints. Primarily,
they are required to be convex, i.e.,𝑤𝑖 𝑗 ≥ 0 and

∑
𝑗 𝑤𝑖 𝑗 = 1, where𝑤𝑖 𝑗 indicates the skin weight of 𝑣𝑖

regarding to bone 𝑏 𝑗 . Rather than directly imposing the constraints on the resulting weight matrix,
we add a softmax layer at the end of our network to ensure its non-negativity and affinity. Apart
from being convex, the weight matrix is required to be sparse to ensure computation efficiency. In
our network, this constraint is automatically satisfied by only predicting the weights regarding to
the nearest 𝐾 bones for each vertex.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 4, No. 1, Article . Publication date: May 2021.

10 Xiaoyu Pan, Jiancong Huang, Jiaming Mai, He Wang, Honglin Li, Tongkui Su, Wenjun Wang, and Xiaogang Jin*

Our loss function is shown as follows:

L = L𝐷 + 𝜆𝑆L𝑆 , (6)
where L𝐷 is the data fitting term, L𝑆 is the smoothing term, and 𝜆𝑆 is a predefined smooth factor.

The data fitting term L𝐷 encourages the predicted weights to be close to the ground truth. We
adopt the strategy in [Liu et al. 2019], which treats the skin weights as label distributions. For a
vertex 𝑣𝑖 , its predicted weight𝑤𝑖 𝑗 can be considered as its possibility for selecting bone𝑏 𝑗 . Therefore,
our data fitting object is minimizing the distance between the predicted weight distribution and
the ground truth distribution. To this end, we use the Kullback-Leibler divergence between the two
distributions, L𝐷 =

∑
𝑤𝑖 𝑗𝑙𝑜𝑔(

𝑤𝑖 𝑗

�̂�𝑖 𝑗
), as the data fitting term, where �̂�𝑖 𝑗 is the ground truth.

To encourage the skin weights to distribute smoothly over the mesh, we add a smoothing
term L𝑆 to the loss function, which is calculated using the discrete Laplacian matrix of the mesh:
L𝑆 =

∑𝐵
𝑗=1𝑤

𝑇
𝑗 𝐿𝑤 𝑗 , in which 𝐿 ∈ 𝑅𝑁×𝑁 is the mesh Laplacian matrix, and 𝑤 𝑗 ∈ 𝑅𝑁 is the weight

column vector of bone 𝑏 𝑗 .

4 EXPERIMENTS
4.1 Dataset
We use the "ModelsResource-RigNetv1" dataset from [Xu et al. 2019] for our experiments. This
dataset contains manually rigged models with various meshes and different skeletons, covering a
wide range of classes, such as humanoids, birds, fish, etc. Most characters’ meshes are non-manifold
and contain disjoint parts, and some of their bones are placed outside of the meshes. The models are
all oriented consistently and rescaled to 1 meter in height. Some models with multiple parts may
have duplicate vertices in the same position at the connection of two parts, which have the same
skin weights but different connections. To ensure that they deform in the same way, we merge
the vertices in the same position when building the mesh graph and assign the same prediction
results to the vertices in that position. Moreover, to ensure that the models with different numbers
of vertices have similar impacts on our network during training, for models with less than 1K
vertices, we subdivide their meshes so that their vertex numbers range from 1K to 5K. All the above
pre-processing steps are performed via Houdini [SideFX 2020]. Finally, 3026 models are randomly
selected for training, and the remaining 100 models are used for testing. We present 4 character
models in our test set in Figure 2, whose statistics are shown in Table 2.

Table 1. The statistics of our example characters (Figure 2)

Character Vertices Triangles Bones Parts

1 4520 4455 34 7
2 4421 4341 23 15
3 3324 3084 25 13
4 3674 3564 18 17

4.2 Implementation Details
For the calculation of HollowDist, we voxelize all meshes using grid size 88×88×88. We implement
HeterSkinNet using Pytorch Geometric [Fey and Lenssen 2019], and train it on an NVIDIA GeForce
RTX 2080Ti GPU, using Adam optimizer [Kingma and Ba 2014] with learning rate 1𝑒 −4 and weight
decay 1𝑒 − 4. The dimensions of local and global features of vertex nodes are 256 and 512, and those

Proc. ACM Comput. Graph. Interact. Tech., Vol. 4, No. 1, Article . Publication date: May 2021.

HeterSkinNet: A Heterogeneous Network for Skin Weights Prediction 11

of bone nodes’ features are 128 and 512, respectively. The final layer of the network is a stack of 3
fully connected layers with feature dimensions of [1024, 512, 𝐾]. In the inter-graph convolution
component, the variances of vertex nodes’ features gathered by bone nodes are multiplied by 0.1
for training stability. We use Leaky ReLU with 𝛼 = 0.2 as the activation function in the linear layers
of our network. Before training, they are initialized using Kaiming normal [He et al. 2015]. During
training, we randomly drop out 85% edges in the Mesh Graph and 50% parameters in the final
layers to enhance the generalization ability of our network and save GPU memory.

Fig. 6. For models in the ModelsResource-RigNetv1 dataset
[Xu et al. 2019], we calculate the statistical ratio of the skin
weights sum of Top-𝐾 nearest bones to that of all bones, and
the statistical ratio of influential bones in the Top-𝐾 nearest
bones to all influential bones.

For models in the ModelsResource-
RigNetv1 dataset [Xu et al. 2019], we cal-
culate the statistical ratio of vertices’ skin
weights sum of their Top-𝐾 nearest bones
to that of all bones (the blue line in Fig-
ure 6) as

∑𝐾
𝑖=1𝑤𝑖/

∑
𝑤𝑖 , where𝑤𝑖 is a ver-

tex’s skin weight to its 𝑖-th nearest bone,
and the statistical ratio of influential bones
among vertices’ Top-𝐾 nearest bones to
that of all influential bones (the orange
line in Figure 6) as = |I𝐾 |/|I|, where I𝐾
is the set of influential bones in the Top-𝐾
nearest bones I𝐾 = {𝑏𝑖 |𝑖 <= 𝐾 and 𝑤𝑖 >
10−4} and I is the set of all influential
bones I = {𝑏𝑖 |𝑤𝑖 > 10−4}, respectively.
Here, we assume that bone 𝑏𝑖 is influ-
ential if 𝑤𝑖 > 10−4. We found that the
vertices are bound to their Top-3 nearest
bones with more than 90% of total skin
weights, and the influential bones among
these bones account for 90% total influen-
tial bones. To achieve a balance between
prediction accuracy and computation ef-
ficiency, we choose 𝐾 = 3. The smooth
factor in the loss function is empirically
set to 0.4 according to grid search.

4.3 Evaluation Metrics
To evaluate the network’s ability to predict skin weights, we leverage the following quantitative
metrics:

Precision and Recall. The two metrics indicate the ability to find bones influential to vertices,
which have similar meanings to those in pattern recognition. Precision is the fraction of correctly
predicted influential bones in all predicted influential bones, and recall is the fraction of those in all
influential bones in the ground truth.

L1-norm. This metric is used to measure the numerical accuracy of predicted weights, i.e., the
distance between predicted skin weights and the ground truth. A character model’s L1-norm is the
average of L1-norms over its vertices.

Distance error. Besides directly measuring the similarity between the predicted results and the
ground truth, we evaluate the deformation quality of models with our predicted skin weights. This

Proc. ACM Comput. Graph. Interact. Tech., Vol. 4, No. 1, Article . Publication date: May 2021.

12 Xiaoyu Pan, Jiancong Huang, Jiaming Mai, He Wang, Honglin Li, Tongkui Su, Wenjun Wang, and Xiaogang Jin*

metric represents the distance between deformed meshes, skinned with predicted skin weights and
the ground truth. To simulate possible poses in real motions, we generate new poses by rotating
30% of bones of a model by angles sampled independently from normal distributions N(0, 25◦).
For each character model, we generate 10 new poses, some of which are shown in Figure 8. The
generated poses may appear globally invalid, but the local deformations are meaningful and possibly
seen in real motions. The distance error is the average of the Euclidean distances between the
corresponding vertices of the two meshes.

4.4 Model Accuracy

Table 2. Evaluation of the predicted skin weights for our example characters.

Character Precision Recall L1-norm Dist. Err.

1 79.15% 91.53% 0.2715 0.002127
2 64.86% 83.67% 0.5661 0.007667
3 83.48% 83.02% 0.2795 0.004147
4 88.91% 89.17% 0.1645 0.001231

The overall quantitative metrics over the test set is shown in Table 3. The metrics for our example
characters are listed in Table 2. The results show that our network can effectively predict the skin
weights for new characters with low errors in general. We then investigate the worst cases. Figure
7 visualizes the per-vertex L1-norm errors on example character meshes. High errors are found
on the large curly hair of character 1, the neck and tail of character 2 and the belly of character 4.
A further investigation shows that there is a scarcity in the training data which contains similar
geometries as the ones with high predicted errors shown in Figure 7, which can be improved by
incorporating more data. Besides, errors tend to appear on regions near joints, such as shoulders,
ankles and torsos, where vertices are influenced by multiple connected bones. Different artists
tend to have different understanding of the anatomies of those areas and thus paint different skin
weights on similar areas, which introduces noises to the training data.

Figure 8 shows a side-by-side comparison of 4 randomly generated poses of character 1 with our
predicted skin weights and the ground truth, as well as the error maps between the corresponding
meshes. The largest errors are mainly on the end of the dress due to the lack of similar structures in
the training set. Even with those errors, the deformation results are visually plausible and similar to
those generated by the ground truth, which demonstrates that our network can predict ready-to-use
skin weights for high-quality deformations.

Table 3. Comparisons with other skinning methods

Method Precision ↑ Recall ↑ L1-norm ↓ Dist. Err. ↓
GeoVoxel 73.29% 72.21% 0.6057 0.010342

NeuroSkinning 75.25% 76.07% 0.5460 0.008487
RigNet 79.94% 79.02% 0.4075 0.006823
Ours 83.04% 81.11% 0.3269 0.005682

Proc. ACM Comput. Graph. Interact. Tech., Vol. 4, No. 1, Article . Publication date: May 2021.

HeterSkinNet: A Heterogeneous Network for Skin Weights Prediction 13

Fig. 7. Per-vertex L1-norm errors on example models.

Fig. 8. Randomly generated poses for a character. The meshes on the top row are deformed by the ground
truth, meshes on the middle row are deformed by our predicted skin weights, and the color maps on the
bottom row indicate per-vertex distance errors.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 4, No. 1, Article . Publication date: May 2021.

14 Xiaoyu Pan, Jiancong Huang, Jiaming Mai, He Wang, Honglin Li, Tongkui Su, Wenjun Wang, and Xiaogang Jin*

4.5 Comparisons
We compare our method with Geodesic Voxel binding (GVB) [Dionne and de Lasa 2013], NeuroSkin-
ning [Liu et al. 2019] and RigNet [Xu et al. 2020]. For GVB, we use the implementation in Maya
[Autodesk 2020] with 3 influential bones, 0.5 falloff and 128 resolution. For NeuroSkinning, since
the models in the dataset have different skeletal morphologies and cannot fit into a super-skeleton,
we only use their network architecture and their way in selecting the nearest bones, i.e., based on
the Euclidean distance. For the distance used in RigNet, we implement the volumetric geodesic
distance instead of the approximation used in their public implementation to robustly compute
the distance of vertices on disconnected components and intersected triangles. We implement the
above two networks using PyTorch Geometric and train and evaluate on the same train/test split
as ours with the same hyperparameters (3 influential bones, 0.25 weight pruning threshold).

Fig. 9. Statistical comparisons between our method and RigNet [Xu et al. 2020].

We first show the quantitative results in Table 3, where the metrics are averaged over the whole
test set. Our numerical results outperform the competing methods by large margins according to
all quantitative metrics. We further provide statistical analysis between our method and RigNet
[Xu et al. 2020] in Figure 9. One-way ANOVA tests are performed for all the four evaluation
metrics, and they are all significant: for precision 𝐹 = 4.5259, 𝑝 = 0.0346 < 0.05, for recall
𝐹 = 3.6959, 𝑝 = 0.0495 < 0.05, for L1-norm 𝐹 = 12.0506, 𝑝 = 0.0006 < 0.05, for distance error
𝐹 = 4.0373, 𝑝 = 0.0458 < 0.05.
Next, we qualitatively compare our method and competing methods. Figure 10 shows a side-

by-side comparison of per-vertex L1-norm errors of skin weights produced by our method and
the competing methods. Our method tends to predict skin weights with lower errors. On the top
example, errors tend to appear in thin parts, such as the end of the dress and the pigtails. The
competing methods ignores the difference between these areas and the body parts and applies the
same functions on the whole mesh. Our method extracts both bone features and vertex features
and applies functions on these areas according to their bone features, hence estimates the skin
weights more close to the ground truth. In the bottom example, errors tend to appear on joint areas
such as shoulders, the crotch, and ankles, where vertices are influenced by multiple connected
bones. Our method operates on the skeleton graphs and learns the relations between connected
bones and thus produces lower errors on these areas than other methods.
We provide a closer comparison of deformation results with skin weights predicted by RigNet

[Xu et al. 2020] and our method in Figure 11. In the left column, the ending of the braid and the
bottom of the dress are controlled by out-of-body bones, RigNet fails to tackle these bones, making
these areas clip with the body. The main reason is that the volumetric geodesic distance they used
requires that the bones are inside the body mesh. Our method uses HollowDist, which have no

Proc. ACM Comput. Graph. Interact. Tech., Vol. 4, No. 1, Article . Publication date: May 2021.

HeterSkinNet: A Heterogeneous Network for Skin Weights Prediction 15

assumption for bone-mesh relationships and thus is robust for out-of-body bones. In the right
column, the ball is not connected with character’s head but still controlled by the head bone. RigNet
does not assign any bone for the ball, as it cannot calculate volumetric geodesic distances for
vertices on it. Our method uses HollowDist, which handles the disconnected ball and assigns it to
the head bone.

Fig. 10. Comparisons of per-vertex L1-norm errors.

Fig. 11. Comparisons of deformation results using the skin weights predicted by RigNet [Xu et al. 2020] and
our method.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 4, No. 1, Article . Publication date: May 2021.

16 Xiaoyu Pan, Jiancong Huang, Jiaming Mai, He Wang, Honglin Li, Tongkui Su, Wenjun Wang, and Xiaogang Jin*

4.6 Ablation Study
We conduct ablation experiments to analyze the importance of each part in our network. Their
quantitative results are shown in Table 4. First, we use the Euclidean distance as an alternative
to our proposed HollowDist. The quantitative results show that the network using HollowDist
significantly outperforms that using the Euclidean distance, as HollowDist captures the intrinsic
properties of the meshes. Next, we remove the inter-graph convolution component, which makes
the network extract the vertex and bone features separately. The quantitative result shows that this
component helps the network to better extract the node features and thus obtain better prediction
results.

The prediction results of our network with and without the smoothing term in the loss function
are shown in Figure 12. The smoothing term in the loss function improves the smoothness of
predicted skin weights, which makes the deformations more satisfactory.

Table 4. Ablation study of our network

Method Precision ↑ Recall ↑ L1-norm ↓ Dist. Err. ↓
Ours 82.11% 83.69% 0.3269 0.005682

Euclidean distance 76.23% 76.52% 0.5253 0.008002
w/o HeterConv 80.21% 80.80% 0.3889 0.006243

w/o Smoothing term 81.40% 83.68% 0.3298 0.005681

Fig. 12. Comparisons of the skin weights estimated by our network with and without the smoothing term in
the loss function.

5 CONCLUSION AND FUTUREWORK
We have presented a heterogeneous graph neural network to automatically estimate skin weights
for character rigging. Our inter-graph convolution operation allows feature aggregation between
heterogeneous nodes, thus our network can extract both vertex and bone features. Our method
can cope with models containing multiple disjoint parts or outside bones with a new distance,
HollowDist. Experimental results demonstrate that the skin weights predicted by our network can
be used to produce high-quality ready-for-production animations, which greatly reduces the time
needed for manual labor.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 4, No. 1, Article . Publication date: May 2021.

HeterSkinNet: A Heterogeneous Network for Skin Weights Prediction 17

Fig. 13. L1-norm errors of some failure cases.

HeterSkinNet has several limitations. First, models
in production are increasingly delicate and sophisti-
cated, which may contain over 10K vertices and over
200 bones [Liu et al. 2019]. Since no such data are avail-
able, we only test our method on a dataset whose mod-
els have fewer numbers of vertices (1K-5K) and bones
(10-150). Evaluating its performance on more complex
models is an interesting direction for expanding its
applications. Secondly, the calculation of HollowDist
takes most of the time in the whole procedure (~1 min).
Accelerating this step would be beneficial when the
number of models we process is large. Using sparse
voxelization and exploring other GPU-based distances
may be feasible directions. Thirdly, it assumes that a
vertex is influenced by its nearest 𝐾 bones, where 𝐾
is a user-defined integer. However, the numbers of influential bones of vertices on a mesh vary
according to the vertices’ semantic information and the skeleton structure. It will be an interesting
direction to further expand our network to predict the numbers of vertices’ influential bones as
well as their skin weights. Fourthly, in the vertex-to-bone convolution, we have only used the
maximum, mean and variance of the vertices’ features, exploring more statistics such as covariance
matrix may be a valuable direction for improving the inter-graph convolution operation. Finally,
for regions too far away from their control bones, such as the belly of the lion (top row of Figure
13) and the head of the mushroom (bottom row of Figure 13), our method may fail as these regions
have similar HollowDists to their control bones. Exploring vertex-bone features more distinctively
on these regions may boost the prediction performance.

ACKNOWLEDGMENTS
Xiaogang Jinwas supported by theNational Key R&DProgram of China (Grant No. 2017YFB1002600),
the National Natural Science Foundation of China (Grant Nos. 61972344, 62036010, 61732015),
the Ningbo Major Special Projects of the “Science and Technology Innovation 2025” (Grant No.
2020Z007), and the Key Research and Development Program of Zhejiang Province (Grant No.
2020C03096).

REFERENCES
Marc Alexa. 2002. Linear Combination of Transformations. ACM Transactions on Graphics (TOG) 21, 3 (2002), 380–387.
Autodesk. 2020. Maya. https://www.autodesk.com/products/maya/overview
Stephen W. Bailey, Dave Otte, Paul Dilorenzo, and James F. O’Brien. 2018. Fast and Deep Deformation Approximations.

ACM Transactions on Graphics (TOG) 37, 4 (2018), 1–12.
Ilya Baran and Jovan Popović. 2007. Automatic Rigging and Animation of 3D Characters. ACM Transactions on Graphics

(TOG) 26, 3 (2007), 72–es.
Davide Boscaini, Jonathan Masci, Emanuele Rodolà, and Michael Bronstein. 2016. Learning Shape Correspondence with

Anisotropic Convolutional Neural Networks. In Advances in Neural Information Processing Systems (NIPS), Vol. 29.
3189–3197.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. 2017. Geometric Deep Learning:
Going beyond Euclidean Data. IEEE Signal Processing Magazine (SPM) 34, 4 (2017), 18–42.

Olivier Dionne and Martin de Lasa. 2013. Geodesic Voxel Binding for Production Character Meshes. In Proceedings of the
12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA). 173–180.

Olivier Dionne and Martin De Lasa. 2014. Geodesic Binding for Degenerate Character Geometry using Sparse Voxelization.
IEEE Transactions on Visualization and Computer Graphics (TVCG) 20, 10 (2014), 1367–1378.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 4, No. 1, Article . Publication date: May 2021.

https://www.autodesk.com/products/maya/overview

18 Xiaoyu Pan, Jiancong Huang, Jiaming Mai, He Wang, Honglin Li, Tongkui Su, Wenjun Wang, and Xiaogang Jin*

Elmar Eisemann and Xavier Décoret. 2008. Single-Pass GPU Solid Voxelization for Real-Time Applications. In Proceedings of
Graphics Interface (GI). 73–80.

Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with PyTorch Geometric. In ICLR Workshop on
Representation Learning on Graphs and Manifolds.

Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman, and Daniel Cohen-Or. 2019. MeshCNN: A Network
with an Edge. ACM Transactions on Graphics (TOG) 38, 4 (July 2019), 1–12.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving Deep into Rectifiers: Surpassing Human-Level
Performance on Imagenet Classification. In Proceedings of the IEEE International Conference on Computer Vision(ICCV).
1026–1034.

Alec Jacobson, Ilya Baran, Jovan Popovic, and Olga Sorkine. 2011. Bounded Biharmonic Weights for Real-Time Deformation.
ACM Transactions on Graphics (TOG) 30, 4 (2011), 78.

Ladislav Kavan, Steven Collins, Jiří Žára, and Carol O’Sullivan. 2007. Skinning with Dual Quaternions. In ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games (I3D). 39–46.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization. CoRR abs/1412.6980 (2014).
Tianxing Li, Rui Shi, and Takashi Kanai. 2020. DenseGATs: A Graph-Attention-Based Network for Nonlinear Character

Deformation. In ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D). 1–9.
Hu Linmei, Tianchi Yang, Chuan Shi, Houye Ji, and Xiaoli Li. 2019. Heterogeneous Graph Attention Networks for Semi-

Supervised Short Text Classification. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 4820–4829.

Lijuan Liu, Youyi Zheng, Di Tang, Yi Yuan, Changjie Fan, and Kun Zhou. 2019. NeuroSkinning: Automatic Skin Binding for
Production Characters with Deep Graph Networks. ACM Transactions on Graphics (TOG) 38, 4 (July 2019), 1–12.

Ran Luo, Tianjia Shao, Huamin Wang, Weiwei Xu, Xiang Chen, Kun Zhou, and Yin Yang. 2020. NNWarp: Neural Network-
Based Nonlinear Deformation. IEEE Transactions on Visualization and Computer Graphics (TVCG) 26 (April 2020),
1745–1759.

Jonathan Masci, Davide Boscaini, Michael Bronstein, and Pierre Vandergheynst. 2015. Geodesic Convolutional Neural
Networks on Riemannian Manifolds. In Proceedings of the IEEE International Conference on Computer Vision Workshops
(ICCVW). 37–45.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M Bronstein. 2017. Geometric
Deep Learning on Graphs and Manifolds Using Mixture Model CNNs. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 5425–5434.

Yi-Ling Qiao, Lin Gao, Yu-Kun Lai, and Shihong Xia. 2018. Learning Bidirectional LSTM Networks for Synthesizing 3D
Mesh Animation Sequences. CoRR abs/1810.02042 (2018).

R.M. Rustamov, Y. Lipman, and T. Funkhouser. 2009. Interior Distance Using Barycentric Coordinates. Computer Graphics
Forum (CGF) 28, 5 (July 2009), 1279–1288.

Michael Schwarz and Hans-Peter Seidel. 2010. Fast Parallel Surface and Solid Voxelization on GPUs. ACM Transactions on
Graphics (TOG) 29, 6, Article 179 (2010), 10 pages.

SideFX. 2020. Houdini. https://www.sidefx.com/
Justin Solomon, Raif Rustamov, Leonidas Guibas, and Adrian Butscher. 2014. Earth Mover’s Distances on Discrete Surfaces.

ACM Transactions on Graphics (TOG) 33, 4 (July 2014), 1–12.
Qingyang Tan, Lin Gao, Y. Lai, Jie Yang, and S. Xia. 2018. Mesh-based Autoencoders for Localized Deformation Component

Analysis. CoRR abs/1709.04304 (2018).
Nitika Verma, Edmond Boyer, and Jakob Verbeek. 2018. FeaStNet: Feature-Steered Graph Convolutions for 3D Shape

Analysis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2598–2606.
Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S. Yu. 2019a. Heterogeneous Graph Attention

Network. In The World Wide Web Conference (WWW). 2022–2032.
Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M. Solomon. 2019b. Dynamic Graph

CNN for Learning on Point Clouds. ACM Transactions on Graphics (TOG) 38, 5 (2019), 1–12.
Rich Wareham and Joan Lasenby. 2008. Bone Glow: An Improved Method for the Assignment of Weights for Mesh

Deformation. In Articulated Motion and Deformable Objects (AMDO), Francisco J. Perales and Robert B. Fisher (Eds.).
63–71.

Chao Wen, Yinda Zhang, Zhuwen Li, and Yanwei Fu. 2019. Pixel2Mesh++: Multi-View 3D Mesh Generation via Deformation.
In Proceedings of the IEEE International Conference on Computer Vision (ICCV). 1042–1051.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S. Yu, Philip. 2020. A Comprehensive Survey
on Graph Neural Networks. IEEE Transactions on Neural Networks and Learning Systems (TNNLS) (2020).

Yun-Peng Xiao, Yu-Kun Lai, Fang-Lue Zhang, Chunpeng Li, and Lin Gao. 2020. A Survey on Deep Geometry Learning:
From a Representation Perspective. Computational Visual Media (CVM) 6, 2 (2020), 113–133.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 4, No. 1, Article . Publication date: May 2021.

https://www.sidefx.com/

HeterSkinNet: A Heterogeneous Network for Skin Weights Prediction 19

Zhan Xu, Yang Zhou, Evangelos Kalogerakis, Chris Landreth, and Karan Singh. 2020. RigNet: Neural Rigging for Articulated
Characters. ACM Transactions on Graphics (TOG) 39, 4 (2020), 1–12.

Zhan Xu, Yang Zhou, Evangelos Kalogerakis, and Karan Singh. 2019. Predicting Animation Skeletons for 3D Articulated
Models via Volumetric Nets. In International Conference on 3D Vision (3DV). 298–307.

Li Yi, Hao Su, Xingwen Guo, and Leonidas J. Guibas. 2017. SyncSpecCNN: Synchronized spectral CNN for 3D Shape
Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2282–2290.

Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2020. Deep Learning on Graphs: A Survey. IEEE Transactions on Knowledge and
Data Engineering (TKDE) (2020).

Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and M. Sun. 2018. Graph Neural Networks: A Review of
Methods and Applications. CoRR abs/1812.08434 (2018).

Proc. ACM Comput. Graph. Interact. Tech., Vol. 4, No. 1, Article . Publication date: May 2021.

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 HollowDist
	3.2 Graph Construction
	3.3 Individual Components
	3.4 Loss Function

	4 Experiments
	4.1 Dataset
	4.2 Implementation Details
	4.3 Evaluation Metrics
	4.4 Model Accuracy
	4.5 Comparisons
	4.6 Ablation Study

	5 Conclusion and Future Work
	Acknowledgments
	References

