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Figure 1: Overview of our simulation framework. Taking the real data as input (a), our method employs a physics-inspired energy model
which describes path planning with a multi-granularity control (b), and solves the minimizer in human-solution space by leveraging an
acceleration-aware data-driven scheme. As a result, we can generate different crowd behaviors in diverse scenes (c).

Abstract
Realistic crowd simulation has been pursued for decades, but it still necessitates tedious human labor and a lot of trial and
error. The majority of currently used crowd modeling is either empirical (model-based) or data-driven (model-free). Model-
based methods cannot fit observed data precisely, whereas model-free methods are limited by the availability/quality of data
and are uninterpretable. In this paper, we aim at taking advantage of both model-based and data-driven approaches. In order
to accomplish this, we propose a new simulation framework built on a physics-based model that is designed to be data-friendly.
Both the general prior knowledge about crowds encoded by the physics-based model and the specific real-world crowd data at
hand jointly influence the system dynamics. With a multi-granularity physics-based model, the framework combines microscopic
and macroscopic motion control. Each simulation step is formulated as an energy optimization problem, where the minimizer
is the desired crowd behavior. In contrast to traditional optimization-based methods which seek the theoretical minimizer,
we designed an acceleration-aware data-driven scheme to compute the minimizer from real-world data in order to achieve
higher realism by parameterizing both velocity and acceleration. Experiments demonstrate that our method can produce crowd
animations that are more realistically behaved in a variety of scales and scenarios when compared to the earlier methods.

CCS Concepts
• Computing methodologies → Physical simulation;

† Xiaogang Jin is the corresponding author. E-mail: jin@cad.zju.edu.cn

1. Introduction

Human crowds are ubiquitous and have attracted wide research in-
terests, among which replicating naturalistic crowd behaviors has
been an important task in computer animation, as well as psychol-
ogy, transportation research, architectural design, safety and secu-
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rity, etc. However, automated and realistic crowd simulation is still
challenging after decades of research and practice.

Existing crowd simulation methods can be conceptually divided
into two categories: empirical and data-driven. Empirical meth-
ods abstract observed crowd behaviors into explicit mathemati-
cal models and deterministic systems. They can model various
crowd behaviors at different levels of granularity, e.g. macroscopic
pedestrian flows [TCP06; NGCL09], microscopic local interac-
tions [Rey87; HM95; KSG14], and mesoscopic combinations of
local behaviors and global navigation [PCQ11]. We refer to these
methods as model-based, since they are explicitly formulated by
observed human behaviors using explicable mathematical terms.
However, as pedestrian interactions are complex and subtle, model-
based approaches tend to generate crowd motions with limited
plausibility and diversity. This is because these models are usually
based on simplified and idealized hypotheses with deterministic na-
ture.

On the other hand, data-driven crowd simulation methods tend
to rely on real data, which we refer to as model-free methods.
These methods attempt to establish a model that has sufficient
learning capacity so that they can fit complex crowd data in a
black-box manner. Most early model-free methods are based on
simple strategies: such as rule-based trajectory generation by con-
necting patches or trajectory segments [LCL07; JCP*10; CC14].
These methods can generate plausible results, but the variety of the
simulation entirely depends on that of input data. A recent data-
driven method [RXX*21] attempts to solve an optimization-based
model in a solution space using real-world velocities. This method
mimics the data to make decisions by selecting a velocity from
the data that is similar to an agent’s current velocity. However, as
it ignores natural acceleration, which is critical to realistic move-
ments, the output motion is unrealistic. Furthermore, most data-
driven methods consider only simplified local interactions, e.g., lo-
cal collision avoidance, and ignore macroscopic information. More
recently, deep learning techniques have been used to learn more ab-
stract behavioral models [AGR*16; vTGL*20]. Although they have
better data-fitting capabilities, their generality is still limited by the
training data and the models themselves are not interpretable. We
argue that a general simulation framework with better realism and
natural trajectories that integrates hierarchical empirical knowledge
of crowd behaviors with a model-friendly data-driven scheme is re-
quired to improve the plausibility of crowd simulations.

In this paper, we aim for a new methodology that leverages the
advantages of both model-based and data-driven approaches. To
this end, we propose a new simulation framework grounded on
a physics-based model which is designed to be data-friendly, so
that the system dynamics is driven simultaneously by the general
prior knowledge of crowds encoded by the physics-based model
and the specific real-world crowd data at disposal (see Figure 1).
The physics-based model is a multi-granularity approach. At the
microscopic level, it models a wide range of local individual be-
haviors as energies, such as individual motions and local interac-
tions. At the macroscopic level, a global control model is utilized
for goal-directed guidance for agents, and in this paper, we pri-
marily focus on group motion control and treat the entire crowd
as a continuum [TCP06] to enforce directed flow generation. The

whole model is formulated as a dynamical system described by an
energy function, where the individual behavior is modeled as the
minimizer of an energy minimization problem.

Although employing energy-based formulations to capture
crowd motions has been attempted before [GCC*10; KSNG17],
our model differs from previous work in that it is data-friendly. Be-
sides, we employ an acceleration-aware data-driven optimization
scheme to mimic real-world velocity changes, which can improve
the model’s realism while maintaining its scalability and general-
izability. Instead of seeking a solution that minimizes the energy
in the entire solution space, which would make the minimizer only
ideal in theory as in existing methods, we seek the minimizer in a
human-solution subspace, parameterized by motion features com-
puted from real-world data, so that the simulated behaviors mimic
the real ones. The key underlying assumption is that the global opti-
mum in the entire solution space does not necessarily lead to realis-
tic behaviors; it is the human-solution space (a subspace of the en-
tire solution space) where naturalistic human behaviors rise. Con-
sequently, we explicitly construct the human-solution space based
on real data and restrict the solution within it. This means we need
to explicitly parameterize this space. We investigate the human so-
lution using first- and second-order motion dynamics (i.e., velocity
and acceleration), which represent short-term motion decisions and
natural velocity changes. To that end, we parameterize the space by
extracting these motion dynamics from real-world trajectories and
constructing a reference dataset for optimization. We estimate ve-
locities from real trajectories using finite differences of positions
and encode the motion dynamics in the dataset as two consecutive
timestep velocities in a trajectory. This expression of motion dy-
namics facilitates data generalization in our simulation framework.
During simulation, velocity is regarded as the motion decision. We
optimize for the new velocities and update the system with an im-
plicit Euler scheme for numerical stability. Formally, the contribu-
tions of the paper include:

• a general simulation framework that introduces real data as
human-solution space to enhance a dynamics model and gen-
erate realistic crowd animations.
• a generic and data-friendly physics-based model that integrates

behavior models at different levels of simulation granularity to
generate diversified crowd behaviors.
• an acceleration-aware data-driven optimization scheme that gen-

erates plausible trajectories in a natural human-solution space by
referring to consecutive velocities in the dataset.

The rest of this paper is organized as follows. After briefly re-
viewing the related work in Section 2, we give an overview of our
approach in Section 3 and elaborate our optimization-based data-
driven model and the human-solution space in Section 4 and Sec-
tion 5, respectively. Then we show simulation results and evalua-
tion in Section 6, and conclude the limitations and future work in
Section 7.

2. Related Work

2.1. Empirical crowd models

The empirical methods abstract observed crowd behaviors into
mathematical models and deterministic systems, which can be clas-
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sified into microscopic and macroscopic models, in terms of the
simulation granularity. Microscopic approaches regard individu-
als as autonomous agents, and primarily focus on modelling the
low-level behavioral details of each agent. They can be further di-
vided into three categories: force-based, velocity-based, and vision-
based.

Force-based methods use physical forces to model the indi-
vidual interactions. Early force-based methods include the Boids
model where separation, alignment, and cohesion behaviors are
modelled by physical forces [Rey87], and the social force model
where pedestrian dynamics is modelled by sociological forces
[HM95]. Later, several extensions and variants have been proposed
to model different pedestrian behaviors, e.g. high-density crowds
that combine physical forces with psychological and geometrical
rules [PAB07], anticipatory models using the notion of time to col-
lision to predict future collisions and generate smooth trajectories
[KHvBO09; ZIK11; KSG14]. Recently, the force-based model has
been applied in simulating crowd behaviors in heterogeneous traf-
fic scenarios [CJH*19; HCJ21]. Compared to the traditional force-
based models that only consider the interactions among human
agents, their methods also consider the interactions between human
agents to other types of agents (e.g. cars, bikes). Force-based mod-
els can generate a wide range of crowd behaviors by combining
different user-defined behavioral models. However, because they
ignore prior knowledge hidden behind real-world crowd data, such
as real-world motion decisions and natural velocity changes, their
results may be unrealistic. Our optimization-based method, on the
other hand, is more data-friendly because we use real data for real-
time realistic crowd simulation.

While force-based approaches have the advantage of simple for-
mulation, they normally require laborious parameter tuning, and
suffer from numerical instability. In parallel, velocity-based mod-
els were proposed. They usually use a cost function to compute
a new velocity for an agent in a continuous velocity space [vd-
BLM08]. There are numerous velocity-based methods, e.g. a pre-
dictive pedestrian interaction model that uses a predictive time-
varying space area to predict the future collision [PPD07], a pedes-
trian interaction model using the minimum predicted distance for
motion adaptation[POO*09], a biomechanical model based on the
principle of least efforts [GCC*10], an extension of the RVO model
[vdBLM08] to simulate human-like behavior of agents in crowds
[KO10], a cognitive science approach based on behavioral heuris-
tics [MHT11], and combinations of velocity-based and force-based
methods to simulate multi-agent interactions [KGM13] and handle
the dense crowds [KGH*15].

Vision-based approaches can be regarded as variants of velocity-
based methods, while they can better simulate the perception-action
of human beings. These approaches include synthetic-vision mod-
els [OPOD10; WJDL13; HOD15], perception field based models
[KSH*12], gradient based models [DMN*17], and optimal flow
based models [LCMP19], etc. Besides, a recent microscopic crowd
simulation framework has been proposed to combine existing mod-
els by optimization [vTGL*20].

Besides, there are also other microscopic methods that are
used in different applications, e.g. the implicit crowd model for
large simulation time intervals [KSNG17], position-based methods

[WLJT17], proactive crowd models that select and execute proac-
tive steering strategies [LCM*18], etc.

Microscopic models work well for local navigation/collision
avoidance. However, most of them rely on additional control for
high-level behaviors. In contrast, macroscopic approaches regard a
crowd as continuous flows and focus on modelling the dynamics
of the entire crowd, e.g. continuum dynamics [TCP06; JXM*10],
aggregate dynamics [NGCL09] and navigation field [PvdBC*11;
TWCL18]. There are also hybrid models that extend the contin-
uum dynamics from an agent based perspective [PCQ11]. These
macroscopic approaches are hybrid methods that enforce local in-
teractions separately from the macroscopic algorithm, which af-
fects their generalizability.

The aforementioned empirical methods are model-based, as they
explicitly model observed human behaviors using explicable terms
in their mathematical models. However, as the pedestrian interac-
tions are complex and subtle, the simulation results of empirical
models tend to lack plausibility and diversity, because these mod-
els are usually based on simplified and idealized hypotheses with
deterministic nature, e.g. least-effort. To this end, the proposed
method utilizes a data-driven scheme to generate realistic and di-
versified crowd behaviors.

2.2. Data-driven crowd simulation

With the improvement of data acquisition techniques, data-
driven methods are employed to generate realistic crowd ani-
mations [LCL07; JCP*10; ZTC13; CC14; SHW*18; HXZW20;
XYWJ20]. These methods extract patches or trajectory segments
from input datasets and either connect them under pre-defined rules
or use them to learn some characteristics of an agent’s motion.
Those methods can generate plausible crowd behaviors but are
limited by the data. Recently, Ren et al. proposed a data-driven
method (Heter-Sim) that computes velocity from real datasets to
minimizing an energy function [RXX*21]. This method can gen-
erate reasonable crowd behaviors, but its optimization scheme ig-
nores second-order real-world motion dynamics, resulting in trajec-
tories with unreasonable accelerations compared to real data and
unrealistic simulation results. Furthermore, it only takes into ac-
count low-level motions and ignores high-level and macroscopic
perspectives. On the contrary, our physics-based model allows for
both microscopic and macroscopic motion control in order to gen-
erate a variety of crowd behaviors.

In parallel, machine learning approaches have been used to
learn human behaviors [WOO17]. Decision trees have been used
to build classifiers for pedestrian motion decisions [BKSB15],
and support vector machines have been used to simulate dense
crowd [MON*16]. These traditional machine learning models do
not have enough learning capacity for complex crowd scenarios,
as human crowd behaviors are complex and subtle. To this end,
deep learning-based models have been proposed to learn the arbi-
trarily non-linear pedestrian dynamics, to abstract behavioral pat-
terns from motion trajectories for simulation or prediction. Recur-
rent Neural Networks with social pooling have been used to learn
the interactions among pedestrians and predict pedestrians’ trajec-
tories [AGR*16]. Generative Adversarial Networks (GANs) with
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attention-based pooling have been used to sample plausible pre-
dictions of trajectories for the pedestrians in the scene [GJF*18].
Convolutional neural networks have been used to learn agent space
heat maps for agent navigation [Osh19]. Residual networks have
also been used to learn pedestrian movements [YZLL20]. These
deep learning-based methods can generate more plausible or more
accurate results than traditional simulation methods. However, the
variety of the simulation results is even more strictly adhere to the
data and therefore lack diversity. In addition, reinforcement learn-
ing has also been employed, with less dependency on data, to sim-
ulate the whole crowd [CP15; YZLL19] and agent-based behav-
iors [LWL18]. These methods are focused on the microscopic-level
policies to control agents, which loses the high-level behavior char-
acteristics in the data. Comparatively, our method makes use of
both microscopic and macroscopic approaches to consider both the
local interactions and the global path planning, which makes the
method more general and scalable. Furthermore, when compared to
previous data-driven methods, our framework’s acceleration-aware
data-driven optimization scheme can generate plausible crowd be-
haviors in a human-solution space while retaining the model’s scal-
ability and generalizability.

2.3. Parameter estimation and crowd evaluation

There are also works that focus on improving crowd simulation
quality by automatically estimating parameters in their parameter-
ized crowd simulation models [WGO*14; BKHF14; CLH*23] or
evaluating simulation quality by developing an evaluation bench-
mark framework [SKFR09] or assessing the results’ similarity with
real-world data [LCSC09; CKGC14; WOO17]. It is worth noting
that our model can be easily combined with them. Furthermore,
Kim et al. [KBB*16] combine parameter estimation with simula-
tion by employing statistical models to estimate dynamics char-
acteristics from real-world data in order to update agents’ veloc-
ity. The method can generate realistic crowd behavior based on
real-world data. However, it only takes into account local motion
control and disregards high-level perspectives. On the contrary, our
physics-based model uses an acceleration-aware data-driven opti-
mization scheme to generate various crowd behaviors at both the
microscopic and macroscopic levels.

3. Methodology Overview

Our method can be conceptually described as a two-phase process:
the preprocessing stage and the simulation stage (see Figure 2).
In preprocessing, a reference dataset is generated from real crowd
data as the human-solution space (see Section 5) and the motion
scenario is initialized. The reference dataset consists of several fea-
tures extracted from real tracklets of human crowds including es-
timated consecutive velocities. The scene initialization is also per-
formed at the preprocessing stage, with different goals, obstacles,
and initial states of individuals. The whole environment is repre-
sented by a 2D grid.

Our method makes full use of the motion features extracted from
real data for simulation, during which we employ an acceleration-
aware data-driven optimization approach to update each individual
by mimicking real-world continuous motion decisions (see Sec-
tion 4.1). For every time step, a continuous collision detection

Goals, obstacles

Position, velocity

Real human 
trajectories

Initialize motion 
scenario

Initialize group 
motion state

Generate human-
solution space

Update continuum global 
control velocity field

Data-driven
optimization

Update 
motion state

Preprocessing
Data-driven 

continuum simulation

Figure 2: The pipeline of our method.

model is employed to generate collision-free trajectories (see Sec-
tion 4.2), and a continuous macroscopic velocity field that spans
the free space in the environment is calculated to generate a pre-
ferred velocity for each individual (see Section 4.3). Our model
then selects a velocity from the reference dataset that minimizes an
objective function which incorporates different energy terms.

4. Data-Driven Continuum Motion Control

The reference dataset is denoted as D = {dv}, dv = (varr,v) ∈
R2 ×R2, where v is a velocity estimated from a real tracklet to
update an agent’s motion state, and varr is the velocity in the asso-
ciated real tracklet at the previous timestep of v. We regard each
pedestrian as a disk-shaped agent with radius r, and the motion
state of each agent can be characterized by its position and veloc-
ity, i.e. s = (p,v)∈R2×R2. Given a crowd with N agents, the mo-
tion state of an agent i at time t is st

i =
(
pt

i ,v
t
i
)
. We further denote

the motion state of the whole crowd as St =
{

st
i
∣∣i = 1,2, ...,N

}
, the

whole motion environment as ENVt , and the macroscopic velocity
field is Vg. In detail, ENVt includes the detailed information of the
motion scenario and all the environmental objects such as obstacles
and goals. Our stepping scheme computes the agent’s new motion
state after a time step in an implicit Euler fashion:

vt+1
i = argmin

v∈dv∈D
E(i,dv,St ,ENVt ,Vg),

pt+1
i = pt

i +vt+1
i ∆t,

(1)

where the new velocity vt+1
i ∈ dv ∈ D minimizes the objective

function E, ∆t is a timestep, and pt+1
i is the position at time t + 1.

The objective function E is defined as:

E(i,dv,St ,ENVt ,Vg) = Edf +Eintf +Emc, (2)

where Edf is the basic drive force, Eintf is the agent-agent and
agent-environment interaction force, Emc is the macroscopic con-
trol force. For each agent, the minimization of E is to calculate a
new velocity vt+1

i by selecting a v ∈ dv ∈ D whose corresponding
varr is similar to the agent’s current velocity. For brevity, we use v̂
and v to represent the direction and the magnitude of the velocity
v, respectively. The algorithm for updating the motion state of the
crowd is illustrated in Algorithm 1.
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ALGORITHM 1: Motion State Update at Time t
Input: St , ENVt .
Output: St+1.

1 Emin =∞; vt+1
i = 0;

2 Update the macroscopic velocity field Vg; // see in Sec. 4.3;
3 for each st

i ∈ St do
4 Emin =∞ ;
5 for each dv ∈ D do
6 (varr,v) = dv;
7 Calculate E(i,dv,St ,ENVt ,Vg); // see in Sec. 4.1 to 4.3;
8 if E(i,dv,St ,ENVt ,Vg) < Emin then
9 Emin = E(i,dv,St ,ENVt ,Vg) ;

10 vt+1
i = v ;

11 end
12 end
13 pt+1

i = pt
i +vt+1

i ∆t ;
14 st+1

i =
(
pt+1

i ,vt+1
i
)
;

15 end

4.1. Basic internal drive

We define an energy term Edf to model the force that drives the
agents to make real-world motion decisions and keep moving. The
energy contains a state similarity term Ess for simulating motion
decisions in real data, as well as a direction continuity term Edc for
trajectory smoothness:

Edf = Ess +Edc. (3)

State similarity. Given a data sample dv = (varr,v) ∈D, we assume
that the chosen velocity v ∈ dv ∈ D is reasonable when an agent’s
current motion state is similar to that in the real data. The goal of
the state similarity energy Ess is to choose a reasonable velocity
for each agent in order to mimic the motion decision in real tra-
jectories and generate trajectories that are similar to the real data.
For an agent i at time t, Ess calculates the difference between the
agent’s current velocity vt

i and the previous velocity varr ∈ dv ∈ D
in the reference dataset. Ess takes into account the similarity of the
previous direction Edir and magnitude Emag:

Ess = wdirEdir +wmagEmag,

Edir = ‖v̂arr− v̂t
i‖2,

Emag = |varr− vt
i |,

(4)

where Edir and Emag compute the direction and magnitude differ-
ence between varr and vt

i . wdir ≥ 0 and wmag ≥ 0 are the weights of
Edir and Emag, respectively. The state similarity energy is defined
as the ability to generate plausible trajectories that are similar to
the real data by using a physics-based model to mimic real-world
motion dynamics (continuous velocity changes).

Trajectory smoothness. We also model an extra force for trajec-
tory smoothness as a direction continuity energy Edc, which mea-
sures the difference between the direction of the selected velocity v̂
and the current direction of the agent v̂t

i :

Edc = wdc · ‖v̂− v̂t
i‖2, (5)

where wdc≥ 0 is the weight of the energy. While trajectory smooth-
ness is commonly employed in crowd simulation, state similarity,

which incorporates velocity change to make motion decisions that
mimic real data, is less frequently considered. This is to exploit the
motion dynamics of the human-solution space in our context.

4.2. Microscopic interaction

Interactions exist between an agent and other agents or the envi-
ronment. They affect the agent decisions in e.g. collision avoid-
ance. We define an interaction energy term Eintf, which includes
an agent-agent term Eaa to model the interactions among agents,
and an agent-environment (agent-env) term Eae to model agents’
reactions to the environment:

Eintf = Eaa +Eae. (6)

4.2.1. Inter-agent interactions

To generate collision-free trajectories, the agent-agent interaction
energy Eaa models the instantaneous interactions to avoid possible
collisions in a short period (a time step ∆t), and the anticipatory
interactions to predict possible collisions in a longer term (T ∆t,
and T > 1). Eaa is formulated as:

Eaa = winsCAEinsCA +wantiCAEantiCA, (7)

where EinsCA is the instantaneous interaction energy, EantiCA is the
anticipatory interaction energy, with weights winsCA, wantiCA ≥ 0.

Instantaneous interaction. To prevent agent collisions, instanta-
neous interaction is defined as maintaining inter-agent separations.
To that end, the instantaneous interaction energy EinsCA is defined
to select a velocity for an agent i to separate it from the poten-
tial collision neighbors, assuming that the collision neighbors of an
agent i are the agents whose distance to this agent is within a range
RIns = 2vmax∆t [GNCL14], where vmax is the maximum velocity in
the dataset.

Assuming that agent i chooses a velocity v∈ dv ∈D and a collid-
ing neighbor j holds its current velocity vt

j, we use a distance-based
scheme similar to that used in [RXX*21] to model the instanta-
neous interaction:

EinsCA = ∑
j∈InsN

e(1−d(∆t,v,st
i ,s

t
j)/dc), (8)

where InsN is the set of instantaneous collision neighbors,
d
(
∆t,v,st

i ,s
t
j
)

is the predicted distance of the two agents at time
t +1, and dc is a constant as the comfort distance between agents.

It is worth noting that our method defines short-term collision
neighbors differently than [RXX*21], where the collision neigh-
bors are the agents whose predicted distance from the focal agent
is within a range dc. The instantaneous collision avoidance method
works well for separating agents, but motion jumps may occur dur-
ing simulation due to the discontinuity of the energy function at the
truncation distance dc (see the blue curve in Figure 3). Our method
defines EinsCA in a smoother way to separate agents and keep the
distance between agents around the comfort distance dc (see the
orange curve in Figure 3). Besides, we calculate the instantaneous
collision avoidance energy in an anisotropic manner by summing
each energy. The goal of such a design is to keep the peak energy
value from disappearing while maintaining sensitivity in detecting
potential collisions.
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E In
sC

A

predicted distance
dc

Figure 3: The visualization of EinsCA. The discontinuity of EinsCA
(blue) in [RXX*21] is smoothed by our method (orange).

Continuous collision detection. Equation 8 is designed to avoid
short-horizon collisions and keep agents apart. However, agents
may still collide at some point t′ = t +α

′
∆t,α′ ∈ (0,1] during a

single simulation step. Therefore, we employ a continuous collision
detection method. Denoting d

(
∆t,v,st

i ,s
t
j
)

as the distance between
two agents at time t′:

d
(
∆t,v,st

i ,s
t
j
)
= ‖pt′

i −pt′
j ‖2− (ri + r j), (9)

where pt′
i = pt

i +(α′∆t)v and pt′
j = pt

j +(α′∆t)vt
j are the predicted

positions of the two agents at time t′. Under the assumption of tra-
jectory linearity within a timestep, α

′ is calculated based on the
time coefficient α when the two agents are closest (i.e., the pre-
dicted distance at time t +α∆t is 0):

α
′ =

{
α, 0 < α≤ 1,

1, others.

‖pt+α∆t
i −pt+α∆t

j ‖2− (ri + r j) = 0.

(10)

Figure 4 depicts the scenarios in which α will be calculated at vari-
ous intervals. In Equation 10, α

′ ∈ (0,1) means that, the two agents
will collide during a timestep, and the predicted distance is 0 in this
situation. Other situations mean that the predicted distance is the
distance at time t +∆t.

Anticipatory interaction. During navigating through crowds, hu-
mans also consider long-horizon collision avoidance, which we de-
fine as anticipatory interaction. We model the potential anticipatory
collision between two agents using the colliding time α computed
in Equation 10 when two agents will collide in the far future:

EantiCA = ∑
j∈AntiN

e(1−α/αc), α≥ 0, (11)

where AntiN is the set of long-horizon collision neighbors, and
αc >> 1 is a truncation time to reduce the influence of potential
collisions in the far future. We empirically set αc = 3/∆t in our
experiments. For computing performance, the long-range collision
neighbors are the agents whose distance from agent i is within a
certain range Ranti = 2vmaxαc∆t [GNCL14].

4.2.2. Agent-environment interactions

The agent-environment interaction energy Eae models agents’ in-
stantaneous reactions to avoid impending environmental obstacles

(a)     α≤0 (b)     0<α≤1

(c)     α>1 (d) no solution

Figure 4: Simple illustrations for situations in the continuous col-
lision detection method. In each figure, the disks with the deepest
color are the current positions of two agents at time t, disks with
the lightest color are the predicted positions when the two agents
collide with each other at time t +α∆t, and the other disks are the
predicted positions at time t +∆t.

such as walls and buildings. We model potential instantaneous col-
lisions between an agent i and an obstacle k within the short-term
collision range RIns in Section 4.2. To avoid possible collisions
within a timestep, we use the same continuous collision detection
method as Equation 8 to predict the distance between the agent and
an obstacle. Then Eae can be defined as:

Eae = wae ∑
k∈InsEnv

e(1−d(∆t,v,st
i ,p

t+1
k

′)/de), (12)

where wae ≥ 0 is the weight, InsEnv is the set of the impending
colliding obstacles, pt+1

k
′

is the predicted obstacle position, and

d
(

∆t,v,st
i ,p

t+1
k
′)

is the predicted distance.

It should be noted that anticipatory collision avoidance for agent-
environment interaction, such as that in Equation 12 for agent-agent
collision avoidance, is not considered in this section because it can
be handled well by the macroscopic continuum control (see Section
4.3).

To calculate Eae, we use the grid to find neighboring objects, and
the cells containing objects are considered obstacles. In Equation
12, each distance calculated is the distance between an agent i and
the center of cell k, i.e. d(i,k) = ‖pi−pk‖2− ri−

√
2

2 l, where l is
the side length of the cell. Because we can discretize both regular
and irregularly shaped obstacles into grid cells, our approach can
handle obstacles of any shape. When the obstacle is a disk-shaped
object, the predicted distance can be calculated as the distance be-
tween the agent’s predicted position and the predicted position of
the center of the obstacle to simplify the calculation and improve
performance.
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4.3. Macroscopic control

Aside from individual agent local behaviors, we must also drive
goal-directed behaviors for individual agents or model global be-
haviors such as groups, flows, and so on. Not only are they com-
monly observed in the real world, they can also be utilized for user-
defined control in simulation. Therefore, we introduce a continuum
control force term Emc to provide macroscopic control that drives
each agent to follow a global path. We assume that at every time
step, the continuum control model computes a macroscopic control
velocity based on each agent’s local surroundings and the predicted
global motion cost. The energy term Emc computes a velocity that
is similar to the desired macroscopic control velocity:

Emc = wmdirEmdir +wmmagEmmag, (13)

where Emdir is the macroscopic control direction term and Emmag
is the control magnitude term. wmdir ≥ 0 and wmmag ≥ 0 are their
weights.

The macroscopic control can be realized by a global veloc-
ity field. Although our framework can employ any methods for
the velocity field calculation, we employ a continuum crowd
model [TCP06] which has a similar representation of the global
motion. In [TCP06], the agents in a group typically have the same
goal, and for each group, a macroscopic velocity field Vg is gen-
erated as a position-related function, and each agent in this group
is given a preferred velocity by interpolating Vg. In terms of di-
verse behavior control, in our method, the macroscopic continuum
control model can be used not only for generating group behaviors
that regard a pedestrian group as a whole with a common goal, but
it can also be used for global path planning for individual agents
with distinct goals. For an agent i at time t, Emdir and Emmag are
calculated as:

Emdir = ‖v̂− V̂g(pt
i)‖2,

Emmag = |v−Vg(pt
i)|,

(14)

where V̂g(pt
i) is the preferred direction and Vg(pt

i) = ‖Vg(pt
i)‖ is

the preferred speed.

The macroscopic velocity field Vg can be represented by the op-
timal path from each position to a goal [TCP06]. Furthermore, cal-
culating the optimal path is equivalent to minimizing the total cost
based on three factors: total path length, total travel time, and total
repulsion effect from obstacles, with the cost function defined as:

Cost = wd

∫
P

1ds︸ ︷︷ ︸
path length

+wt

∫
P

τds︸ ︷︷ ︸
travel time

+wr

∫
P

Rds︸ ︷︷ ︸
repulsion force

=
∫

P
Cds, where C ≡ wd +wt · τ+wr ·R,

(15)

where wd, wt and wr are weights, and wd+wt+wr = 1,wd,wt,wr ≥
0, τ is the travel time. R is environment-repulsion force. All integra-
tion is conducted along the whole path. The higher wr is, the more
repulsive the obstacles are.

The grid is used to discretize Equation 15, and a potential func-
tion Φ : R2→ R is defined over cells. At the goal, we have Φ = 0.
For anywhere else, Φ satisfies an Eikonal equation: ‖∇Φ(p)‖=C.
In each time step, the velocity of a crowd is converted to a speed

field based on the maximum permissible speed in any direction in
each cell, and then the unit cost field C is updated for each group,
followed by updating the potential Φ and its gradient. The velocity
field Vg is finally determined. The velocity of each cell is a two-
dimensional vector with the opposite gradient direction, and the
magnitude of each dimension is scaled by the corresponding speed
at the speed field. Interpolating the velocity field yields the pre-
ferred velocity for macroscopic motion planning. We refer readers
to [TCP06] for more information.

To generate different scenarios, the macroscopic velocity field
can be updated online during simulation to capture dynamic
changes in the states of agents or environmental objects, or it can be
pre-calculated as a static global motion control map while ignoring
agents’ motion states. Furthermore, for agent personalization, the
preferred speed Vg(p) can be user-defined to impose control.

Continuous environment-repulsion field. To incorporate obsta-
cles in Vg, [TCP06] introduce a ‘discomfort’ value in obstacle-
occupied cells to generate repulsion. However, this causes signif-
icant unsmoothness in Vg near obstacles. Therefore, we propose
a new continuous repulsion. For a cell m in the grid, the continu-
ous env-repulsion force R(pm) is calculated based on its minimum
distance dmin to the boundary cells of the environmental obstacles:

R(pm) = h(dmin) =

χ ·


1, dmin < 0,

0.5 ·
(

cos(
π ·dmin
dcrep

)+1
)
, 0≤ dmin ≤ dcrep,

0, dmin > dcrep,

(16)

where χ > 0 is a scaling constant, dcrep > 0 is a predefined dis-
tance threshold of the boundary cells. dmin is the signed distance
determined by whether the cell is inside the obstacle:

d = min{‖pm−pk‖2}, k ∈ K,

dmin =


−d, m is inside an obstacle,

0, m is at a boundary cell of an obstacle,

d, m is outside the obstacles,

(17)

where K is the set of the boundary cells of the obstacle.

5. Human-solution Space

Solving Eq. 1 in the entire solution space ensures that our sys-
tem runs along at the envelop of the minimal energy. However,
this is not ideal because individuals might not always follow a
minimal-energy trajectory. Existing research assumes certain prin-
ciples on individual motions, e.g. minimum effort [GCC*10],
power-law [KSG14], etc, but they are based on simplified hypothe-
ses. Real-world individual motions are almost always sub-optimal
for the physics-based models, which significantly affects the vi-
sual realism of crowd animation [WOO16; HXZW20]. Therefore,
we propose to advance the system in the human-solution subspace
rather in the entire solution space.
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5.1. Parameterization

We hope to find reliable information for parameterization by using
trajectory segments extracted from real crowd videos. Individual
movements in crowds, from a microscopic perspective, form a se-
ries of short-term decision-making processes, which are reflected
in motion dynamics. As a result, based on the trajectory segments,
we investigate high-order information to explore motion dynam-
ics. The 1st-order information (velocity) is the change of positions
which is a natural reflection of motion decisions. In addition, the
2nd-order information (acceleration) shows the trend of decisions
which should also be incorporated. Fortunately, the velocity can be
estimated relatively reliably from the trajectory segments, and it has
been widely used for crowd simulation [RXX*21], crowd activity
analysis [WO16], and fidelity evaluation of simulated crowd data
[WOO17]. Unlike [RXX*21], which only considers velocity, our
method considers higher-order motion dynamics from real data to
construct a dataset that includes both first- and second-order real-
world information when parameterizing the human-solution space.
Furthermore, to reflect real-world continuous motion decisions, we
encode the information as velocities in two consecutive timesteps.

Given a trajectory dataset ΓΓΓ with L trajectory segments, i.e.
ΓΓΓ : Γ1,Γ2, ...,Γi, ..., where i = 1,2, ...,L, a reference dataset D is
generated based on ΓΓΓ. In ΓΓΓ, each trajectory is a discrete time se-
ries of positions, i.e. Γi : X1

i ,X
2
i , ...,X

t
i , ..., where t = 1,2, ...,T

refers to the temporal information of a trajectory and T is the to-
tal time steps that Γi covers. The velocities that imply the motion
decision of the pedestrians can be estimated from Γi by the first-
order forward differencing of the positions in the trajectory, that is,
vt

i =
(

Xt+1
i −Xt

i

)
/∆T , where t = 1, ...,T − 1 and ∆T is a time

step. The accelerations that imply the continuous change of veloc-
ities can be estimated by the second-order forward differencing of
the positions. The estimated acceleration is a motion dynamics fea-
ture used in Section 6 to evaluate the simulation results’ perfor-
mance.

Each data term in the referenced dataset D consists of two con-
secutive timestep velocities in a trajectory, [vt

i ,v
t+1
i ], where vt

i is the
velocity of a pedestrian during the previous timestep to get to Xt

i ,
and vt+1

i is the new velocity to get to the next position Xt+1
i .

Notably, the human-solution space contains velocities that are
not constrained by the context state, implying that we do not pre-
sume to solve a context-solution matching problem. This is due to
the fact that the context state and the solution (i.e., velocity and
acceleration) have a many-to-many mapping in general. We can
observe sufficient solutions across all possible context states if we
consider the solution as a distribution conditioned on the context
state. As a result, we do not match the solutions to their context
states. Our method, on the other hand, chooses the best velocity
from the human-solution space to update an agent’s motion by
matching the previous velocity in the dataset to the agent’s current
one, allowing it to mimic real-world continuous motion decisions.
Although it is theoretically possible that a mismatch between the
chosen solution and its context state could result in unnatural mo-
tions, we did not observe this in practice. Furthermore, because
velocity and acceleration are fundamental features used in most
physics-based methods to describe crowd motion dynamics, those
obtained from real trajectories are friendly to the optimization-

based model for improving realism while maintaining scalability
and generalizability.

5.2. Data generalization to different scenarios

Similar to other data-driven methods, our method relies on the
availability of data. To reduce the data dependency and improve
the generalizability for different scenarios, we use a direction align-
ment method to simulate scenarios where the desired agents’ move-
ments differ greatly from those of the reference dataset obtained in
Section 5.1, for example, simulating the adversarial movements of
pedestrians by referencing a dataset that only includes unidirec-
tional movements (see Section 6.3.4). Furthermore, an augmented
dataset can be generated by blending datasets from different real-
world scenarios to generate different pedestrian behaviors in a com-
plex scenario.

Direction alignment. If we directly search for the optimal new
velocity from the dataset obtained in Section 5.1, the synthesized
scenario will be limited to generating movements similar to the real
data, according to Equation 2. The direction adaption method in-
troduced in [RXX*21] is one method for removing the constraint,
which maps the local coordinates of the velocities in the dataset to
those of the simulation scenarios by aligning their control direc-
tions, where the estimation error for estimating the control direc-
tions from real data may reduce simulation plausibility. In contrast,
because the velocity pairs indicate that each data term is a trajec-
tory segment of two consecutive time steps with three sequential
positions, we use a direction alignment method to align the previ-
ous direction of a data term with an agent’s current direction and
convert the data term’s selected velocity to the agent’s local coor-
dinate.

Given a data term dv = (varr,v) ∈ D, the chosen direction of the
agent and the data term shares the same rotationM∈ R2×2 with
the current direction, i.e.:

v̂t
i =M· v̂arr, (18)

v̂′ =M· v̂, (19)

where v̂′ is the predicted new direction of the agent calculated
from a data term dv, thus the aligned new velocity is v′ = v · v̂′.

M=

[
m1, −m2
m2, m1

]
is the standard rotation matrix in Euclidean

space in the counterclockwise direction, where m2
1+m2

2 = 1. Given
v̂t

i and v̂arr, m1 and m2 can be calculated by solving the quadratic
Equation 18.

When utilizing the direction alignment method, the energy term
of the similarity of previous direction Edir for state similarity is
constantly 0 during simulation, thus saves the computing cost.

6. Experimental Results and Evaluations

The implementation is in C++ and the experiments were run on a
PC with an Intel (R) Core (TM) i7 4.00 GHz CPU, 32 GB RAM,
and an NVIDIA Geforce GTX 1060 GPU. We provide both quali-
tative and quantitative evaluations to demonstrate the performance
of our method. Due to the space limit, we only show representa-
tive results and refer the readers to the supplementary materials for
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Table 1: The weights used in different simulation scenarios of our result.

Scenario
Ess Edc Eaa Eae Emc

wdir wmag wdc winsCA wantiCA winsE wmdir wmmag

Hallway
no obstacle

(100/200 agents)
1.0 1.0 0.25 0.5 1.0 0 0.75 0.75

with an obstacle 1.0 1.0 0.25 0.5 1.0 1.0 0.75 0.75

Dynamic Envs
Obstacle 0.75 0.75 0.25 0.5 1.0 1.0 1.0 1.0

Goal 0.75 0.75 0.25 0.5 1.0 0 1.0 1.0
Crowd crossing 1.0 1.0 0.25 0.5 1.0 0 0.75 0.75

Crowd wandering 1.0 1.0 0.5 0.5 1.0 1.0 1.0 1.0
Train station 1.0 1.0 0.5 0.5 1.0 1.0 0.5 0.5
Intersection 1.0 1.0 0.25 0.5 1.0 1.0 0.5 0.5
Bottleneck 1.0 1.0 0.25 0.25 1.0 1.0 1.0 2.5

more details. In all our experiments, we set K = 1, and the weights
of the energy terms for the test scenarios are shown in Table 1. Ad-
ditionally, the weights for the street scenario are shown in Table 3.

6.1. Qualitative results

We first show several results generated by referencing the dataset
from [ZKSS12]. The simulation results show that, based on a sin-
gle reference dataset, our method can generate various crowd sce-
narios, not merely restricted to that of the dataset. In the following
simulations, each agent is initialized with a random velocity chosen
from the reference dataset, and the desired speed is the maximum
speed in the dataset.

Hallway scenario. We show the results of the adversarial move-
ments of different scales of crowds in a narrow hallway (see Figure
5), similar to the scenario of the reference dataset from [ZKSS12].
Note that a static obstacle is placed in the center of the hallway in
Figure 5(c). In addition, the macroscopic velocity field is updated
online to capture dynamic changes in agent group states and guide
agents to avoid dense congestion.

Dynamic environments. To demonstrate our method’s ability to
adapt to changing environments, a scenario with a moving obstacle
and a scenario with a moving goal is simulated (see Figure 6), in-
cluding 50 and 50 agents respectively. As the obstacle/goal is mov-
ing, the macroscopic velocity field is updated online to reflect dy-
namic changes in the environment.

Crowd crossing. In Figure 7, four groups of agents are moving in
an adversarial way to reach the opposite corner and each group in-
cludes 50 agents. Similar to the hallway scenario, the macroscopic
velocity field is updated online.

Crowd wandering. To demonstrate the scalability of our method,
we simulate a high-density scenario with a crowd of 500 agents in
Figure 8. There are several static obstacles in the area. In this ex-
periment, we set several goals, and each agent is assigned a goal.
When the agent reaches its current goal, it will change to a random
goal. Because agents in the scenario are separated and have a vari-
ety of motion options, we use a pre-calculated static macroscopic
velocity field that considers static environmental objects while ig-
noring agents’ motion states to globally guide individual motion.
We compute the static macroscopic velocity field for each goal (i.e.,
the end position of an agent or several agents) using a speed field

in which the maximum permissible speed in any direction is the
preferred speed of agents toward the goal. Using a pre-calculated
velocity map can reduce the computational cost of updating the
macroscopic velocity field during the simulation.

In Figure 9, we show more simulation results that are generated
by referencing other datasets. The simulation results show that our
method is adaptive to different data.

Street scenario. In Figure 9(a), we use the reference dataset from
[LCL07] to generate a similar scenario, which is a bidirectional
street with sparse pedestrians. The appearance time, the initial mo-
tion state, and the desired speed of each agent is similar to that in
the dataset. Similar to the crowd wandering scenario, to guide indi-
vidual motion, we use a pre-calculated static macroscopic velocity
field for each goal.

Station scenario. In Figure 9(b), we use the reference dataset
from [ZWT12], which is a multi-gate (multi-goal) station with
dense pedestrians. The motion state of each agent and the goal
gate are initialized in a random way. We use a pre-calculated static
macroscopic velocity field for each goal to guide individual motion,
similar to the crowd wandering scenario.

Intersection scenario. In Figure 9(c), we also simulate an inter-
section scenario by referencing the dataset from [YLRÖ19], where
several pedestrians avoid a passing car to cross the road in an in-
tersection. During simulation, the motion state of the agents are
initialized in a random way, and the cars are initialized as dynamic
obstacles with pre-defined paths. The macroscopic velocity field is
updated in real-time to globally guide the agents in responding to
dynamic changes in the obstacles.

Evacuation through a bottleneck. In Figure 9(d), we use the
dataset from [SPS*09] to generate crowd evacuation behaviors in a
bottleneck scenario similar to the referenced dataset. During simu-
lation, the motion state of the agents are initialized in a random way.
The agents in this scenario are all walking toward the same goal.
To reduce congestion in the confined space, we treat the agents
as a continuum and update the macroscopic velocity field at each
timestep.

Parameter tuning. By varying the weights of the energy terms,
crowd behavior can be intuitively adjusted. For example, having
the default value of each weight set to 1 means that all behavior
models have equal control. To reduce sudden motion changes, the
weight of instantaneous interaction energy (winsCA) is reduced in
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(a) Hallway scenario with 100 agents. (b) Hallway scenario with 200 agents. (c) Hallway scenario with 80 agents and a static
obstacle.

Figure 5: The hallway scenario with different scales of crowds.

(a) Emergent behavior with a mov-
ing obstacle.

(b) Emergent behavior with a mov-
ing goal.

Figure 6: Emergent behaviors with different moving environmental
objects in the scenario. In both (a) and (b), the red cylinder is the
goal of a crowd and the white disk-shaped object is the obstacle.

Figure 7: Four groups of
pedestrians walking through
each other.

Figure 8: Pedestrians wander-
ing in a virtual city block.

all simulated scenarios. The weight of the direction control model
(wdc) is smaller than that of state similarity and macroscopic con-
trol in all scenarios to encourage agents to focus on natural veloc-
ity changes and global guidance. The weights of the macroscopic
control model (wmdir and wmmag) in the hallway and crossing, for
example, are smaller than those of the state similarity energy to en-
courage agents to focus on real-world continuous motion decisions.
In the dynamic environment scenario, the weights of the state sim-
ilarity energy (wdir and wmag) are smaller than that of the macro-
scopic control energy to improve the efficiency of responding to
environmental change. The weight of the energy for macroscopic
magnitude similarity (wmmag) is increased in the bottleneck sce-
nario to improve the efficiency of changing agent speeds so that

agents can avoid congestion when entering a crowded environment
from a sparse one and vice versa. Furthermore, wdir = wmag and
wmdir = wmmag apply to the majority of scenarios in practice, re-
ducing the need for manual adjustments.

6.2. Evaluations

6.2.1. Time performance

The time complexity of our motion updating algorithm (see Algo-
rithm 1) is O(M× (WH)) +O(kN), where O(M× (WH)) is the
time complexity to calculate the macroscopic velocity field, M is
the group (or goal) number, W and H are the width and height of
the grid map; O(kN) is the time complexity to update the motion of
the agents in a time step, N is the number of agents, and k is the data
sample size in the reference data. In our experiments, for fast index-
ing, we only traverse data terms whose varr is close to the agent’s
current speed, and k = 300 is enough to generate all scenarios. The
time complexity is nearly linear (O(kN)) if the macroscopic veloc-
ity field is pre-calculated.

To quantitatively test the performance of the proposed algorithm,
we simulate a crowd in a 200*200 grid with no obstacle. The length
of each cell is 1m. During the initialization, we randomly position
N agents, and divide them into M groups. The initial velocities of
the agents are randomly selected from a dataset [ZKSS12]. Figure
10 shows a comparison of the averaging updating time for different
agent groups with online calculation of the macroscopic velocity
field during simulation. In Figure 10, the average updating time
with 0 agents is the time performance of updating the macroscopic
velocity field. The computation cost increases with the group num-
ber. However, as we only perform the online updating of the macro-
scopic velocity field in dense and flow-like crowd scenarios with
few agent groups, this cost is negligible. In the sparse crowd sce-
narios, calculating the macroscopic velocity field is part of initial-
ization, so the computation does not affect the online performance.
Table 2 also shows the time performance in different simulations,
demonstrating that all of the tested scenarios can be simulated in
real time. Furthermore, in more complex scenarios, such as the
crossing and wandering scenario, where dense agents are assigned
various goals, frequent interactions with the environment or other
types of agents affect time performance.
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(a) Street scenario. (b) Train station scenario. (c) Intersection scenario. (d) Bottleneck scenario.

Figure 9: The simulation results referencing different datasets.
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Figure 10: Time performance of our approach. The computation
cost is linear w.r.t the number of agents. The legends are different
group (goal) numbers set in the simulation.

Table 2: The time performance of different simulation scenarios.
N is the number of agents present at any given time.

Scenario N Time (s/ f )

Hallway
100 0.0035
200 0.0110

Hallway
with an obstacle

80 0.0026

Dynamic Envs
Obstacle 50 0.0020

Goal 50 0.0028
Crowd crossing 200 0.0147

Crowd wandering 500 0.0187
Street 1-20 0.0004

Train station 138-193 0.0069
Intersection 54-89 0.0058
Bottleneck 1-63 0.0068

6.2.2. Comparisons

To demonstrate the plausibility of our method, we compare sim-
ulation results in a narrow hallway scenario with real data from
[ZKSS12] and in a sparse street scenario with real data from
[LCL07] (i.e., Fig. 9(a)). During the initialization phase of each
experiment, the initial motion state, appearance time, and motion
preferences (e.g., the minimal and maximal velocities, the minimal
distance, and the maximum acceleration) of each agent are copied
from the real data. For the compared methods, we use a genetic al-
gorithm to estimate the optimal key parameters from the simulated
scenario’s real data, and the learned parameters are shown in Ta-
ble 3. The objective function of the genetic algorithm is based on
the absolute difference metric (ADM) proposed by [WGO*14].

Trajectory and statistical comparisons in a hallway scenario.
We simulate bidirectional pedestrians in a narrow corridor, sim-
ilar to [ZKSS12], to compare our method with a continuum
method [TCP06], a force-based method (PowerLaw) [KSG14],
a vision-based method [DMN*17] and a state-of-art data-driven
method (Heter-Sim) [RXX*21] both qualitatively and quantita-
tively. It is worth noting that the key parameters of the com-
pared continuum method are predefined and identical to those in
our method (wd ,wt = 0.2,wr = 0.6). The compared Heter-Sim
method [RXX*21] also uses a dataset obtained from [ZKSS12].
The frame rate is 16 frames per second as in the data.

In this scenario, each agent aims to reach the opposite exit, and
we regard the agent as inside the corridor before it arrives at the
goal exit. The goal of each agent in all of the compared experiments
is the closest boundary point of its goal exit in the corridor. Because
the real data includes the trajectories of agents outside the corridor,
which influence the local environment of the nearby agents moving
into the corridor, for all simulation methods, the agents will move
toward the nearest boundary points of the scenario as soon as they
complete their travel in the corridor.

Figure 11 shows the visual simulation results compared with the
real data. The simulation results show that the continuum model
from [TCP06] and our method mimics real crowds well in separate
pedestrian flows to reduce congestion, while the other approaches
fail to achieve this because they do not take high-level motion con-
trol into account in the same manner that we do. Figure 12 presents
visual comparisons on the generated trajectories, where our method
mimics data more closely.

Quantitatively, we quantify the trajectory similarity. We employ
the absolute difference metric (ADM) and the path length metric
(PLM) proposed by Wolinski et al. [WGO*14]. Table 4 shows the
results. Our method achieves better scores compared with the base-
line methods [TCP06; KSG14; DMN*17; RXX*21], showing that
our trajectories are more similar to the real data. Although the tra-
jectories of the continuum method in [TCP06] are visually similar
to the real ones (see Figure 12), the speed of crowd flows is slower
during simulation (Figure 13(a)), resulting in higher scores for tra-
jectory similarity.

We also compare distribution similarity, which includes veloc-
ity, minimum distance (the distance to the nearest agent), and ac-
celeration distributions, as these are descriptors that capture both
the state and the motion dynamics of agents. The velocity denotes
first-order motion dynamics, which denotes an instantaneous mo-
tion decision, and the acceleration denotes second-order motion dy-
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(a) Continuum method
[TCP06].

(b) PowerLaw [KSG14]. (c) Vision-based method
[DMN*17].

(d) Heter-Sim
[RXX*21].

(e) Our method. (f) Real data [ZKSS12].

Figure 11: Qualitative comparisons in a bidirectional scene with real data.

(a) Continuum method
[TCP06].

(b) PowerLaw [KSG14]. (c) Vision-based method
[DMN*17].

(d) Heter-Sim
[RXX*21].

(e) Our method. (f) Real data [ZKSS12].

Figure 12: Comparisons of the generated trajectories. The corridor is in the scene’s center and is surrounded by black walls. The blue
curves show the trajectories of the group that starts on the right side of the corridor, while the yellow curves show the trajectories of the
group that starts on the left. For each example, 100 trajectories are sampled from the simulation results/real trajectories.
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Figure 13: Comparisons of the distributions of velocity (a), mini-
mal distance (b), and acceleration (c for x (lateral of the corridor)
direction and d for y (longitudinal of the corridor) direction).

namics, which denotes velocity change and continuity. We use a
widely accepted metric, Kullback–Leibler divergence (KL diver-
gence) [KL51], DKL(Ps||Pr) = ∑

i
Ps(i) · log Ps(i)

Pr(i)
, to measure the

similarity of the empirical distributions shown in Figure 13. The
KL-divergence scores are given in Table 4. Our method has signifi-
cantly smaller scores, which demonstrates that it generates motions
that are statistically more similar to real data than the baselines.
This indicates model-based simulation in human-solution space
is superior to pure model-based methods, which is true for both
motion dynamics (velocity and acceleration) and states (density).
Therefore, our simulations are statistically more similar to data by
a large margin.

It should be noted that Heter-Sim [RXX*21] investigated the

human-solution space as well. Our method differs significantly
from it in both the data-driven scheme and the physics-based con-
trols, resulting in more realistic crowd behaviors. From a data-
driven standpoint, our method uses state similarity to simulate real-
world continuous velocity changes by referencing second-order
motion dynamics (acceleration) from data. Heter-Sim, in particular,
tends to choose a new velocity that is similar to an agent’s current
one in order to maintain velocity continuity. As a result, the major-
ity of the accelerations calculated from it tend to be close to zero
(see Figures 13(c)-(d)), resulting in unnatural straight trajectories
with nearly constant velocities (see Figure 12(d)). Quantitatively,
our method’s lower motion dynamics scores than Heter-Sim (see
Table 4) show that it outperforms in generating statistically more
similar motions to the real data. In terms of physics-based con-
trol, our method employs continuous instantaneous collision detec-
tion and collision time-based anticipatory collision avoidance to re-
duce possible congestion while generating smooth velocity changes
in narrow scenarios such as those found in real data [ZKSS12].
However, in narrow scenarios, the simple distance-based collision
avoidance model used in Heter-Sim may ignore anticipatory col-
lision neighbors who will pass through the agent during the long-
term time threshold, increasing the risk of congestion. Due to lim-
ited dataset for collision avoidance, in Heter-Sim, unnatural turn-
ing and velocity jittering may arise frequently in the narrow hall-
way scenario, resulting in unsmooth trajectories (see Figure 12(d)).
The smoother trajectories in Figure 12(e) and lower score for the
minimum distance in Table 4 of our result show that our interaction
model outperforms Heter-Sim both qualitatively and quantitatively.

To further validate our acceleration-aware data-driven optimiza-
tion scheme’s superiority in generating more plausible crowd be-
haviors than Heter-Sim [RXX*21], we conduct an ablation study
by introducing the macroscopic control model used in our method
to Heter-Sim (we call it Heter-Sim++) and comparing Heter-Sim++
with both Heter-Sim and our method. The macroscopic continuum
model calculates the control direction and desired speed for each

© 2023 The Author(s)
Computer Graphics Forum © 2023 The Eurographics Association and John Wiley & Sons Ltd.



Wei Xiang & He Wang & Yuqing Zhang & Milo K. Yip & Xiaogang Jin / Model-based Crowd Behaviors in Human-solution Space

Table 3: The parameters of each compared models learned from real-world data [ZKSS12]. N.D. stands for neighbor distance.

Scenario Our method
PowerLaw
[KSG14]

Vision-based method
[DMN*17]

Heter-Sim
[RXX*21]

Heter-Sim++

Hallway

wdir,wmag = 0.83
wdc = 0.09

winsCA = 0.37
wantiCA = 0.60

wmdir,wmmag = 0.62

m = 1.99, k = 1.47
N.D. = 9.92

τ0 = 3.05, ksi = 0.03
scom f = 1.20

σαg = 1.86
σs = 3.07

σttca = 2.16
σdca = 0.06
scom f = 0.89

wm1 = 1.01, wm2 = 1.29
wc1 = 1.06, wc2 = 0.70

wd = 0.53
wsc = 1.44

wm1 = 0.85, wm2 = 1.14
wc1 = 0.52, wc2 = 0.97

wd = 1.08
wsc = 1.02

Street

wdir,wmag = 0.75
wdc = 0.21

winsCA = 0.50
wantiCA = 0.51

wmdir,wmmag = 0.93

m = 2.10, k = 1.40
N.D. = 10.16

τ0 = 3.01, ksi = 0.06

σαg = 1.79
σs = 1.99

σttca = 1.43
σdca = 0.14

wm1 = 0.67, wm2 = 0.58
wc1 = 1.07, wc2 = 0.88

wd = 1.60
wsc = 1.47

-

Table 4: Benchmark scores on the trajectory and statistical similarity to the real data [ZKSS12], the lower is the better.

For simplicity, the values of the ADM and PLM are normalized by sample size. The best results are highlighted in bold font.
Trajectory similarity KL divergence
ADM PLM Velocity Distance Acceleration x Acceleration y

Continuum
[TCP06]

2.1903 0.7499 0.9511 0.2379 1.4695 0.7494

PowerLaw
[KSG14]

1.5765 1.5932 0.6771 0.9169 1.4695 1.3958

Vision-based
[DMN*17]

1.3304 0.9679 0.5134 0.7424 0.3740 0.3701

Heter-Sim
[RXX*21]

1.2373 0.8719 0.0847 0.8338 1.2715 1.1917

Heter-Sim++ 1.1032 0.6576 0.0482 0.4152 1.2741 1.0929
OurDirCon 0.9447 0.5405 0.0779 0.1705 0.1346 0.2206

Our method 0.8763 0.5176 0.0089 0.0806 0.0598 0.0130

agent in Heter-Sim++ (refer to the preferred direction and pre-
ferred speed in Equation 15, respectively). Heter-Sim++ shares the
same parameters as the previous experiments, and the weights of
the energy terms in Heter-Sim++ are also learned from real-world
data [ZKSS12] by the genetic algorithm (see Table 3). Figure 14(a)
shows a snapshot of the visual result. Figure 14(b) depicts the gen-
erated trajectories and shows how incorporating the macroscopic
control model produces better visual results that are close to the
real data. However, as shown in Figure 14(b), unnatural straight tra-
jectories or velocity jittering may still occur, resulting in unsmooth
behavior.

Quantitatively, as shown in Table 4, our method achieves lower
trajectory similarity scores, indicating that it outperforms Heter-
Sim++ in terms of generating trajectories that are more similar
to the real data. We also compare the distributions of our method
and Heter-sim++ (see Figure 13). According to the KL-divergence
scores shown in Table 4, the scores of our result’s motion dynamics
and state are both significantly lower than those of Heter-Sim++,
demonstrating our method’s superior ability to generate more re-
alistic crowd behaviors. We also demonstrate that the hierarchical
nature of crowd motions can improve the visual quality of a simula-
tion method by comparing Heter-Sim++ to the original Heter-Sim
method [RXX*21]. Heter-Sim++ achieves more accurate visual re-
sults and lower quantitative scores for performance about states
(ADM, PLM, and distance distribution) than the original Heter-Sim
method, according to the statistical results shown in Table 4.

To further assess the adaptability and plausibility of our
acceleration-aware data-driven optimization scheme when lever-
aging different goal-directed control models, we first build Our-
DirCon, a model that replaces the continuum model in our ap-
proach with the local direction control used in the baseline meth-
ods [KSG14; DMN*17; RXX*21]. Then, we compare OurDirCon
to these baseline methods. OurDirCon’s initialization method and
parameters are the same as that of our method. Figure 15 shows
the visual results of OurDirCon. When compared to the baselines
(see Figures 12(b)-12(d)), OurDirCon produces smoother trajecto-
ries (see Figure 15(b)). This is because, under the control of our
agent-agent interaction model, the agents tend to move in parallel
lines to avoid potential collisions (see Figure 15(a)). We also show
the distributions in Figure 13 and the quantitative metrics in Ta-
ble 4. According to Table 4, OurDirCon outperforms the baseline
methods in terms of both motion dynamics and states. This demon-
strates that when using different goal-directed control models, our
acceleration-aware data-driven optimization scheme can generate
motions statistically more similar to real-world motion decision.

Comparisons of trajectory in a street scenario. Because of the
confined space, the agents tend to have similar velocities in the pre-
vious hallway scenario. In this experiment, we use the PowerLaw
method [KSG14], the vision-based method [DMN*17], the Heter-
Sim method [RXX*21], and our method to simulate a sparse street
scenario similar to [LCL07], where agents’ velocity choices are
more diverse. The compared Heter-Sim method [RXX*21] makes
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(a) (b)

Figure 14: The visual results of Heter-Sim++: (a) a snapshot of
the simulation result, and (b) the generated trajectories.

(a) (b)

Figure 15: The visual results of OurDirCon: (a) a snapshot of the
simulation result, and (b) the generated trajectories.

use of a dataset from [LCL07]. We assess the plausibility of the
generated trajectories by comparing them to the real ones. 148
agents are simulated in about 6 minutes at 25 fps, just like in the
data. During simulation, each agent follows a different short-term
trajectory based on its corresponding real-world trajectory. Each
agent’s comfort speed is its average speed when moving toward its
current goal in real data. In our experiment, we set the length of
each cell in the grid map to 0.1m in order to accurately locate each
agent’s goal.

The ADM and PLM metrics proposed by [WGO*14] are used
to quantitatively evaluate the generated trajectories, and the re-
sults are shown in Table 5. When compared to the baseline meth-
ods [KSG14; DMN*17; RXX*21], the quantitative results show
that our method has the lowest score. This indicates that the tra-
jectories produced by our method are more plausible than those
produced by the other methods. In comparison to the non-data-
driven PowerLaw method [KSG14] and the vision-based method
[DMN*17], our method can generate more realistic motion de-
cisions by referencing the real dataset. The Heter-Sim method
[RXX*21] tends to enforce continuous motion by selecting a new
velocity similar to an agent’s current one, which may take longer
time to steer towards the goal when the goal is changed dynami-
cally. Our acceleration-aware data-driven optimization scheme, on
the other hand, can mimic natural velocity changes from real data
by employing the state similarity energy, which leads the agent to
quickly find a new velocity to move toward its new goal.

6.3. Method Analysis

6.3.1. Human-solution prior knowledge

In the following, we analyze our method using the narrow hallway
scenario in Section 6.2.2 to demonstrate the significance of utiliz-
ing the human-solution space in two ways: comparing our method

Table 5: Benchmark scores on the trajectory similarity to the real
data [LCL07], the lower is the better. The ADM and PLM methods’
values are normalized by sample size. The best results are high-
lighted in bold font.

PowerLaw
[KSG14]

Vision-based
[DMN*17]

Heter-Sim
[RXX*21]

Our method

ADM 0.0946 0.3139 0.0977 0.0440
PLM 0.2828 0.4825 0.2494 0.0685

Figure 16: The trajectories generated by the least-human-solution
model.

with a least-human-solution model that solves Equation 2 without
referencing a dataset and a reduced-human-solution model that ref-
erences an incomplete dataset to demonstrate the significance of
referencing the human-solution space and illustrate the trade off
between quality and size of dataset.

Least-human-solution model. The key assumption of our re-
search is that human-solution is a just a subspace of the entire so-
lution space, and solving the optimization in human-solution space
gives more realistic motions than in the whole solution space. To
investigate this question, we build a least-human-solution model
that uses the same parameters and initialization method as those in
Section 6.2.2. The comparison is conducted by solving Equation 2
with different amounts of human-solution knowledge. As a base-
line, we set the energy terms for state similarity to 0 and constrain
the magnitudes of velocities within [vdmin,vdmax], where vdmin and
vdmax are the minimal and maximal speeds in the real data. This
way, we induce the minimal amount of knowledge from the data,
i.e. only knowing the speed range but no motion dynamics.

The results are shown in Figure 16. Compared with other meth-
ods/settings shown in Figure 12, the least-human-solution model
can simulate reasonable trajectories in the sense that flows are also
relatively separate as in real data in Figure 12(f). We also con-
duct numerical comparisons. The comparisons of distributions are
shown in Figure 17, and the KL divergence are shown in Table 6.
Although the least-human-solution model visually generates simi-
lar results, its distributions on crowd state and dynamics are vastly
different from the real data (Figure 17). This shows how vital it is
to explicitly incorporate the relevant energy terms in our model.

Reduced-human-solution model. Although distinguishing be-
tween the human-solution space and the entire solution space is
simple, the question of how much prior knowledge is required
remains. To investigate this question, a reduced-human-solution
model is built. The reduced-human-solution space is generated
from the entire human-solution space in this experiment by ran-
domly removing a portion of the entire dataset. Experiments with
four different dataset sizes were tested by randomly selecting 20%,
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Table 6: KL divergence of our result by referencing different datasets on the statistical similarity to the ground-truth data from [ZKSS12].

Least-human-solution
Reduced-human-solution

D20% D40% D60% D80%

Velocity 0.2013 0.0310 0.0215 0.0203 0.0202
Distance 0.4484 0.1943 0.1785 0.1639 0.1817

Acceleration x 0.3509 0.1233 0.1070 0.0999 0.0974
Acceleration y 0.3657 0.0155 0.0093 0.0069 0.0058
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Figure 17: The distribution comparisons of the least-human-
solution results, our full model and the real data [ZKSS12].
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Figure 18: Statistical figures for comparing the results of the
reduced-human solution model with different dataset sizes to our
full model. The KL divergence of each experiment is depicted as
light blue scatter points.

To demonstrate the trend of the result with increasing dataset size,
the average KL divergence of each reduced-human solution model

is concatenated into a dark blue polyline.

40%, 60% and 80% of the total dataset and naming them D20%,
D40%, D60%, D80%, and each experiment was iterated ten times.
In Figure 18, we compare the distributions of the reduced-human-
solution model with our full model (D) in terms of KL-divergence,
and show intuitively the curve of the average KL-divergence of
each experiment. Table 6 shows the corresponding numerical met-
rics, indicating that, while reducing the size of the dataset reduces

Table 7: KL divergence of the ablation studies about the energy
terms on the statistical similarity to the real data [ZKSS12].

Ablation on
state similarity

Ablation on
macroscopic control

Velocity 0.1365 0.0212
Distance 0.2575 0.0685

Acceleration x 0.3997 0.1565
Acceleration y 0.1208 0.0098

(a) Ablation study on the state sim-
ilarity energy term.

(b) Ablation study on the global
control energy term.

Figure 19: The trajectories generated by the ablation experiments.

the plausibility of our method, it still outperforms the compared
methods, implying that our method has the potential to be used to
recover incomplete trajectory datasets while maintaining accuracy.

6.3.2. Ablations on energy terms

To further demonstrate the importance of the behavioral models in
our method, using the narrow hallway scenario in Section 6.2.2, we
show the results of several ablation studies. The ablation studies
mainly show how the result changes with pruning an energy term
in Equation 2.

State similarity. In this experiment, the weight of the state sim-
ilarity energy term is 0 while the others are set the same as those
in Section 6.2.2. The generated trajectories of this experiment are
qualitatively shown in Figure 19(a). We compare the distribution
similarity in Figure 20, and the KL divergence in Table 7. Com-
paring with our quantitative result in Table 4, removing the state
similarity term leads to severe performance degradation on motion
dynamics.

Macroscopic control. In this experiment, the weight of the
macroscopic motion control energy term is 0 while the others are
set the same as those in Section 6.2.2. The generated trajectories
are shown in Figure 19(b). We compare the distribution similarity
in Figure 20, and the KL divergence in Table 7. Compared with our
quantitative result shown in Table 4, without macroscopic control
in our model, the generated trajectories are greatly different from
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Figure 20: The distribution comparisons of the ablation experi-
ments on the state similarity energy term and the global control
energy term, our full model, and the real data [ZKSS12].

the real ones (see Figure 12(e)), as there is no global control dur-
ing simulation, interactions among agents may change the motion
tendency of an agent and result in a relatively different trajectory
compared with the ground truth in the real data. Note that ablating
the macroscopic control term has a small influence on the motion
dynamics, as the state similarity term tries to imitate the motion
decision mechanism from the real data.

6.3.3. Local navigation

Because collision avoidance is an important component of local
navigation in crowd simulation, we use an antipodal scenario with
20 agents to compare our method to the RVO method [vdBLM08]
and Heter-Sim [RXX*21]. In the antipodal scenario, the agents are
initialized on a circle with the same spacing, and each agent at-
tempts to move to the circle’s antipodal position. The datasets used
in Heter-Sim [RXX*21] and our method are both from [LCL07].
All shared parameters (e.g., agent radius, initial velocity and pre-
ferred speed, simulation timestep) are initialized in the same way.
For the remaining parameters, we just use the ones of each com-
pared model in their papers [vdBLM08] [RXX*21]. Our model’s
weights are [1.0,1.0,1.0,0.5,0.5,0,1.0,1.0]. To avoid sudden ve-
locity changes when potential collisions are detected, we empiri-
cally set both collision avoidance weights to 0.5 in our method.

Figures 21(a), 21(b) and 21(c) show the trajectories generated by
each method with the simulation ∆t = 0.04s. The results show that
our method produces smoother trajectories than RVO [vdBLM08]
and Heter-Sim [RXX*21]. Because the RVO model is limited to lo-
cal planning in a small neighborhood for better performance, there
are sudden motion changes around the center of the circle in Fig-
ure 21(a). The results of Heter-Sim (Figure 21(b)) and our method
(Figure 21(c)) show that using a long-range collision avoidance
technique can prevent intense local interactions near the circle’s
center. In Figure 21(b), agents may detour to reach their goals, as
in Heter-Sim, when the distance between two agents is less than a
threshold, the discontinuous local interaction method causes agents

(a) RVO [vdBLM08]. (b) Heter-Sim [RXX*21].

(c) Our method with ∆t = 0.04s. (d) Our method with ∆t = 0.1s.

Figure 21: Local navigation comparisons between RVO [vd-
BLM08] (a), Heter-Sim [RXX*21] (b), and our method (c, d). Each
agent’s starting position is represented by the corresponding disk
on the trajectory.

with nearby goals to move at the same velocity to avoid collisions,
causing some agents to deviate from their goals.

As our method employs a continuous collision detection tech-
nique, we also present a result with ∆t = 0.1s to demonstrate our
method’s ability to generate collision-free continuous trajectories
for agents with large timesteps. Figure 21(d) depicts how the agents
avoid potentially damaging collisions near the circle’s center.

6.3.4. Data generalization to different scenarios

Since the importance of human-solution space and each behav-
ioral model has been demonstrated in the preceding sections, the
remaining question is how general our method is in using a dataset
to generate other scenarios that differ from the dataset’s scenario.
The visual results shown in Section 6 have answered this question
(please refer to Figures 5 - 8). Furthermore, to demonstrate the gen-
eralization of our method, we generate a one-way bottleneck sce-
nario similar to [SPS*09] by referencing the bi-directional hallway
dataset from [ZKSS12] and generate a bi-directional hallway sce-
nario the other way around, where the generated crowds are quite
different from that of their referenced datasets. Both experiments
use the same initialization method and parameters as their corre-
sponding similar simulation experiments in Section 6.1 for the bot-
tleneck scenario and Section 6.2.2 for the hallway scenario. Fig-
ure 22 shows snapshots of simulation results compared to ground-
truth real data. In Figure 23, we compare the generated trajectories
of our method with ground-truth real data by referencing differ-
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(a) One-way bottleneck re-
sult referencing the bidirec-
tional pedestrian dataset from
[ZKSS12].

(b) Real one-way bottleneck data
from [SPS*09].

(c) Bi-directional hallway result
referencing the one-way bottle-
neck dataset from [SPS*09].

(d) Real bi-directional pedestrian
data from [ZKSS12].

Figure 22: Results by referencing datasets from various scenarios.

(a) (b) (c)

(d) (e) (f)

Figure 23: Comparisons of the trajectories of our results refer-
encing various datasets from various scenarios and real data. The
trajectories of different crowds in a one-way bottleneck are shown
in (a)-(c): (a) referencing the bidirectional dataset [ZKSS12], (b)
referencing the bottleneck evacuation dataset [SPS*09], and (c)
real trajectories [SPS*09]. (d)-(f) are crowd trajectories in the bi-
directional hallway scenario: (d) referencing [SPS*09], (e) refer-
encing [ZKSS12], and (f) real trajectories [ZKSS12].

ent datasets from different real scenarios. Given reasonable motion
preferences from the ground-truth real data (e.g., initial speed, max-
imum speed), our method can find the best velocity from the refer-
ence data to match the target behavior observed from the ground-
truth real data during simulation. The results show that our method
can generate visually similar crowd scenarios even when the refer-
enced dataset’s scenario is not similar to the ground-truth scenario.

7. Conclusion

In this paper, we present a generic model-based data-driven con-
tinuum method that can generate plausible and scalable crowd ani-
mations in different scenarios. Our method is adaptive to different
datasets to generate similar scenarios as the real data (see Figures
9(a) - 9(d)). Our method is scalable in generating different scales
of crowds in different scenarios in similar environments to real data
(see Figures 5(a) and 5(b)). Our method is also able to generate di-
versified crowds that may differ from the reference data (see Fig-
ures 5(c), 7, 8, 22(a), 22(c)). Compared with the state-of-art meth-
ods, our method can generate results that are significantly closer
to the real data. In addition, our model is fast and can be used for
interactive simulation (see Table 2).

Limitations and future work. Similar to other data-driven
methods, the quality of the simulation result relies on the quality of
the reference data. If the reference data deviates significantly from
normal crowds, e.g. only containing large velocities, the simulator
might not be able to resolve congestion as the algorithm cannot find
a proper velocity to slow down the agents. However, we argue that
data with a good variety of velocities can be easily acquired. Even
in data with noise, the motion dynamics based on velocity and ac-
celeration can still be reliably extracted. Furthermore, combining
data from various crowd scenarios can help to avoid data limita-
tions.

The second limitation is that our approach is ‘model-based’ com-
pared with pure data-driven models. This suggests that it requires
certain expertise to design the underlying physics-based model and
our method cannot just ‘plug and play’ on data. However, we ar-
gue this effort provides model explicability which leads to insights
of crowd behaviors, rather than fitting data in a black-box man-
ner. Furthermore, we represent the agents as discs with fixed radii.
However, human beings in the real world have more complicated
personal spaces. We will use more precise geometries for better
collision avoidance in future. Furthermore, we only consider ex-
plicit motion features, i.e., velocity and acceleration. We intend to
investigate more trajectories’ characteristics in the future by in-
corporating deep neural networks into our model to capture arbi-
trary non-linearity in motion dynamics. Because we use 2D cap-
tured data as input, our method can only simulate crowd motions in
2D space. Our method will be expanded to include uneven terrain
and complex environments with stairs. Besides, the macroscopic
control model in our simulation framework are mainly focused on
pedestrian groups with group-desired goals, which may not effi-
cient for agent-desired motion control. Although we can separately
model the macroscopic control map for agents with different goals,
it involves trade-offs between memory usage and computing per-
formance, especially for large crowds. A feasible solution is to re-
place the continuum model with other goal-directed motion control
methods, e.g., local direction control model used in [RXX*21], A*
algorithm for global path planning.

Acknowledgments

Xiaogang Jin was supported by the National Natural Science
Foundation of China (Grant No. 62036010), and the Key Re-
search and Development Program of Zhejiang Province (Grant No.

© 2023 The Author(s)
Computer Graphics Forum © 2023 The Eurographics Association and John Wiley & Sons Ltd.



Wei Xiang & He Wang & Yuqing Zhang & Milo K. Yip & Xiaogang Jin / Model-based Crowd Behaviors in Human-solution Space

2023C01047). He Wang was supported by funding from the Eu-
ropean Union’s Horizon 2020 research and innovation programme
under grant agreement No 899739 CrowdDNA.

References
[AGR*16] ALAHI, ALEXANDRE, GOEL, KRATARTH, RAMANATHAN,

VIGNESH, et al. “Social LSTM: Human Trajectory Prediction in
Crowded Spaces”. 2016 IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2016. IEEE Computer Society, 2016, 961–
971 2, 3.

[BKHF14] BERSETH, GLEN, KAPADIA, MUBBASIR, HAWORTH, BRAN-
DON, and FALOUTSOS, PETROS. “SteerFit: Automated Parameter
Fitting for Steering Algorithms”. Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. SCA ’14.
2014, 113–122 4.

[BKSB15] BOATRIGHT, CORY D., KAPADIA, MUBBASIR, SHAPIRA,
JENNIE M., and BADLER, NORMAN I. “Generating a multiplicity of
policies for agent steering in crowd simulation”. Comput. Animat. Vir-
tual Worlds 26.5 (2015), 483–494 3.

[CC14] CHARALAMBOUS, PANAYIOTIS and CHRYSANTHOU, YIORGOS.
“The PAG Crowd: A Graph Based Approach for Efficient Data-Driven
Crowd Simulation”. Comput. Graph. Forum 33.8 (2014), 95–108 2, 3.

[CJH*19] CHAO, QIANWEN, JIN, XIAOGANG, HUANG, HEN-WEI, et al.
“Force-based Heterogeneous Traffic Simulation for Autonomous Vehicle
Testing”. International Conference on Robotics and Automation, ICRA
2019. IEEE, 2019, 8298–8304 3.

[CKGC14] CHARALAMBOUS, PANAYIOTIS, KARAMOUZAS, IOANNIS,
GUY, STEPHEN J, and CHRYSANTHOU, YIORGOS. “A data-driven
framework for visual crowd analysis”. Computer Graphics Forum.
Vol. 33. 7. Wiley Online Library. 2014, 41–50 4.

[CLH*23] CHAO, QIANWEN, LIU, PENGFEI, HAN, YI, et al. “A cali-
brated force-based model for mixed traffic simulation”. IEEE transac-
tions on visualization and computer graphics 29.3 (2023), 1664–1677 4.

[CP15] CASADIEGO, LUISELENA and PELECHANO, NURIA. “From One
to Many: Simulating Groups of Agents with Reinforcement Learning
Controllers”. Intelligent Virtual Agents - 15th International Conference,
IVA 2015. Vol. 9238. Lecture Notes in Computer Science. Springer,
2015, 119–123 4.

[DMN*17] DUTRA, TEOFILO BEZERRA, MARQUES, RICARDO, NETO,
JOAQUIM B. CAVALCANTE, et al. “Gradient-based steering for vision-
based crowd simulation algorithms”. Comput. Graph. Forum 36.2
(2017), 337–348 3, 11–14.

[GCC*10] GUY, STEPHEN J., CHHUGANI, JATIN, CURTIS, SEAN, et al.
“PLEdestrians: A Least-Effort Approach to Crowd Simulation”. Pro-
ceedings of the 2010 Eurographics/ACM SIGGRAPH Symposium on
Computer Animation, SCA 2010. Eurographics Association, 2010, 119–
128 2, 3, 7.

[GJF*18] GUPTA, AGRIM, JOHNSON, JUSTIN, FEI-FEI, LI, et al. “So-
cial GAN: Socially Acceptable Trajectories With Generative Adversar-
ial Networks”. 2018 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2018. IEEE Computer Society, 2018, 2255–2264 4.

[GNCL14] GOLAS, ABHINAV, NARAIN, RAHUL, CURTIS, SEAN, and
LIN, MING C. “Hybrid Long-Range Collision Avoidance for Crowd
Simulation”. IEEE Transactions on Visualization & Computer Graphics
20.07 (2014), 1022–1034 5, 6.

[HCJ21] HAN, YI, CHAO, QIANWEN, and JIN, XIAOGANG. “A simpli-
fied force model for mixed traffic simulation”. Comput. Animat. Virtual
Worlds 32.1 (2021), e1974 3.

[HM95] HELBING, DIRK and MOLNÁR, PÉTER. “Social force model for
pedestrian dynamics”. Phys. Rev. E 51 (5 1995), 4282–4286 2, 3.

[HOD15] HUGHES, ROWAN T., ONDREJ, JAN, and DINGLIANA, JOHN.
“DAVIS: density-adaptive synthetic-vision based steering for virtual
crowds”. Proceedings of the 8th ACM SIGGRAPH Conference on Mo-
tion in Games, MIG 2015. ACM, 2015, 79–84 3.

[HXZW20] HE, FEIXIANG, XIANG, YUANHANG, ZHAO, XI, and WANG,
HE. “Informative scene decomposition for crowd analysis, comparison
and simulation guidance”. ACM Trans. Graph. 39.4 (2020), 50 3, 7.

[JCP*10] JU, EUNJUNG, CHOI, MYUNG GEOL, PARK, MINJI, et al.
“Morphable crowds”. ACM Trans. Graph. 29.6 (2010), 140 2, 3.

[JXM*10] JIANG, HAO, XU, WENBIN, MAO, TIANLU, et al. “Contin-
uum crowd simulation in complex environments”. Comput. Graph. 34.5
(2010), 537–544 3.

[KBB*16] KIM, SUJEONG, BERA, ANIKET, BEST, ANDREW, et al. “In-
teractive and adaptive data-driven crowd simulation”. 2016 IEEE Virtual
Reality (VR). IEEE. 2016, 29–38 4.

[KGH*15] KIM, SUJEONG, GUY, STEPHEN J, HILLESLAND, KARL, et
al. “Velocity-based modeling of physical interactions in dense crowds”.
The Visual Computer 31.5 (2015), 541–555 3.

[KGM13] KIM, SUJEONG, GUY, STEPHEN J., and MANOCHA, DINESH.
“Velocity-based modeling of physical interactions in multi-agent simu-
lations”. The ACM SIGGRAPH / Eurographics Symposium on Computer
Animation, SCA ’13. ACM, 2013, 125–133 3.

[KHvBO09] KARAMOUZAS, IOANNIS, HEIL, PETER, van BEEK, PAS-
CAL, and OVERMARS, MARK H. “A Predictive Collision Avoidance
Model for Pedestrian Simulation”. Motion in Games, Second Interna-
tional Workshop, MIG 2009, Zeist, The Netherlands, November 21-
24, 2009. Proceedings. Vol. 5884. Lecture Notes in Computer Science.
Springer, 2009, 41–52 3.

[KL51] KULLBACK, S. and LEIBLER, R. A. “On Information and Suf-
ficiency”. The Annals of Mathematical Statistics 22.1 (1951), 79–86.
ISSN: 00034851 12.

[KO10] KARAMOUZAS, IOANNIS and OVERMARS, MARK H. “A
Velocity-Based Approach for Simulating Human Collision Avoidance”.
Intelligent Virtual Agents, 10th International Conference, IVA 2010,
Philadelphia, PA, USA, September 20-22, 2010. Proceedings. Vol. 6356.
Lecture Notes in Computer Science. Springer, 2010, 180–186 3.

[KSG14] KARAMOUZAS, IOANNIS, SKINNER, BRIAN, and GUY,
STEPHEN J. “Universal Power Law Governing Pedestrian Interactions”.
Phys. Rev. Lett. 113 (23 2014), 238701 2, 3, 7, 11–14.

[KSH*12] KAPADIA, MUBBASIR, SINGH, SHAWN, HEWLETT,
WILLIAM, et al. “Parallelized egocentric fields for autonomous
navigation”. Vis. Comput. 28.12 (2012), 1209–1227 3.

[KSNG17] KARAMOUZAS, IOANNIS, SOHRE, NICK, NARAIN, RAHUL,
and GUY, STEPHEN J. “Implicit crowds: optimization integrator for
robust crowd simulation”. ACM Trans. Graph. 36.4 (2017), 136:1–
136:13 2, 3.

[LCL07] LERNER, ALON, CHRYSANTHOU, YIORGOS, and LISCHINSKI,
DANI. “Crowds by Example”. Comput. Graph. Forum 26.3 (2007), 655–
664 2, 3, 9, 11, 13, 14, 16.

[LCM*18] LUO, LINBO, CHAI, CHENG, MA, JIANFENG, et al. “Proac-
tiveCrowd: Modelling Proactive Steering Behaviours for Agent-Based
Crowd Simulation”. Comput. Graph. Forum 37.1 (2018), 375–388 3.

[LCMP19] LÓPEZ, AXEL, CHAUMETTE, FRANÇOIS, MARCHAND,
ÉRIC, and PETTRÉ, JULIEN. “Character navigation in dynamic environ-
ments based on optical flow”. Comput. Graph. Forum 38.2 (2019), 181–
192 3.

[LCSC09] LERNER, ALON, CHRYSANTHOU, YIORGOS, SHAMIR,
ARIEL, and COHEN-OR, DANIEL. “Data driven evaluation of crowds”.
International Workshop on Motion in Games. Springer. 2009, 75–83 4.

[LWL18] LEE, JAEDONG, WON, JUNGDAM, and LEE, JEHEE. “Crowd
simulation by deep reinforcement learning”. Proceedings of the 11th An-
nual International Conference on Motion, Interaction, and Games, MIG
2018. ACM, 2018, 2:1–2:7 4.

[MHT11] MOUSSAIÁD, MEHDI, HELBING, DIRK, and THERAULAZ,
GUY. “How simple rules determine pedestrian behavior and crowd
disasters”. Proceedings of the National Academy of Sciences 108.17
(2011), 6884–6888 3.

© 2023 The Author(s)
Computer Graphics Forum © 2023 The Eurographics Association and John Wiley & Sons Ltd.



Wei Xiang & He Wang & Yuqing Zhang & Milo K. Yip & Xiaogang Jin / Model-based Crowd Behaviors in Human-solution Space

[MON*16] MOHAMAD, SHAMSUL, OSHITA, MASAKI, NOMA,
TSUKASA, et al. “Making decision for the next step in dense crowd
simulation using support vector machines”. Proceedings of the 15th
ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its
Applications in Industry, VRCAI 2016. ACM, 2016, 281–287 3.

[NGCL09] NARAIN, RAHUL, GOLAS, ABHINAV, CURTIS, SEAN, and
LIN, MING C. “Aggregate dynamics for dense crowd simulation”. ACM
Trans. Graph. 28.5 (2009), 122 2, 3.

[OPOD10] ONDREJ, JAN, PETTRÉ, JULIEN, OLIVIER, ANNE-HÉLÈNE,
and DONIKIAN, STÉPHANE. “A synthetic-vision based steering ap-
proach for crowd simulation”. ACM Trans. Graph. 29.4 (2010), 123:1–
123:9 3.

[Osh19] OSHITA, MASAKI. “Agent navigation using deep learning with
agent space heat map for crowd simulation”. Comput. Animat. Virtual
Worlds 30.3-4 (2019), e1878 4.

[PAB07] PELECHANO, NURIA, ALLBECK, JAN M., and BADLER, NOR-
MAN I. “Controlling individual agents in high-density crowd simula-
tion”. Proceedings of the 2007 ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation, SCA 2007. Eurographics Association,
2007, 99–108 3.

[PCQ11] PARK, SEUNG IN, CAO, YONG, and QUEK, FRANCIS. “Large
scale crowd simulation using a hybrid agent model”. Motion in Games
(2011) 2, 3.

[POO*09] PETTRÉ, JULIEN, ONDREJ, JAN, OLIVIER, ANNE-HÉLÈNE,
et al. “Experiment-based modeling, simulation and validation of inter-
actions between virtual walkers”. Proceedings of the 2009 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, SCA 2009.
ACM, 2009, 189–198 3.

[PPD07] PARIS, SÉBASTIEN, PETTRÉ, JULIEN, and DONIKIAN,
STÉPHANE. “Pedestrian Reactive Navigation for Crowd Simulation: a
Predictive Approach”. Comput. Graph. Forum 26.3 (2007), 665–674 3.

[PvdBC*11] PATIL, SACHIN, van den BERG, JUR P., CURTIS, SEAN, et al.
“Directing Crowd Simulations Using Navigation Fields”. IEEE Trans.
Vis. Comput. Graph. 17.2 (2011), 244–254 3.

[Rey87] REYNOLDS, CRAIG W. “Flocks, herds and schools: A distributed
behavioral model”. Proceedings of the 14th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH 1987. ACM,
1987, 25–34 2, 3.

[RXX*21] REN, JIAPING, XIANG, WEI, XIAO, YANGXI, et al. “Heter-
Sim: Heterogeneous Multi-Agent Systems Simulation by Interactive
Data-Driven Optimization”. IEEE Trans. Vis. Comput. Graph. 27.3
(2021), 1953–1966 2, 3, 5, 6, 8, 11–14, 16, 17.

[SHW*18] SHEN, YIJUN, HENRY, JOSEPH, WANG, HE, et al. “Data-
Driven Crowd Motion Control With Multi-Touch Gestures”. Computer
Graphics Forum 37.6 (2018), 382–394 3.

[SKFR09] SINGH, SHAWN, KAPADIA, MUBBASIR, FALOUTSOS, PET-
ROS, and REINMAN, GLENN. “Steerbench: a benchmark suite for evalu-
ating steering behaviors”. Computer Animation and Virtual Worlds 20.5-
6 (2009), 533–548 4.

[SPS*09] SEYFRIED, ARMIN, PASSON, OLIVER, STEFFEN, BERNHARD,
et al. “New insights into pedestrian flow through bottlenecks”. Trans-
portation Science 43.3 (2009), 395–406 9, 16, 17.

[TCP06] TREUILLE, ADRIEN, COOPER, SETH, and POPOVIC, ZORAN.
“Continuum crowds”. ACM Trans. Graph. 25.3 (2006), 1160–1168 2, 3,
7, 11–13.

[TWCL18] TSAI, TSUNG-YU, WONG, SAI-KEUNG, CHOU, YI-HUNG,
and LIN, GUAN-WEN. “Directing virtual crowds based on dynamic
adjustment of navigation fields”. Comput. Animat. Virtual Worlds 29.1
(2018), e1765 3.

[vdBLM08] Van den BERG, JUR P., LIN, MING C., and MANOCHA, DI-
NESH. “Reciprocal Velocity Obstacles for real-time multi-agent naviga-
tion”. 2008 IEEE International Conference on Robotics and Automation,
ICRA 2008. IEEE, 2008, 1928–1935 3, 16.

[vTGL*20] Van TOLL, WOUTER, GRZESKOWIAK, FABIEN, LÓPEZ-
GANDIÉA, AXEL, et al. “Generalized Microscropic Crowd Simulation
using Costs in Velocity Space”. I3D ’20: Symposium on Interactive 3D
Graphics and Games. ACM, 2020, 6:1–6:9 2, 3.

[WGO*14] WOLINSKI, DAVID, GUY, STEPHEN J., OLIVIER, ANNE-
HÉLÈNE, et al. “Parameter estimation and comparative evaluation of
crowd simulations”. Comput. Graph. Forum 33.2 (2014), 303–312 4, 11,
14.

[WJDL13] WU, QIANQIAN, JI, QINGGE, DU, JINGHONG, and LI, XIAO-
LIAN. “Simulating the local behavior of small pedestrian groups using
synthetic-vision based steering approach”. 12th ACM International Con-
ference on Virtual Reality Continuum and Its Applications in Industry,
VRCAI 2013. ACM, 2013, 41–50 3.

[WLJT17] WEISS, TOMER, LITTENEKER, ALAN, JIANG, CHENFANFU,
and TERZOPOULOS, DEMETRI. “Position-based multi-agent dynamics
for real-time crowd simulation”. Proceedings of the ACM SIGGRAPH /
Eurographics Symposium on Computer Animation, 2017. Eurographics
Association / ACM, 2017, 27:1–27:2 3.

[WO16] WANG, HE and O’SULLIVAN, CAROL. “Globally Continuous
and Non-Markovian Crowd Activity Analysis from Videos”. Computer
Vision - ECCV 2016 - 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part V. Vol. 9909. Lec-
ture Notes in Computer Science. Springer, 2016, 527–544 8.

[WOO16] WANG, HE, ONDREJ, JAN, and O’SULLIVAN, CAROL. “Path
patterns: analyzing and comparing real and simulated crowds”. Proceed-
ings of the 20th ACM SIGGRAPH Symposium on Interactive 3D Graph-
ics and Games, 2016. ACM, 2016, 49–57 7.

[WOO17] WANG, HE, ONDREJ, JAN, and O’SULLIVAN, CAROL. “Trend-
ing Paths: A New Semantic-Level Metric for Comparing Simulated and
Real Crowd Data”. IEEE Trans. Vis. Comput. Graph. 23.5 (2017), 1454–
1464 3, 4, 8.

[XYWJ20] XIANG, WEI, YAO, XINRAN, WANG, HE, and JIN, XIAO-
GANG. “FASTSWARM: A data-driven framework for real-time flying
insect swarm simulation”. Computer Animation and Virtual Worlds 31.4-
5 (2020), e1957 3.

[YLRÖ19] YANG, DONGFANG, LI, LINHUI, REDMILL, KEITH, and
ÖZGÜNER, ÜMIT. “Top-view trajectories: A pedestrian dataset of
vehicle-crowd interaction from controlled experiments and crowded
campus”. 2019 IEEE Intelligent Vehicles Symposium (IV). IEEE.
2019, 899–904 9.

[YZLL19] YAO, ZHENZHEN, ZHANG, GUIJUAN, LU, DIANJIE, and
LIU, HONG. “Data-driven crowd evacuation: A reinforcement learning
method”. Neurocomputing 366 (2019), 314–327 4.

[YZLL20] YAO, ZHENZHEN, ZHANG, GUIJUAN, LU, DIANJIE, and LIU,
HONG. “Learning crowd behavior from real data: A residual network
method for crowd simulation”. Neurocomputing 404 (2020), 173–185 4.

[ZIK11] ZANLUNGO, FRANCESCO, IKEDA, TETSUSHI, and KANDA,
TAKAYUKI. “Social force model with explicit collision prediction”. EPL
(Europhysics Letters) 93.6 (2011), 68005 3.

[ZKSS12] ZHANG, JUN, KLINGSCH, WOLFRAM, SCHADSCHNEIDER,
ANDREAS, and SEYFRIED, ARMIN. “Ordering in bidirectional pedes-
trian flows and its influence on the fundamental diagram”. Journal of Sta-
tistical Mechanics: Theory and Experiment 2012.02 (2012), P02002 9–
13, 15–17.

[ZTC13] ZHAO, MINGBI, TURNER, STEPHEN JOHN, and CAI, WEN-
TONG. “A Data-Driven Crowd Simulation Model Based on Clustering
and Classification”. 17th IEEE/ACM International Symposium on Dis-
tributed Simulation and Real Time Applications, DS-RT 2013. IEEE
Computer Society, 2013, 125–134 3.

[ZWT12] ZHOU, BOLEI, WANG, XIAOGANG, and TANG, XIAOOU. “Un-
derstanding collective crowd behaviors: Learning a mixture model of dy-
namic pedestrian-agents”. 2012 IEEE Conference on Computer Vision
and Pattern Recognition. IEEE. 2012, 2871–2878 9.

© 2023 The Author(s)
Computer Graphics Forum © 2023 The Eurographics Association and John Wiley & Sons Ltd.


