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Abstract
Hidden images contain one or several concealed foregroundswhich can be recognized with the assistance of clues
preserved by artists. Experienced artists are trained for years to be skilled enough to find appropriate hidden
positions for a given image. However, it is not an easy task for amateurs to quickly find these positions when they
try to create satisfactory hidden images. In this paper, we present an interactive framework to suggest the hidden
positions and corresponding results. The suggested results generated by our approach are sequenced according
to the levels of their recognition difficulties. To this end,we propose a novel approach for assessing the levels of
recognition difficulty of the hidden images and a new hidden image synthesis method that takes spatial influence
into account to make the foreground harmonious with the local surroundings. During the synthesis stage, we
extract the characteristics of the foreground as the clues based on the visual attention model. We validate the
effectiveness of our approach by performing two user studies, including the quality of the hidden images and the
suggestion accuracy.

Categories and Subject Descriptors(according to ACM CCS): I.4.9 [Image Processing and Computer Vision]:
Applications—

1. Introduction

Hidden images, also referred to as camouflage images, are
a form of visual illusion art, in which artists embed one
or more unapparent figures or foregrounds. At first glance,
viewers can only see the apparent background, while they
can recognize the foreground through clues after carefully
watching over a period of time. This can be explained
by the feature integration theory [TG80, Wol94]. To con-
ceal the foreground, artists only retain a portion of features
which could be integrated as clues for viewers’ recogni-
tion [HP07,HTP07].

Generating successful and interesting hidden images is
not an easy task, even for skilled artists. To provide a con-
venient tool for artists, previous work [YLK08, CHM∗10,
TZHM11, DJM12] has tried to create pleasing results with
natural photos. They utilize rough luminance distribution
or the edge information of the foreground as clues, which
might lead to missing some characteristics of the foreground.
Skilled artists may find appropriate hidden positions for a
given background according to their prior knowledge. How-
ever, due to a lack of this specialized expertise, it is fre-
quently difficult for amateurs to quickly find these posi-

tions in the background. Tong et al. [TZHM11] find only
one best hidden position by matching the edges extracted
from the background and the foreground. The foreground
would be hidden perfectly if its edges could be replaced by
the edges of the background. However, the saliency of the
edges has not been taken into account, and it is inevitable
that some trivial edges would be extracted. In most cases,
there is little prospect of finding a matching shape for ev-
ery edge. If the salient edges on which viewers’ recognition
relies are not matched, the foreground cannot be concealed
very well in the best position. Moreover, shape-matching is
time-consuming, and blurring artifacts may occur because of
the transformation of the foreground during shape-matching.

Fig. 1a, an example of hidden images made by an artist,
shows how artists select embedded positions and clues. In-
stead of a best position, the artist selects several different
ones to conceal several eagles, and most of the positions con-
tain a rich texture. Because the local texture of these embed-
ded positions is different, the appearances of these eaglesare
designed to be dissimilar in order to be harmonious with the
local surroundings. Nevertheless, these quite different eagles
still can be recognized. This is due to the carefully designed
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(a) Hidden images

(b) Answer

Figure 1: Hidden images created by artist: 9 eagles.

clues. The artist selects the region representing the salient
characteristics of the foreground as the clues. The charac-
teristics of eagles are the eyes and the beaks, according to
which we distinguish eagles from other animals. The hidden
eagles circled by the green curves in Fig.1b can be recog-
nized through these characteristics. Unfortunately, automat-
ically selecting the embedded positions and the characteris-
tics of the foreground remains as a challenge.

In this paper, we present a fast hidden-image generation
system, which is composed of a recognition difficulty as-
sessment method and a hidden image synthesis method. The
former evaluates the recognition difficulty of each embed-
ded position by measuring the rich degree of the texture
in the background. Our system suggests several appropriate
hidden positions and provides corresponding results based
on the evaluation. Users also can select positions person-
ally according to their requirements. Our method generates
natural-looking hidden images based on texture synthesis
techniques and preserves the salient characteristics as clues.
To select the clues as artists do, we propose a method that
automatically extracts the clues based on the focus atten-
tion model [IKN98]. This model selects the characteristic in-
formation which probably attracts relatively more attention.
The appearance of the hidden foreground varies when it is
embedded in different positions, in order to be harmonious
with the surroundings. To this end, we add a space factor to
the hidden image synthesis, to change the appearance with
the shift of the hidden position.

Our major contributions can be summarized as follows:

• A novel computer-suggested hidden-image generation
system which automatically provides several appropriate
hidden positions and corresponding results.

• The first recognition difficulty assessing method which es-
timates the recognition difficulty of each foreground em-
bedded position.

• A new hidden-image synthesis method that utilizes a new
clues-extraction scheme, which achieves a balance be-
tween the preservation of the foreground’s characteristics
and as much variation as possible of the foreground with
the changing of the embedded position. The space factor
is also taken into account to make the foreground harmo-
nious with the local surroundings.

• The performance of hidden-image synthesis is sig-
nificantly improved. Both our hidden-image synthesis
method and the difficulty assessing method can provide
real-time feedback.

2. Related Work

In this section, we review related work from three aspects:
hidden image synthesis, embedded position analysis, and the
application of visual attention models in recreational art.

Hidden image synthesisA collage [GSP∗07,HZZ11] is
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one kind of hidden image, which is constructed from dif-
ferent elements. In this approach, both the collage images
and the elements are immediately recognizable. Moreover,
the collage images are not characterized by changing the ap-
pearance of the elements. Yoon et al. [YLK08] use stylized
line drawings to render the background and the foreground,
and then employ the edges of the foreground as clues to find
suitable hidden positions by shape-matching. Instead of hid-
ing line art foreground in a line art background, we aim at
hiding textured foregrounds into a natural image. Tong et
al. [TZHM11] also utilize the edges as clues to aid users’
recognition, and try to find the best hidden position by shape-
matching. However, their hidden results include blurring ar-
tifacts because of the transformation. Du et al. [DJM12]
employ the edges of the foreground as clues and formulate
the hidden image synthesis as a blending optimization prob-
lem as well. When the contrast of the background is quite
low, too many details which are distinct from the surround-
ings are preserved. When the contrast of the background is
quite high, the characteristics of the foreground may not be
preserved. Chu et al. [CHM∗10] synthesize the hidden im-
ages on the basis of texture synthesis techniques and use
luminance distribution as the clues, which often makes the
foreground change slightly in different positions and some-
times be easy to find. To increase recognition difficulty, they
have to add some distracting segments randomly. However,
this probably disturbs important foreground regions, such
as the eyes and mouth of animals. Our method also syn-
thesizes the hidden images based on texture synthesis tech-
niques. The difference is that we utilize the focus attention
model [IKN98] to extract the clues, which always contain
the characteristics of the foreground. All of the above works
are 2D camouflage. Owens et al. [OBF∗14] camouflage a 3D
object into the background photographs which are captured
from many viewpoints. The problem that they face is differ-
ent from ours, which tries to match the texture of the cube
with the background from every possible perspective.

Embedded position analysisChu et al. [CHM∗10]
present users with a list of candidate positions and orienta-
tions that can minimize their energies. Tong et al. [TZHM11]
find the best embedded position by matching the edges of
the background and the foreground. Different from them,
our method solves this problem on the basis of the obser-
vation that the foreground can be concealed better in the re-
gions whose texture is relatively more complicated and col-
orful. Tong et al. [TZHM11] use the Sobel operator to ex-
tract edges which probably include some edges useless for
recognition. If the matched edges are mostly useless ones,
the foreground cannot be concealed well in the best position.
Moreover, both of them leave the recognition difficulty to
users and cannot find the positions in real time. Our method
not only provides several relevant suggestions but also esti-
mates the recognition difficulty of each position.

Applications of visual attention models in recreational
art The visual attention model has been an active research

direction with many recreational applications. Change blind-
ness is a psychological phenomenon in which viewers often
do not notice some visual changes between images. Ma et
al. [MXW∗13] employ the visual attention model to quan-
tify the degree of blindness between an image pair. They
use a region-based saliency model which investigates how
the saliency of one region is influenced by other regions in
its long-range context. However, this region-based model is
not suitable for our application because what we need is a
pixel-based saliency model. Image abstraction (stylization)
is a widely acknowledged form of recreational art. To con-
trol the level of details of the abstraction results, DeCarlo et
al. [DS02] apply the human perception model by using ad-
ditional data tracking devices to collect the eye movements
data. When transferring a photograph into the style of an
oil-painting, Collomosse et al. [CH02] use the visual atten-
tion model to detect the edges of photographs, and only draw
edges with high attention. Their visual attention model de-
termines the importance by the gradient information only.
The color information which will be used in our approach is
not taken into account in their model. To simulate the em-
phasis effects of real recreational art and to predict viewers’
attention, Zhao et al. [ZMJ∗09] and Hate et al. [HTM12]
use the attention model [IKN98] to control the degree of ab-
straction and stylization. Itti et al.’s basic model [IKN98] uti-
lizes three feature channels (color, intensity, and orientation)
and defines image saliency using central surrounded differ-
ences across multi-scale image features. This model simu-
lates the neuronal architecture of the visual system and has
been shown to correlate with human eye movements. There-
fore, we employ this visual attention model to calculate the
foreground’sclue-map. The clue-map describes which re-
gions are likely to be selected as clues to assist the viewers’
recognition.

3. Our method

Given a background imageB and a foreground imageF , our
algorithm generates a hidden image which hidesF in B and
retains some clues for viewers to recognize. When gener-
ating a hidden image, the user needs to specify the hidden
position. A satisfactory hidden image depends highly on the
selection of hidden positions. To this end, our hidden image
system provides two components: hidden position analysis
(the red shaded part) and hidden image synthesis (the green
shaded part), as shown in Fig.2.

For hidden position analysis, we analyse the recognition
difficulty for each position and compute a heat-map of the
recognition difficulty. Fig.2 shows an example of a heat-
mapR of the recognition difficulty. In this map, green re-
gions are of low recognition difficulty, and red regions are
of high recognition difficulty. The heat map offers impor-
tant references for users to select appropriate hidden posi-
tions. Moreover, our system will automatically recommend
the hidden positions with the highest recognition difficulties
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Figure 2: The pipeline of our approach.

and will generate hidden results in real time. Visual percep-
tion study of hidden images [TBL∗09] shows that the fore-
ground is more difficult to detect when there is more high-
contrast detail in the surrounding. This result implies that the
recognition difficultyRcan be modulated by the rich degree
of the high-contrast detail. Considering the fact that a viewer
can only focus on a small area at one time, we compute the
recognition difficulty of a specific position based on the rich
degree of the detail of a small surrounding area. Here, we
use adetail-map Hto represent the quantization of the rich
degree of detail; and aclue-map Cto choose surrounding
regions, as illustrated in Fig.2.

In hidden images synthesis, there is a balance between
two conflicting factors:immersion, which is responsible
for the harmony between the foreground and the surround-
ing background, andstandout, which is responsible for the
viewer recognizing the hidden image. The main task of hid-
den image synthesis is to find a solution which achieves a
satisfactory balance.

Similar to Chu et al. [CHM∗10], we use texture synthe-
sis to replace the texture of the foreground with that of the
background. Chu et al. [CHM∗10] segment the foreground
and optimize the luminance distribution of the segments to
achieve the balance. They retain the luminance distribution
as the recognition clue because the luminance channel can
offer sufficient cues for recognition [Pal99]. However, when
the luminance contrast is fairly low, the balance cannot be
obtained. Moreover, their weights of the balance, which in-
clude the length of the boundary and the area of the seg-
ments, are not directly related to the contribution of each
segment for recognition. As a result, their approach cannot
guarantee that the characteristics of the foreground are al-
ways preserved. Different from them, we achieve the bal-
ance by blending the backgroundB and the foregroundF
to generate the new foregroundF ′ which contains the char-
acteristics ofF and rich details ofB. The blend parameter
is determined by theclue-mapwhich illustrates the contri-

bution of the foreground regions for recognition. The re-
gions with larger contributions are responsible forstandout
and assist the viewers’ recognition. The luminance of these
regions remains the same as the original luminance of the
foreground. The other regions are responsible forimmersion,
which aims for harmonization with the background. There-
fore, F ′ preserves the clues and makes the foreground har-
monious with the local surrounding, when hiding in different
positions. Similar to hidden image synthesis algorithms uti-
lizing Poisson blending [TZHM11, DJM12], our approach
automatically adds the distraction in each location.

After generating the new foregroundF ′, we synthesize it
using the texture ofB. Using the background texture near
the hidden position in the texture synthesis is more likely
to make the foreground harmonious with the background.
To this end, similar to the method of Chu et al. [CHM∗10],
we take into account the distance between the location of
the background and the location of the foreground in texture
synthesis.

Based on the above analysis, we summarize the key steps
of our algorithm as follows (Fig.2):

i) Extract theclue-map Cof the foreground imageF and
thedetail-map Hof the background imageB.

ii) Compute recognition difficultyR usingC andH.
iii) Specify hidden positions according toR. Users can di-

rectly adopt the system’s suggestion or select the hidden
position manually by referring toR.

iv) BlendB andF utilizing C as the interpolation parameter
and generating the new foregroundF ′.

v) Synthesize the result using the texture from the back-
groundB near the embedded position.

In the following sections, we will describeclue-mapgener-
ation, recognition difficulty analysis, and hidden image syn-
thesis, respectively.

submitted to COMPUTER GRAPHICSForum(8/2015).



Yandan Zhao & Hui Du & Xiaogang Jin / Recognition-Difficulty-Aware Hidden ImagesBased on Clue-map 5

4. Clue-map

Theclue-map Cis used to select the recognition clue of the
foreground. When artists draw a hidden image, the regions
that are selected as recognition clues are drawn more like
the foreground and the other parts are designed to be harmo-
nious with the background. Salient regions are more likely
to be selected as the recognition clues, such as the outline of
an object, the facial features of an animal or a human being.
Theclue-maprecords the probabilities of the foreground po-
sitions which are selected as recognition clues. We calculate
theclue-mapof the foreground by utilizing the visual atten-
tion model of Itti et al. [IKN98], since the probability of each
position in the foreground is related to its saliency.

The saliency map is constructed by considering how con-
spicuous colorU , intensityI and orientationO of each po-
sition are, compared to their surroundings. We first build a
map of each, normalise them on [0,1], and then calculate a
linear combination as follows:

M =
1
3
(N(U)+N(I)+N(O)), (1)

whereN(:) denotes the normalization.

(a) (b) (c)

(d) (e) (f)
Figure 3: Intermediate results during the clue-map genera-
tion. From left to right: (a), (b) and (c) are the intermediate
results of the clue-map from three steps, respectively. (d), (e)
and (f) are F′ generated using (a), (b) and (c), respectively.

We then increase the probabilities of theclue-mapby 3 -
5 times (clamped to [0,1]) (Fig.3b), in order to sufficiently
preserve the characteristics ofF when we blendF and B
(Fig. 3d).

After that, we detect the long-strip regions of theclue-
mapand break them up (Fig.3c). Observing Fig.3b, we find
that some regions near the outline of the wolf head present as
long strips where the probabilities are higher. The long-strip
regions are caused by the dark regions near the wolf’s ears
and the long dark regions will be preserved inF ′ completely

(Fig. 3e). Perception studies [BM03, EG01] show that long
coherent regions attract the viewers’ attention, and so view-
ers will find the foreground too quickly if they are left in
place. Accordingly, we reduce the probabilities of the long-
strip regions in parts, to break these long regions into short
regions and so obtain better hidden results (Fig.3f). Al-
though the long regions are broken, viewers can fill in the
gaps using their imagination and prior experience according
to the Gestalt principle of closure.

To cut down the long regions ofF ′, we multiply the prob-
abilities by weightsW:

W(p) = e−dp/2, (2)

wherep is a pixel of theclue-map. We useΦ to denote the
regions whose probabilities will be reduced.dp is the nearest
distance fromp to the pixels outside ofΦ. If p is not inΦ,
the weight is 1.0 and the probabilities will not be changed.
We computedp using the Euclidean distance transform after
Φ is obtained.

When determining the regionΦ that will be cut down, two
problems need to be addressed:

i) Retaining the shape of the long-strip region’s skeleton.
ii) The probabilities of regions, except the long-strip re-

gions, should be retained.

(a) (b) (c)

(d) (e) (f)
Figure 4: Intermediate results of cutting down long-strip re-
gions in the clue-map generation. From left to right: (a) Seg-
mentation of theclue-map; (b) The long-strip regions; (c)
The skeleton of the segmentation; (d) The cutting result us-
ing a small fixed width; (e) The cutting result using a large
fixed width; (f) The distance transform of skeletons.

For the first problem, we need to extract the skeletons of
the long-strip regions and analyze their shape. To this end,
we first select high-probability regions by segmentation, and
then choose long-strip regions according to their lengths.Af-
ter that, we extract their skeletons and maintain their shapes

submitted to COMPUTER GRAPHICSForum(8/2015).



6 Yandan Zhao & Hui Du & Xiaogang Jin / Recognition-Difficulty-Aware Hidden ImagesBased on Clue-map

by preserving their dominant points. We segment theclue-
map by k-means segmentation (k = 3) and choose the re-
gion with the highest mean of probability as the candidate
region (Fig.4a). A region is considered as a long-strip re-
gion if it is longer than half of the foreground’s inscribed
radius (Fig.4b). We extract the skeleton (Fig.4c) of the can-
didate region using an image thinning technique [STRA10].
The dominant points (Fig.4c) of the skeleton are detected
by Teh et al.’s method [TC89]. In order to retain the shape of
the skeleton of the long-strip regions, the probabilities of the
pixels whose distances to the dominant points are less thanr
are held constant (r = 10).

To solve the second problem, we need to determine the re-
gions whose probabilities will be changed. A naive solution
for determining the regions is to cut the long-strip regions
with a fixed width. However, the width must be appropri-
ate to guarantee the cut is complete (Fig.4d), otherwise, the
characteristics of other regions will be changed (Fig.4e).
To determine the regions automatically, we employ the Eu-
clidean distance transform (Fig.4f) of the skeleton. For each
pixel, we record its nearest pixel on the skeleton. The prob-
ability of a pixel inΦ will be changed if its nearest pixel on
the skeleton belongs toΦ. Therefore, we first determine the
pixels along the skeleton whose probability will be changed,
and then the other pixels.

When determining the regionΦ to be cut off, we first ran-
domly selectn pixels Φn on candidate regions (n = 5 by
default). For a given pixelp in Φn, we calculate thelT (10
for default) nearest pixels top along the skeleton, and these
pixels form a pixel setΦT . Then, we find the pixels whose
nearest pixels belong toΦT , and they form the pixel setΦN.
Then the regionΦ is defined as:

Φ = Φn∪ΦT ∪ΦN. (3)

5. Recognition difficulty analysis

Visual perception study of hidden images [TBL∗09] finds
that the foreground is more difficult to find where there
are more high-contrast internal details. This implies thatthe
recognition difficultyRcan be modulated by the rich degree
of the high-contrast detail in the detail-mapH of the local
surrounding. As described in step iv) in Section3, the de-
tails are added from the background by blending, based on
theclue-map C. Therefore, the recognition difficultyR of a
fixed positionQ can be computed according to the rich de-
gree of the detail of the local surroundingΩF :

R(Q) =
1

wh ∑
p∈ΩF

(1−C(p))H(p +Q), (4)

where Q denotes the hidden position of the foreground
which is also that of the foreground’s top left corner;ΩF is
the region of the background covered by the foreground;w
andh are the width and height of the foreground. Thedetail-
map H is estimated by the subtraction of the low frequency

information from the original information:

Hl (p) = max
i=r,g,b

|Bi,l (p)− f (Bi,l (p))|
mi,l

, (5)

mi,l = max
p∈B

|Bi,l (p)− f (Bi,l(p))|, (6)

wherer,g, andb denote the red, green and blue channels re-
spectively; l represents the level of the Gaussian pyramid
(Here, a two-level pyramid is used);H averages the out-
comes of all levels;mi,l denotes the maximum of all pixels
for corresponding level and channel; andf represents the
box filter.

In our experiments, we modified the box filter by consid-
ering segmentation. Without segmentation, errors will arise
in the regions which cross the boundaries of the different re-
gions, such as sky and mountains. In other words, the values
of H for these regions are extremely high, whereas the fore-
ground will be easy to find in these regions. To decrease the
H of these regions, we segment the background in advance
automatically. We compute SLIC superpixels [ASS∗12], and
the segmentation is implemented by grouping the superpix-
els into k clusters by their average values. In our experi-
ments,k = 5. After segmentation, the filter only involves the
pixels which are in the same segment as the center pixel of
the filter kernel. The size of the filter kernel is 25% of the
size of the foreground.

6. Hidden image synthesis

Hidden images are synthesized using the texture of the back-
ground. Firstly, we convert the foregroundF and the back-
groundB from the RGB color space to the YIQ color space
and use the Y channel as luminance for the following sim-
ilarity analysis in the texture synthesis. Any color spaces
which separate luminance from chrominance will work. Sec-
ondly, we reduce the distinct color numbers ofF andBby lu-
minance quantization [WOG06]. Thirdly, we formulate the
texture synthesis as an energy minimization problem and use
PatchMatch [BSFG09] to improve performance. The energy
function E is the sum of distancesD(p,q) between each
pixel p of F ′ and its corresponding pixelq from B.

E = ∑
p∈F ′

D(p,q) (7)

The similarity distanceD between the foreground pixel
p and the background pixelq comprises two factors: lumi-
nance factorL and space factorS:

D(p,q) = S(p,q)L(p,q), (8)

whereL measures the luminance difference betweenp and
q; S is the weight determined by the Euclidean distance be-
tweenp andq. S is employed to encourage hidden image to
be synthesised using the background texture near the hidden
position.

Luminance factor Intuitively, we can replace pixels in
the foreground with ones in the background if the luminance
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Figure 5: (a) presents the percentages of times users choose in each group created by Chu et al.’s method [CHM∗10] and our
method, respectively. Except for group 14 (47%), users choose our method over 50% of the time. On average, our method gets
69.80% of the total times, compared to Chu et al.’s method (upper row of [c]). The same statistical comparison between the
Du et al.’s method [DJM12] and our method is presented in (b). Group 12 exhibited the maximum choosing times (97%), while
group 1 was the minimum (50%). On average, our method gets 74.87% compared to Du et al.’s method (lower row of [c]).

difference between their corresponding pixel pair is small. In
order to simplify computation, we only use average values of
blocks to obtain the value of the luminance difference:

L(p,q) =
∣

∣

∣
N(p)−N(q)

∣

∣

∣
(9)

whereN(∗) means the average of the pixel’s 5×5 neighbor-
hood.Space factorBecause the texture of the different posi-
tions in the natural image probably comes from different ob-
jects, we synthesize the foreground using the texture from lo-
cal surroundings. When concealed in the different positions,
the hidden foreground could have different appearances. To
this end, we add a space factor in the similarity distance.
This factor is measured by the distance from the embedded
position. In other words, given a fixed position, the size of
the foreground isw× h, and we define the potential region
for selecting texture to beγw× γh. We penalize the regions
which are not in the potential region with a larger weight.
The space factor is defined as follows:

S(p,q) =

{

1, d(p,q) < γ
√

w2 +hh

αd(p,q), otherwise
(10)

whered(.) denotes the Euclidean distance between two pix-
els; and we setγ = 1.5 andα = 100 in our experiments.

7. User Study

The ultimate judges of hidden images are humans. Thus, we
have devised a user study to objectively verify the effective-
ness of our hidden image synthesis method and recognition
difficulty assessing method. The user study consisted of two
cases. The first case compared the synthetic results of our
method with those of state-of-the-art methods. We selected
two representative methods [CHM∗10, DJM12] which are
based on the texture synthesis technique and solving Poisson
equation, respectively. The second case verified the recogni-
tion difficulty assessing method by comparing the estimated

recognition difficulties with the actual recognition timesof
participants. We invited 30 participants who had different
artistic background and areas of knowledge for the study.
They completed the task independently, and were unaware
of the study’s purpose.

Verification of hidden image synthesisIn this case, the
task consisted of 15 groups of hidden images. Each group
contained three images produced by our method, Chu et al.’s
method [CHM∗10], and Du et al.’s method [DJM12], respec-
tively. The images in each group were created by embedding
the same foreground into the same position of the same nat-
ural image.

During the task, test images were presented to participants
pair-by-pair randomly. Each pair consisted of two images
from the same group. The image placement within each pair
(left or right side) was also randomized. In order to avoid
the case in which users recognize our result when it ap-
pears again along with the results of different algorithms,
we controlled the interval between every two appearances of
pairs from the same sample group. During the task, partici-
pants were asked to perform two-alternative forced choices
(2AFCs), picking out the better one from the two candidates,
i.e., the image looks more harmonious and does not lose
the characteristics of the foreground. The time of decision-
making was recorded, but not limited.

We analyzed the data of this case (see Fig.5). When asked
to choose the better one from the hidden images created by
our method and Chu et al.’s method [CHM∗10], our method
obtained 69.80% of the total times (95% confidence inter-
val, 63.85 to 75.75%). It also achieved 74.87% against Du
et al.’s method [DJM12] (95% confidence interval, 68.27 to
81.47%). By performing one-sample, one-tailed t-tests for
the representative state-of-the-art methods, we found that
participants preferred our method (p-values≪ 0.001).

submitted to COMPUTER GRAPHICSForum(8/2015).



8 Yandan Zhao & Hui Du & Xiaogang Jin / Recognition-Difficulty-Aware Hidden ImagesBased on Clue-map

Verification of recognition difficulty assessingFor this
case, we prepared five groups, each of which contained 10
results embedding the same foreground in the different po-
sitions. At the start of this case, participants were instructed
using a trial example. Then, the test images were shown to
the participants one-by-one, and a blank frame was shown in
between. The participants were asked to find the foreground
concealed in each image by clicking the potential position.
The test of one image was finished when participants iden-
tified the foreground and the recognition time was recorded.
To reduce fatigue, the participants were given a short break
every five images.

For each test image, we used an average recognition time
of all participants as its recognition time. Then, we per-
formed the statistical analysis by using the Pearson’s R cor-
relation test. As Fig.6 shows, we found that the recognition
difficulty was highly correlated positively with recognition
time (Pearson correlation coefficientrp = 0.72, p≪ 0.001).
Through this user study, we can conclude that our approach
can estimate recognition difficulty with a high level of relia-
bility.
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Figure 6: Statistical analysis of the correlation between par-
ticipants’ recognition time and the recognition difficultyes-
timated by our method. The recognition time is highly cor-
related with the recognition difficulty (Pearson correlation
coefficient rp = 0.72, p≪ 0.001).

8. Results

In this section, we show the results generated by our algo-
rithm and compare our approach with previous ones. The
experiments demonstrate that our method is fast and our re-
sults are visually pleasing.

Chu et al. [CHM∗10] synthesize the hidden images based
on texture synthesis techniques as we do. The difference is
that they use rough luminance distribution to present clues,
which may make the foreground easy to find, especially
when the luminance contrast of the foreground is fairly low.
Their failure example (top row of Fig.7b) is such an extreme
example where most of the regions in the foreground are of
low contrast and the surrounding of the foreground includes
rich details. Even for this example, our approach hides the

foreground better. In our result (top row of Fig.7a), only the
salient regions, i.e, the eyes, mouth and outlines of the duck
are preserved as the clues, since the low contrast regions are
not contained in theclue-map. Moreover, the outlines have
been cut off to discourage viewers’ attention. To increase
recognition difficulty, Chu et al. [CHM∗10] have to add
some distracting segments randomly; however, this probably
disturbs critical foreground regions, such as the eyes. Forin-
stance, in the bottom row of Fig.7b, one eye of the lion is not
preserved. As a result, Chu et al. [CHM∗10] must correct the
disturbance interactively. On the contrary, our method can
well preserve the eyes automatically (Fig.7a).

In Fig. 8 and Fig.9, we compare our synthesized results
with those of Du et al. [DJM12]. Unlike us, they formulate
the hidden image synthesis as a blending problem and mod-
ify the large-scale layer of the background image by non-
linear blending. When the luminance contrast of the back-
ground is quite low, too many details of the foreground are
preserved, making the foreground easy to find. For example,
in the top row of Fig.8a, the eyes and the fur of the wolf
resembles a realistic wolf and is distinct from the surround-
ing snow. When the luminance contrast of the background is
quite high, this may fail to preserve the salient characteris-
tics of the foreground. In Fig.9a, the rhino horn is blended
with the dark background and cannot be found in the result.
However, our method can synthesize natural-looking hidden
images and preserve the salient characteristics in both situa-
tions (Fig.8b and Fig.9b).

We only compare our synthesized results in quality with
those of Chu et al. [CHM∗10] and Du et al. [DJM12], since
both of them have not discussed the position issue of hidden
image synthesis. Tong et al. [TZHM11] find a best embed-
ded position by shape-matching. Therefore, besides synthe-
sis quality, the difference in solving the position issue be-
tween our method and Tong et al.’s method [TZHM11] is
also discussed.

Tong et al. [TZHM11] embed the foreground using a Pois-
son blending approach. Therefore, their texture in the hidden
region is distinct from the surroundings, as is the case in
Du et al. [DJM12]. After applying their approach, the lumi-
nance in the hidden region is altered and the texture of the
hidden region becomes fuzzy, which may lead to an unnatu-
ral luminance difference between the hidden region and the
background. These may be due to the transformation of the
foreground during shape-matching. On the contrary, our ap-
proach always guarantees that the resultant texture is natural
and coherent (Fig.10a).

Tong et al. [TZHM11] provide only one best embedded
position where the shapes of edges extracted from the back-
ground and the foreground are expected to be best matched.
However, the saliency of the foreground edges is not taken
into consideration. If the edges of the salient characteristic
are not matched, their hidden foreground will be easy to rec-
ognize. The top row of Fig.10b is such a case, in which the
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(a) Our method (b) [CHM∗10] (c) Background (d) Foreground

Figure 7: We compare our results with those of Chu et al. [CHM∗10] by embedding the foregrounds in the same position in (a)
and (b). The original backgrounds, foregrounds, and the embedded positions are shown in (c) and (d).

(a) [DJM12] (b) Our method (c) Suggested results (d) Answer

Figure 8: Comparison with Du et al.’s method [DJM12]. We embed the foregrounds in the same position in (a) and (b)and sug-
gest the results in (c) according to recognition difficulty.The embedded positions are shown in (d). The blue and red rectangles
denote the embedded positions in the comparison and suggested positions, respectively. Please zoom into the hidden images to
better recognize the hidden foregrounds.
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(a) [DJM12] (b) Our method

(c) Suggested results (d) Answer

Figure 9: Comparison with Du et al.’s method [DJM12]. We embed the foregrounds in the same position in (a) and (b)and sug-
gest the results in (c) according to recognition difficulty.The embedded positions are shown in (d). The blue and red rectangles
denote the embedded positions in the comparison and suggested positions, respectively. Please zoom into the hidden images to
better recognize the hidden foregrounds.

eyes and the mouth are not matched while the contour of the
face is matched. The unmatched eyes and mouth make the
face easy to find. We suggest the positions by assessing the
recognition difficulty of each position. Our position analy-
sis finds that the recognition difficulties of large near areas
are often approximate. For instance, two different positions
represented by rectangles are shown in the second row of
Fig. 10d, whose recognition difficulties are approximate. If
the best position does not satisfy all the user’s requirements,
other positions with approximate difficulties could still be
chosen. The suggested results are illustrated in Fig.10c and
the hidden positions are shown in red rectangles in Fig.10d,
correspondingly. In these results, the suggested results are
more difficult to find. More suggested results are illustrated
in Fig. 8c and Fig.9c.

More hidden images are shown in Fig.12. The embedded
foregrounds are six faces, ten faces, three eagles and four
lions, respectively. The answers are shown in Fig.15. In the
second figure of Fig.12, we embed the same face in two
different positions, and two hidden faces present different
appearances due to the space factor. All the foregrounds are
synthesized using their original color except the left eagle in
the third figure. We reverse its color before the synthesis.

We also show the distribution of recognition difficulty
with different sizes of the foreground in Figs.13a-c. The
difficult regions (red regions) are scattered when the size be-
comes small. If the size becomes large, these regions will
be concentrated. We also select three results with different

recognition difficulties (Figs.13d-f), whose embedded posi-
tions are identified in Fig.13a.

Our system is implemented using an NVIDIA CUDA
programming environment. We ran the program on a
3.40GHz Intel Core i7-2600 CPU and an NVIDIA
GeForce GTX 590 GPU. The computation time of
our implementation is shown in Table1. The time of
clue-map generation does not include that of comput-
ing the saliency map. We use Jonathan Harel’s Matlab
code (http://www.klab.caltech.edu/h̃arel/share/gbvs.php) for
computing the saliency map. The parallel accelerations of
image synthesis and recognition difficulty assessment have
been implemented, and both of them can obtain real-time
feedback (see supplementary video). In Table1, we also
compare with Du et al.’s method [DJM12] on the same ma-
chine for performance comparison, quantitatively. The con-
sumed time of our method in comparison contains that of the
clue-mapgeneration and the image synthesis. Our method is
faster than theirs by about 10 times. The other representative
methods [CHM∗10,TZHM11] take a few to tens of seconds.
In addition, Chu et al. [CHM∗10] need interaction to add
distracting segments and specify the critical foreground re-
gions. In contrast, our method is entirely automatic.

Our method creates hidden images based on texture syn-
thesis techniques. Therefore, it may produce unsatisfactory
results (Fig.14a) when the hidden regions contain some ob-
jects which cannot be replaced by surrounding textures. This

submitted to COMPUTER GRAPHICSForum(8/2015).



Yandan Zhao & Hui Du & Xiaogang Jin / Recognition-Difficulty-Aware Hidden ImagesBased on Clue-map 11

(a) Our method (b) [TZHM11] (c) Suggested results (d) Answers

Figure 10: We compare our results with those of Tong et al. [TZHM11] by embedding the foregrounds in the same position in (a)
and (b). The embedded positions are shown in (d). The blue andred rectangles denote the embedded positions in the comparison
and suggested positions, respectively. Please zoom into the hidden images to better recognize the hidden foregrounds.

submitted to COMPUTER GRAPHICSForum(8/2015).



12 Yandan Zhao & Hui Du & Xiaogang Jin / Recognition-Difficulty-Aware Hidden ImagesBased on Clue-map

Figure 11: Hidden images created by our method. Answers are given in Fig. 15.
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Figure 12: Hidden images created by our method. Answers are given in Fig. 15.
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(a) 1 time (b) 0.5 times (c) 1.5 time

(d) Green position (e) Blue position (f) Red position

Figure 13: Heat maps of different sizes of foregrounds and hidden images of different levels of recognition difficulty. From (a)
to (c), the sizes of the foregrounds are 1, 0.5 and 1.5 time(s)of the original size, respectively. The heat maps change with the
size of the foreground. From (d) to (f), the levels of recognition difficulty increase and the hidden positions can be found in (a).
The hidden positions are represented by the upper-left corner of the foreground.

Table 1: Performance of our method and comparison to other methods (in seconds).

Example Size of Size of Clue-map Image Difficulty Ours Du et al.
theB theF generation synthesis assessmentCUDA/C++ MATLAB

Fig. 8 (row 1) 832×598 192×192 0.047 0.070 0.355 0.117 0.840
Fig. 8 (row 2) 1000×1100 312×267 0.054 0.125 0.962 0.179 2.110

Fig. 9 1340×800 516×382 0.166 0.479 1.334 0.645 4.190
Fig. 10 (row 1) 996×724 316×436 0.102 0.390 0.934 0.492 4.090
Fig. 10 (row 2) 660×786 288×344 0.081 0.176 0.881 0.254 2.350

Fig. 12 1024×648 200×200 0.061 0.082 0.566 0.143 1.070

is a common restriction of hidden image synthesis methods
based on texture synthesis.

9. Conclusion

We have developed an interactive hidden image system
which can automatically suggest appropriate results by ana-
lyzing the recognition difficulties of all positions in the back-
ground. To preserve the characteristics of the foreground and
increase the recognition difficulty by adding disturbance,we
introduced aclue-mapto guide texture synthesis. Extensive
experiments have been conducted to demonstrate the effec-
tiveness of the proposed method.

In the future, we plan to extend our method to hidden
videos, which could provide some applications of visual ef-
fects. Currently, our method uses only the recognition diffi-
culty of the results as the metric to make suggestions. How-

ever, other metrics for selecting appropriate hidden positions
might exist. Thus, part of our future work is to explore other
metrics to improve the accuracy of our suggestions. In our
current implementation, we only suggest results with the
highest recognition difficulties. However, we cannot guar-
antee the highest would always satisfy the users. This is be-
cause our recommendation is based on the ranking of recog-
nition difficulty, rather than the consideration of users’ de-
sign such as the aesthetic effect or the target audiences. How
to select an optimum recognition difficulty, which is a highly
subjective problem, is another future work.
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