
Volume 0 (1981), Number 0 pp. 1–12 COMPUTER GRAPHICS forum

Inherent Noise-Aware Insect Swarm Simulation

Xinjie Wang1 , Xiaogang Jin1 , Zhigang Deng2 and Linling Zhou1

1State Key Lab of CAD&CG, Zhejiang University, China
wangxinjie@zjucadcg.cn, jin@cad.zju.edu.cn, zhoulinling@zjucadcg.cn

2Computer Science Department, University of Houston, USA
zdeng@cs.uh.edu

Figure 1: A variety of insect swarms can be simulated by our approach: (left) a large swarm of migratory locusts invades a
hamlet, (middle) a swarm of moths flies around a street lamp, and (right) swarm-like particles fly around two blocks.

Abstract
Collective behavior of winged insects is a wondrous and familiar phenomenon in the real world. In this paper, we
introduce a highly efficient field-based approach to simulate various insect swarms. Its core idea is to construct
a smooth yet noise-aware governing velocity field that can be further decomposed into two sub-fields: (i) a
divergence-free curl noise field to model noise-induced movements of individual insects in a swarm, and (ii) an
enhanced global velocity field to control navigational paths in a complex environment along which all the insects
in a swarm fly. Through simulation experiments and comparisons with existing crowd simulation approaches, we
demonstrate that our approach is effective to simulate various insect swarm behaviors including aggregation,
positive phototaxis, sedation, mass-migrating, and so on. Besides its high efficiency, our approach is very friendly
to parallel implementation on GPUs (e.g., the speed-up achieved through GPU acceleration is higher than 50 if
the number of simulated insects is more than ten thousands on an off-the-shelf computer). Our approach is the
first multi-agent modeling system that introduces curl-noise into agents’ velocity field and uses its non-scattering
nature to maintain non-colliding movements in 3D crowd simulation.

Keywords: insect swarms, multi-agent systems, crowd simulation, curl-noise, potential field, path planning

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual Reality I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—
Animation

1. Introduction
Insects are among the most diverse groups of animals in the
natural world, with more than a million documented species.
Since insects are an essential part of our real world, how
to effectively simulate a variety of dynamic and realistic

behaviors of insects has become an increasingly important
research problem for computer graphics, animation, and
virtual reality applications. In fact, besides its graphics
and animation applications, accurate computer simulation

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



Xinjie Wang & Xiaogang Jin & Zhigang Deng & Linling Zhou / Inherent Noise-Aware Insect Swarm Simulation

of various insect behaviors can find its prominent use in
many scientific research fields including but not limited to
behavioral biology, zoology, bionics, multi-agent control,
and robotics. Among various insect behaviors, insect swarm
is considered as one of widely observed biological motions.
Generally, an insect swarm is referred to a group of indi-
vidual insects that exhibit inherently noisy, non-colliding
and aggregate motion [BSC∗06]. The term inherent noise in
zoology field is referred to all the random movements made
by individuals in an insect group.

Over the years, research advances in the bionics field have
yielded plenty of experimental evidence and insights how
insect swarms are dynamically formed and evolved [Mor63,
RMC95, RMD∗03]. For example, researchers revealed that
noise-induced movement and increasing the randomness of
the movements in response to a loss of group alignment are
intrinsic characteristics of certain insect swarms [BSC∗06,
YEE∗09]. These findings imply, besides sharing group-level
properties like other animal groups, individual insects in
a swarm often make sudden changes in direction sponta-
neously. On the other hand, existing biological experimental
findings (e.g., [STD74]) validated that the compound eye
structure of insects makes them react fast to the things
surrounded in order to avoid predators or hit obstacles in
the environment. This implies that regardless level of the
random movements of an insect, it can fly as safely as
possible in a dense swarm or in a complex environment.
As understanding insect swarms becomes more and more
prominent in many scientific fields, developing effective
algorithms to simulate realistic large-scale insect swarms
is clearly a priority. Indeed, no sound computer modeling
approaches for such simulations have been developed and
validated to date.

Likewise, existing crowd simulation techniques often fall
short of simulating insect swarms effectively. The above
characteristics of insect swarms can be summarized as fol-
lows:

Noise-induced movements: Since humans and large ani-
mals typically move in a trajectory of gradual changes, most
of existing crowd techniques focus on generating smooth
paths or tend to add small variations [Rey87] to increase nat-
uralness. But in the case of simulation of insect swarms, their
paths are dominated by noise. Each insect in a swarm can
move somewhat freely. Simple noise fails to create realistic
swarms, which implies an appropriate noise function needs
to be delicately designed for such simulations.

Non-colliding rapid movements: It is difficult to simu-
late large-scale random movements while avoiding collision-
s in previous frameworks. For example, rule-based crowd
simulation approaches [Rey87, Rey99], social force models
[HM95,PAB07], and continuum-based approaches [TCP06]
need to advance for several time steps to find out non-collide
velocities/positions. Since rapid movements are difficult to
predict in advance, simply adding rapid random movements

to these works may fail to avoid most collisions. Meanwhile,
without considerable efforts, it is extremely difficult to
directly apply example-based (or data-driven) approaches
[LCHL07] for insect swarm simulation due to the technical
difficulty of accurately tracking rapid moving individual
insects in a swarm within various natural environments.

Inspired by the above challenges, in this paper we present
a highly efficient field-based approach to realistically sim-
ulate behavior patterns of insect swarms under various sce-
narios. Specifically, we formulate this simulation problem as
a mesoscopic multi-agent system that models both macro-
scopic goal-attained path planning and microscopic behav-
iors (e.g., individual space, random switching and local
collision avoidance). Through simulation experiments and
comparisons with existing crowd simulation approaches, we
demonstrate that our inherent noise-aware insect swarm sim-
ulation approach can be effectively used to simulate various
realistic behaviors of insect swarms including aggregation,
positive phototaxis, sedation, mass-migrating, and so on.

The contributions of this work are: (i) a simple
divergence-free noise field to govern a series of noise-aware
yet non-colliding motions, which is highly similar to rapid
transitions that result from disordered yet noise-induced
movements of individual insects in a swarm, and (ii) an
enhanced global velocity field for parallel implementation
to control navigational paths especially in a complex envi-
ronment along which all the insects in a swarm fly.

To the best of our knowledge, our approach is the first
multi-agent modeling system that introduces curl-noise into
agents’ velocity field and uses its non-scattering nature of
the resulting field to maintain noise-aware yet non-colliding
movements in 3D crowd simulation. The research described
in this paper represents some promising first steps toward
realistic simulation of various 3D crowds in virtual worlds
based on the collective knowledge developed in behavioral
biology and other scientific fields.

2. Related Work

A variety of approaches for modeling motion of multiple
agents in a crowd have been proposed during the past
decades. They can be roughly classified into three categories,
broadly termed microscopic, macroscopic and mesoscop-
ic [ZMR∗08]. Microscopic models regard agents as discrete
individuals; macroscopic models handle a crowd as a whole;
mesoscopic models combine features of the first two.

Among the above three types of models, probably micro-
scopic models have been most studied to date. Following
the seminal Boids model by Reynold [Rey87], various rule-
based approaches have been extended [SJ12] and developed
by adding behavior-based multi-level group rules [RMT01],
perceptual knowledge of pedestrians [ST05], cognitive mod-
eling [FTT99], or egocentric affordance fields [KSHF09].
Helbing and Molnar [HM95] pioneered the social force

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd



Xinjie Wang & Xiaogang Jin & Zhigang Deng & Linling Zhou / Inherent Noise-Aware Insect Swarm Simulation

model for simulating pedestrian motion such as repulsive in-
teraction, friction forces, dissipation, and fluctuations. Later,
it was further applied and generalized to other simulation
scenarios such as densely populated crowds [PAB07].

Macroscopic or continuous models are often used when
the task is to compute a crowd’s path towards its goal
such as a navigation graph [PvdBC∗11]. Flow tiles and
potential field-based models regard the environment as a
regular discrete grid, then gradient methods can be applied
to find a path from any start position to a destination in
an environment [NGCL09]. However, this approach creates
incompressible, dense and flow-like crowds. When noise is
blended into a compressive flow, the noise component will
always be lost during the solving of the incompressible flow
(i.e., the UIC projecting process). In addition, interactive
path planning and navigation algorithms for multi-agent sys-
tems in complex dynamic environments were also proposed
[SAC∗08, KOOP11, JXW∗08].

Mesoscopic models can govern local behaviors of a-
gents while navigating a goal-directed path of the crowd.
Researchers have introduced continuum theory [TCP06,
SWL11], information theory [GvdBL∗12], and synthetic
vision [OPOD10] into crowd simulation domain. Golden-
stein et al. [GKM∗01a, GKM∗01b] employ a three-layer
hybrid system for agent steering and crowd simulation.
Narain and colleagues [NGCL09] further introduced uni-
lateral incompressibility constraints to simulate extremely
dense crowds. However, most of these mesoscopic models
cannot be directly applied to simulate noise-aware position
changes that result from spontaneous direction switching
within an insect swarm, due to their strict requirement of
local collision avoidances. Note that the method described in
this paper can be classified as a mesoscopic model as well.

Example-based (or data-driven) approaches learn crowd
behavior features from real-world examples [LCHL07, C-
SJ13], and then these features can be used to train statistical
models for crowd simulation. Researchers also explored
novel ways to animate large-scale crowds by cloning crowd
motions from existing examples [LCS∗12], blending crowd
animations [JCP∗10], and diversifying the perceived realism
of agent motions in a context-aware way [GD11a]. Recently,
significant efforts have been attracted to generate group for-
mations in simulated crowds, including: combining heuristic
rules with explicit hard constraints to produce and control
sophisticated group formations [TYK∗09] or introducing
a novel sketching interface to specify and control various
group formations [GD11b, GD13]. Besides, significant in-
terests have been drawn to study real collective animal
groups [BJCC∗97, SASBJ11] or learn complex patterns in
specific swarms [TB04, BKBS13].

3. Approach Overview

As illustrated in Figure 2, our approach can be conceptually
regarded as a two-step computing process. At the prepro-

Generate 
divgenerce-free 

noise �eld

Compute 
minimum 
cost �eld

Noise 
parameters

Obstacles

Update position

Initial states of agents

Goal 
Enforce 

the distance

Preprocessing Continuous cycle 
for each agent

Figure 2: Schematic view of our introduced inherent noise-
aware insect swarm simulation approach.

cessing step, we generate a noise field ~N that stores a 3D
procedural noise function using the well-known Perlin noise
algorithm [Per02], and a minimum cost field C that stores
a scalar path-planning cost function, computed based on a
given environment with obstacles and specified goal posi-
tions. Then, at the simulation step, we continuously update
the positions and orientations of all the agents (insects) in
a swarm based on the velocities provided via ~N and C,
while ensuring collision avoidances with other agents and
obstacles in the environment.

Our approach employs potential fields to produce contin-
uous velocity fields spanning free space in the environment.
The processing and computation of potential fields requires
3D discretization of the free space in the environment. For
simplicity, we use regular grids with values stored in cells
for each potential field and assume that the cells form
a 6-connected component. It is noteworthy that the two
potential fields can be defined with respect to grids with
different resolutions; typically, the noise field needs a higher
resolution grid for the sake of simulating high-fidelity noise
motion.

4. Computing Noise Field

As documented in the literature, insects’ random movements
exhibit the same patterns with both large and small variation-
s [BHR10]; on the other hand, collision avoidance is one of
intrinsic flight behaviors for insects in a swarm [YEE∗09].
Thus, the well-known Perlin noise algorithm [Per02] is a
suitable scheme for modeling such continuous movements.

Specifically, we first define a randomly varying vector
constructed from the Perlin noise as follows:

~P =

(
P1

( ~x
scale

)
,P2

( ~x
scale

)
,P3

( ~x
scale

))
∗gain,

where ~x(x,y,z) is a point in 3D space, and P1,P2,P3 are
three Perlin noise functions with different random seeds
to generate scalar noise values in the range of [-1.0, 1.0]
(defined with respect to a unit of grid), respectively. We
use two noise parameters, scale (for controlling the grid

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd



Xinjie Wang & Xiaogang Jin & Zhigang Deng & Linling Zhou / Inherent Noise-Aware Insect Swarm Simulation

density indirectly) and gain (for adjusting the magnitude of
the Perlin noise).

Then, based on the obtained ~P, we further construct
a divergence-free noise field ~Vl , inspired by the work of
Bridson et al. [BHN07] that introduced an incompressible
flow field modulated by a curl operator∇×:

~Vl = ∇× (a1ψ1 +a2ψ2 + . . .+anψn)

= ∇×~N. (1)

Here the noise field ~N can be formed through the addition of
a number of potential fields, ψ

n
i=1. Since the divergence of

the curl of any vector field is always zero: ∇·∇× ≡ 0, the
velocity field~Vl is divergence-free (i.e.,∇·~Vl = 0) [BHN07].
The divergence-free noise field can be treated as a collision-
free field in a multi-agent model since any two particles in
this incompressible field will never intersect. In this work,
we treat insects as discrete particles and drive them using ~Vl
to obtain collision-free trajectories.

The simplest way to construct ~N would be to define
~N = ~P. However, ~P is too random to express a non-colliding
velocity field. In fact, Bridson et al. [BHN07] introduced
a number of formulas to construct ~N and provided several
examples. One of them is well suited to our purpose: Con-
sider there are some static boundaries in the environment,
and insects are not allowed to go through the boundaries
(that is, the insects’ velocities at the boundaries must satisfy
the following condition: ~Vl ·~n = 0). Its specific construction
formula is described as follows:

~N = α~P+(1−α)(~n ·~P)~n, (2)

where ~n is the normal to the boundary surface, and
α=α(d(~x)/d0) (0 ≤ α ≤ 1) is a smooth ramp function. In
this ramp function, d(~x) is the shortest distance from a point
~x(x,y,z) to the boundaries, and d0 is an adjustment factor. In
our case, d0 is set to be equivalent to the side length of the
grid. The closer~x is to the boundaries, the larger value α has.
The boundaries can be used not only to keep insects out of
obstacles (accurate boundaries) but also to avoid them flying
too far away (extended boundaries that are much larger than
the swarm).

Eq. 2 implies that the tangential component of ~P is
reduced near the boundaries, but the normal component is
retained. In this way, the curl of ~N will remove the velocity
in the normal direction gradually as approaching to the
boundary surface. In this work, a suitable ramp function α

is defined as follows (similar to [BHN07]):

α(r) =
{ 3

8 r5− 10
8 r3 + 15

8 r r ≤ 1;
1 otherwise.

(3)

In Eq. 3, r implies d(~x)/d0 and should never be negative.

We employ the above ~Vl (Eq. 1) to simulate local be-
haviors of individual insects in a swarm. Figure 3 shows a
velocity field generated from Eqs. 1 and 2. In addition, we

Figure 3: An example of ~Vl showing how the ramp function
removes the velocity component in the normal direction.

can also use dynamic P that varies over time to make insects
who pass a specific spot have different velocities. But it will
take extra computational time when updating every frame.
In practice, we found it unnoticeable that insects pass one
spot are doing the same thing. So a fixed P is enough for
our algorithm. From our experiments, we found this scheme
is suitable for modeling noise behaviors of insect swarms,
compared with observed real-world insect swarms.

5. Computing Minimum Cost Field

Besides noisy local behaviors of individual insects, we also
need to script a swarm’s path by building migratory urge into
our model. Not only this is a common phenomenon existing
in real-world insect swarms (e.g., migration, foraging, or
attacking), it also allows users to conveniently control goal-
directed swarms in simulation.

Given an environment description with specified goal
areas and obstacles, computing a goal-directed velocity field
means that there should be at least one valid path from
each cell in free space to the goal area. For simplicity,
we assume that each insect has knowledge of the whole
environment, and it typically selects an as-short-as-possible
path. Therefore, we choose to use a variant of the Dijkstra’s
shortest path algorithm to construct a minimum cost field C.

In this work, the total cost of a path from a cell to the goal
area is determined by two factors: the path’s total length and
the total value of repulsion along the path. A position closer
to obstacles typically has a higher value of repulsion, and
vice versa. In this way, finding an optimal path is equivalent
to minimize the following cost function:

Cost = A
∫

P
1ds︸ ︷︷ ︸

pathlength

+B
∫

P
gds,︸ ︷︷ ︸

repulsion

(4)

where A and B are weights of individual terms, g stands for
the value of repulsion, and ds denotes that this integral is
taken with respect to path length. In the above equation, the

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd



Xinjie Wang & Xiaogang Jin & Zhigang Deng & Linling Zhou / Inherent Noise-Aware Insect Swarm Simulation

higher the B value is (i.e., the lower the A value is), the more
dangerous the obstacles are. In our simulation experiments,
we empirically set the values of A and B to 0.6 and 0.4,
respectively. In follow-up Section 5.1, we will describe
how the obstacles are expressed as a grid of repulsion, and
describe how to solve the cost field C in Section 5.2.

5.1. Space Analysis

In an exterior scene, typically there are buildings, facilities,
and other landscapes. They are called obstacles in a path
finding algorithm. When insects approach the boundaries
of the obstacles (termed the area of repulsion), they need
to adjust their speeds and orientations to avoid collisions.
Each cell in the area of repulsion is assigned with a value of
repulsion. In this way, a swarm can find a smooth and safe
path to pass by the obstacles. Without loss of generality, in
this writing we assume the obstacles are represented as (or
can be converted to) 3D triangular meshes.

The following two conditions can be used to determine
whether a 3D grid cell is in the area of repulsion.

• The center of the grid cell lies inside one of the obstacles
or just on the obstacles’ surface;
• The center of the grid cell lies outside the obstacles, but

its shortest distance to one of the obstacles is smaller than
a user-specified threshold.

The shortest distance between a 3D grid cell X and the
obstacles determines whether X is in the area of repulsion.
In our approach, we employ a signed-distance computation
algorithm proposed by Baerentzen and Aanaes [BA05] to
compute such shortest distances due to its efficiency. Specif-
ically, assuming dt(X) denotes the shortest distance from X
to the obstacles, the signed distance φ(X) between X and its
closest obstacle (mesh) is computed as follows:

φ(X) =

{
−dt(X) if X is inside an obstacle;
dt(X) otherwise.

(5)

To the end, the value of repulsion of the cell X ,
g(X), can be computed by using a bell-shaped function
from [WMW86] as follows:

g(X)= h(r)=


1 r < 0;
1− ( 4

9 )r
6 +( 17

9 )r4− ( 22
9 )r2 0≤ r ≤ 1;

0 r > 1.
(6)

In Eq. 6, r =
φ(X)

2a , and a =
√

2l denotes the diagonal
length of a regular grid (l is the side length). Figure 4(a) plots
the repulsive function (Eq. 6) and illustrates an example of
the computed signed distances of a discretized space.

5.2. Solving Minimum Cost Field

On top of the above obtained area of repulsion, we need to
further define a minimum cost field C. We can rewrite the

P
Q

-1 -0.5 0 0.5 1 1.5 20

0.5

1

r

h(r)

Obstacle1

Obstacle2

(a)

Obstacle1

Obstacle2

Goal

(b)

Obstacle1

Obstacle2

Goal

(c)

Figure 4: An example of processing the global velocity field
(2D view only for illustration purpose). (a) Computed signed
distances of a discretized space by a repulsive function (top-
left corner). The dotted lines of point P and Q are specific
examples of signed distances. (b) The corresponding solved
global velocity field (indicated by arrows). In this figure, we
do not illustrate velocities inside the obstacles since agents
cannot get there. (c) The combined velocity field (i.e., global
velocity field + curl-noise field).

above cost function (Eq. 4) as the following discrete form:

‖ ∇C(X) ‖=4g(X)+ l, (7)

where g(X) denotes the value of repulsion at cell X , and l
is the known side length of a cell. Note that the above Eq.
7 is an eikonal equation; its solved optimized paths exactly
follow the gradient of C, which gives us a global velocity
field ~Vg [TCP06].

Suggested by Treuille et al. [TCP06], we also use the fast
marching method [Set96] to solve C in Eq. 7. Its solving
process can be conceptually regarded as a variant of the
Dijkstra’s shortest path algorithm. For more details about
the solver, please refer to the work of [Set96,TCP06] . After
the minimum cost field C is solved, we can obtain a smooth
global velocity field ~Vg by taking the gradient direction of C
and scaling it by insect speed s0, described as follows:

~Vg(X) =
−∇C(X)

‖ ∇C(X) ‖ · s0. (8)

Note that in our algorithm s0 is a user-specified parameter,
and its value depends on the species of insects and specific
simulation scenarios. Figure 4(b) shows an example of the
solved smooth global velocity field. As illustrated in this
figure, since every grid cell has at least one neighbor with
a minimum cost, there is no local minimum in the solved
cost field. In other words, agents (insects) will always find
a valid path to the goal area, instead of getting stuck in the
middle.

The main differences between the original potential field
model in Continuum Crowds [TCP06] and our approach
are: First, our approach can handle 3D complex simulation
environment which is not provided in the original model,
since a compact description of the 3D environment instead
of simply adding discomfort values to grids (as in the orig-
inal model) is very important in insect swarm simulation.

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd



Xinjie Wang & Xiaogang Jin & Zhigang Deng & Linling Zhou / Inherent Noise-Aware Insect Swarm Simulation

Second, we compute the desired cost field and curl-noise
field just once (or when the environment changes) as a
preprocessing step, without updating them every simulating
frame. Because of this, the simulation rate of our approach
only depends on the number of insects. Note that it is
extremely slow if we directly use the original potential field
model to simulate such a large-scale swarm (more than 10k
agents). Third, our approach could be highly paralleled when
implemented on GPU. The analysis details are discussed in
Section 7.2.

6. Insect Motion Synthesis

To the end, we combine the two velocity fields: the local
velocity (noise) field (Eq. 1) and the global velocity field
(Eq. 8), to obtain the final governing velocity field ~V (X) for
insects in a swarm:

~V (X) =∇×~N(X)− ∇C(X)

‖ ∇C(X) ‖ · s0. (9)

An example of the combined velocity field is illustrated in
Fig. 4(c).

Obstacle

Va Vb

(a) Before update

Obstacle

Overlapped

(b) MDE rule applied

Obstacle

(c) After update

Figure 5: Illustration of minimum distance enforcement.
(a) Local velocities of insects A and B (marked as colored
arrows, Va and Vb, respectively); (b) when they move to new
locations, an overlapping will be anticipated; (c) A and B
are effectively separated.

Minimum distance enforcement: Unfortunately, our
global velocity field ~Vg is not as incompressible as ~Vl . When
the moving of the agents is governed by Eq. 9, artifacts may
occur, which is caused by the intersection or overlapping of
different agents (insects), especially at corners of obstacles
(refer to Figure 5(a)). We address this issue by employing
a Minimum Distance Enforcement (MDE) rule after every
insect’s position has been updated, as suggested by Treuille
et al. [TCP06]. This rule can be briefly described as follows:
If the distance between two agents are smaller than a
threshold (i.e., the minimum distance), we push them apart.
To enforce the minimum distance between any insect pair,
once the locations of all the agents are updated at each
simulation step, we iterate all the pairs of agents in the same
cell to identify near-collision pairs (i.e., pairwise distance
is smaller than a minimum-distance threshold), and then
perform pairwise separations on them. Figure 5 illustrates
an example of minimum distance enforcement. In addition,

the minimum distance enforcement rule cannot absolutely
avoid collisions but it has a reduced linear time complexity
with respect to the dimensions of the grid. In this regard, it
is a sound computational trade-off.

In sum, given a 3D environment description, the starting
area(s), and the goal area(s), our approach can automatically
compute smooth yet noise-aware insect trajectories without
collisions. Note that the starting area(s) and the goal area(s)
can be overlapped in our approach.

(a) Frame 1 (b) Frame 37

(c) Frame 100 (d) Frame 150

Figure 6: Simulation of an insect swarm passing through a
two-block environment

7. Experimental Results and Evaluation

We performed simulation experiments to evaluate the ef-
fectiveness of our approach. Several selected simulation
scenarios are described below. For animation results, please
refer to the companion video.

Two blocks: Figure 6 shows an environment consisting of
two blocks that form a narrow 3D passage. An insect swarm
at one side of the blocks flies to the other side by passing
through the passage. In this case, congestion may happen at
the entrance of the passage, but the governing velocity field
computed by our approach can effectively guide the swarm
to fly along a flow-like path. With the same environment,
another simulation scenario is to let all the insects in a swarm
to fly along their minimum cost paths, regardless passing
through the blocks or flying outside the blocks. Figure 7
shows snapshots of its simulation result.

Chasing: In this simulation, an insect swarm continu-
ously chases a target ball that is dynamically manipulated
by users. When the position of the target (ball) is changed,
the minimum cost field is recomputed by our approach. The
ball is also regarded as a boundary condition used in Eq. 2.
Snapshots of the simulation result are shown in Figure 8.

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd



Xinjie Wang & Xiaogang Jin & Zhigang Deng & Linling Zhou / Inherent Noise-Aware Insect Swarm Simulation

(a) Frame 1 (b) Frame 37

(c) Frame 100 (d) Frame 150

Figure 7: Simulation of an insect swarm moving along the
paths with minimal cost

(a) (b)

(c) (d)

Figure 8: In this simulation, an insect swarm is continuously
chasing a target green ball that is dynamically manipulated
by users.

Based on the used decay function (Eq. 3), insects near ob-
stacles (i.e., orange balls) will go around it, instead of going
through it. This simulation scenario is similar to predatory
or aggressive behavior of real-world insect swarms.

Besides generating virtual insect swarms for various
scripted scenarios, our approach can be directly used to
simulate insect swarms observed in the real world. Through
several simulation examples below, we directly compare
our simulation results with the recorded real-world insect
swarms. It is noteworthy that, due to the technical infea-
sibility of reconstructing an accurate 3D environment for
the exterior scene in the recorded video, such side-by-

side comparisons are very challenging for any simulation
algorithms.

Aggregation: Aggregation behaviors can often be ob-
served on many gregarious insects. Insect aggregation is
typically interpreted as a defense behavior; thus, individuals
that stray from swarms have an increased risk from pre-
dation [Vul90]. Figure 9(a) shows a simulated aggregation
swarm consisting of 800 insects by our approach (Note
that the goal area and the starting area are the same). As
a comparison, Figure 9(b) shows a real swarm of moths
grabbed from a publicly accessible Youtube video clip.
As shown in the companion video, vortex-like swarming
behavior, induced by inherent noise of insects [SESG08],
can be soundly simulated by our approach.

(a) (b)

Figure 9: Aggregation: (a) simulated insects move errati-
cally in an undisturbed swarm; (b) a real swarm of moths
grabbed from a publicly accessible Youtube video clip.

(a) (b)

Figure 10: Positive phototaxis: (a) a snapshot of the simu-
lated phototaxis of 30 moths by our approach; (b) a photo
taken at night by an amateur.

Positive phototaxis: Positive phototaxis is common in
organisms. However, besides its various forms of behavior,
its underlying mechanisms still remain to be scientifically
uncovered [MH10]. To simulate it using our approach, we
first initialized the goal area centered on a street lamp and
then probabilistically added a small magnitude of speed to-
wards the lamp holder for each insect. Figure 10(a) shows a
simulated swarm of 30 moths exhibiting positive phototaxis;
as a comparison, Figure 10(b) shows a photo taken at night
by an amateur. Figure 1(b) also shows another simulated
insect swarm exhibiting positive phototaxis but with a larger
number of moths (i.e., 300 moths).

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd



Xinjie Wang & Xiaogang Jin & Zhigang Deng & Linling Zhou / Inherent Noise-Aware Insect Swarm Simulation

Migratory locusts: One major distinction of our ap-
proach is its scalability of efficiently simulating large-scale
insect swarms. To demonstrate it, we created a swarm of
5000 locusts on a 120× 50× 55 grid (refer to Figure 1(a)).
The swarm moves forward in a coordinated way while
avoiding obstacles in the environment, as demonstrated in
the companion video.

7.1. Comparison with Baseline Models

To validate the curl-noise model is a sound choice for simu-
lating insect swarms, we performed the following baseline
comparison experiments: (1) We blend Perlin noise and
random noise into Reynold’s Boids model [Rey87, Rey99]
and the continuum crowds model [TCP06], respectively.
Then, we side-by-side compare the results with our curl-
noise based simulation results. (2) We also blend Perlin
noise and random noise into our insect swarm simulation
algorithm (that is, replacing the curl-noise component with
Perlin or random noise), respectively. Then, we side-by-side
compare the results with original curl-noise based simulation
results.

(a) Frame 25 (b) Frame 80 (c) Frame 135

(d) Frame 25 (e) Frame 80 (f) Frame 135

(g) Frame 25 (h) Frame 80 (i) Frame 135

Figure 11: Comparison with baseline models: (a-c) Boids
model with Perlin noise, (d-f) Boids model with random
noise; and (g-i) our model with curl-noise.

Comparison with Boids model + noises. Figure 11
shows side-by-side comparisons among Reynold’s Boids
model + Perlin noise, the Boids model + random noise,
and our simulation model with curl-noise. As shown in
this figure as well as the companion video, direct use of
Perlin noise would result in a compressible velocity field
and make individuals gather and repeat the same motions
[BHN07]. Random noise + Boids model generates obvious

(a) Frame 25 (b) Frame 80 (c) Frame 135

(d) Frame 25 (e) Frame 80 (f) Frame 135

(g) Frame 25 (h) Frame 80 (i) Frame 135

Figure 12: Comparisons among the continuum crowds mod-
el + Perlin noise (a-c), the continuum crowds model +
random noise (d-f), and our approach (g-i).

artificial motion patterns that all the insects are just vibrating
in a small area. By contrast, curl-noise in our simulation
model show its advantages for simulating insect swarms;
the trajectories of the simulated swarms are neither too
congested nor moving into slots. Actually, those vortex-like
patterns produced by curl-noise is similar to what can be
observed in natural insect swarms [McI07].

Comparison with the continuum crowds model + nois-
es. Figure 12 shows comparisons among the continuum
crowds model + Perlin noise, the continuum crowds model
+ random noise, and our approach. Arguably, due to the 2D
characteristics of the original continuum crowds model, we
can not visually observe the convincing swarm behaviors in
the results. Besides, they also simulate unsatisfied random
motions (regardless which noise is added). Please refer
to the supplemental demo video for the animation result
comparison.

Comparison with different noises. Figure 13 shows
the side-by-side comparison results by combining different
noise functions (Perlin noise, random noise, and curl-noise)
with potential field based path finding algorithm (described
in Section 5) for a two-blocks insect swarm simulation.
Evident from this figure as well as the companion video, our
approach (curl-noise based) can produce more realistic sim-
ulation results than Perlin noise and random noise functions.

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd



Xinjie Wang & Xiaogang Jin & Zhigang Deng & Linling Zhou / Inherent Noise-Aware Insect Swarm Simulation

Scenario Two blocks Chasing Aggregation Phototaxis Locusts
Number of insects 300 100 1000 30 5000

Noise parameters
scale 0.4 0.4 2.0 0.2 0.6
gain 0.25 0.25 0.5 0.7 1.0

inherent speed s0 1.5 1.5 2.5 2.5 8.0
Grid dimensions 60×40×112 80×40×120 20×20×20 100×100×100 120×50×55

Preprocessing time (sec) 0.417 0.729 0.235 2.660 19.405

Simulation FPS
CPU 219.4 587.9 66.2 1988.1 12.2
GPU 1477.1 2247.2 1550.4 2331.0 659.0

GPU Speedup 6.731 3.822 23.395 1.172 53.891
Average MDE percentage per frame 0.36% 0.54% 0.03% 0.01% 0.68%

Table 1: Performance statistics and parameter settings of our approach for selected simulation scenarios. More vortex-like
patterns are obtained when the parameter scale is increased. The larger gain is, the more intense random motion insects can
make. s0 is usually determined by the real speed of insects.

(a) Frame 25 (b) Frame 80 (c) Frame 135

(d) Frame 25 (e) Frame 80 (f) Frame 135

(g) Frame 25 (h) Frame 80 (i) Frame 135

Figure 13: Noise function comparison in a two-blocks
scenario: (a-c) Perlin Noise + potential-field based path
finding, (d-f) random noise + potential field based path
finding, and (g-i) curl-noise + potential field based path
finding.

7.2. Performance Analysis

We implemented our approach in C++. All our experiments
were performed on an off-the-shelf computer with an Intel
2 Duo CPU E7500 and 4GB memory. The performance
statistics of the above described scenarios are summarized
in Table 1. Its preprocessing time shows the computing
time to calculate the two velocity fields (except the chasing
case, the average time per user manipulation is indicated),
measured in seconds. Its simulation FPS shows the average
time to update all the agents’ positions per frame using CPU
and GPU, respectively. The obtained performance results

indicate that besides its high efficiency, our approach is very
friendly to parallel implementation on GPUs. In particular,
when the number of simulated insects is more than ten
thousands, the achieved GPU speedup is typically more than
50.

We take the #5 scenario (i.e., the migratory locusts
simulation) in the above Table 1 as a specific example to
further analyze how various factors (e.g., the number of
insects, the dimensions of the grid, and the complexity of
the obstacle meshes) affect the performance of our approach.
Figure 14(a) plots the performances of the locusts scenario
with varied resolutions of the grid and different numbers of
the facets on the obstacle meshes. It provides experimental
evidence that the computing time for the preprocessing part
in our approach highly depends on the complexity of the
obstacle meshes (i.e., the number of facets), but less sensitive
to the dimensions of the employed grid. We also plotted
simulation time of the locusts scenario with varied numbers
of insects, as shown in Figure 14(b). The result shows that
the runtime efficiency of our method has an approximately
linear relation to the number of simulated insects, but it
is independent of the complexity of the obstacle meshes
and the dimensions of the used grid. As illustrated in Fig-
ure 14(b), compared with the CPU time (implemented in a
single core, SIMD way), the achieved GPU speedup is more
prominent when the number of simulated insects is increased
(In our case, we have 128 threads per block so the speedup
is insignificant when the swarm is small). E.g., when the
number of simulated insects is 256K, its GPU speedup is
higher than 125. Note that such a speedup is impossible to
achieve by the Continuum Crowds approach [TCP06] since
it has to calculate the potential field per frame.

Statistics of calling the MDE rule. As described in Sec-
tion 6, the MDE rule is introduced to avoid insect collisions
within one cell. In our experiments, we recorded the average
MDE percentage per frame in different simulation scenarios
(reported in the last row of Table 1). We found that in all our

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd



Xinjie Wang & Xiaogang Jin & Zhigang Deng & Linling Zhou / Inherent Noise-Aware Insect Swarm Simulation

0

2

4

6

8

10

12

14

16

18

20

3146 69666 190488

Pr
ep

ro
ce

ss
 ti

m
e 

(s
ec

)

Number of facets

20*20*20
40*40*40
120*50*55

(a)

0.4
0.8
1.6
3.2
6.4

12.8
25.6
51.2

102.4
204.8
409.6
819.2

1638.4
3276.8
6553.6

1000 2000 4000 8000 16000 32000 64000 128000 256000

Ti
m

e(
m

se
c)

Number of insects

CPU
GPU

(b)

Figure 14: (a) Plotting of the performance of the locusts simulation scenario with varied resolutions of the grid (drawn in
different colors) and different numbers of the facets of the obstacles (X axis). (b) Plotting of simulation time (millisecond) of the
locusts simulation scenario with varied numbers of insects.

simulation experiments, the average percentage of calling
the MDE rule is generally low, e.g., below 1%.

8. Discussion and Conclusions

In this paper, we introduce a highly efficient approach
to simulate various inherent noise-aware insect swarms.
Through various simulation experiments, we demonstrate
that our approach can be effectively used to simulate a
variety of insect swarms existing in the real world such
as swarms near an attractive source or towards a moving
target, aggregation swarms, positive phototaxis, migratory
locusts, and so on. However, due to the technical difficulty
of acquiring large-scale ground-truth data, we are not able
to rigorously evaluate our approach. We only did qualitative
evaluations by visually comparing the simulated results with
observed insect swarms in the real world.

Our approach is highly efficient; with GPU implementa-
tion it can simulate insect swarms in real-time with more
than 256K insects on an off-the-shelf computer. Our exper-
imental results indicate that the runtime efficiency of our
method has an approximately linear relation to the number
of simulated insects, but it is independent of the complexity
of obstacle meshes and dimensions of the grid. Not limited
to graphics and animation applications, our approach can
find its potential applications in other fields such as artificial
intelligence, multi-agent system modeling, robot control,
behavioral biology, and so on.

As an early approach to simulate 3D insect swarms, our
current approach has the following limitations.

First, our current approach does not take the body size of
individual insects into consideration, although the body size
of any real insect is non-zero. However, since the speed of
an insect is much more larger, compared to its body size;

our current approach can practically handle this situation,
as demonstrated in our experiments. To simulate certain
insects with relatively low speeds and large body sizes (e.g.,
dragonflies), our current approach needs to be extended by
efficiently detecting and handling body collisions between
insects as well as modifying the used partial differential
velocity solver accordingly. We leave it to the future work.

Figure 15: A simulation snapshot: insects fly densely around
a sharp obstacle while other regions are populated with
fewer insects.

Second, we take computation of the minimum cost field
as a preprocessing module, so change of the swarm density
is not considered. As shown in Figure 15, insects fly densely
around a sharp obstacle while other regions are populated
with fewer insects. This is a limitation of our current al-
gorithm, because we assume every agent will move along
its optimal path; but the optimal paths of the agents are not
evenly distributed within certain 3D environments. A sound
solution would be to consider the density as a factor and
recompute the minimum cost field at every simulating step,
as suggested by Treuille et al. [TCP06]; however, unlike
human beings, insects could easily form a large swarm
consisting of thousands of individuals. Thus, such real-time
field recomputing for insect swarms would impose a greater
challenge than the work of [TCP06]. As a future work, we
plan to handle this issue by considering additional factors in

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd



Xinjie Wang & Xiaogang Jin & Zhigang Deng & Linling Zhou / Inherent Noise-Aware Insect Swarm Simulation

the preprocessing module or defining a flow field through the
density of swarm on GPUs.

Third, although several goals and swarms can be sup-
ported in the domain, they all share one Eikonal Equation.
Therefore, every simulated insect will choose the least-cost
goal instead of the specified goal. Our current model cannot
simulate multi-swarm interaction behaviors. For instance,
our current approach cannot effectively simulate two insect
swarms that fly through each other in opposite directions.

Fourth, our current approach does not provide sufficient
interactive user controls. For example, it does not provide
a tool to conveniently edit resultant potential fields; thus,
it is non-trivial for users to directly control behaviors of
certain insects in a simulated swarm. In the future, we plan
to develop novel interactive control interfaces to improve its
interactivity.

Lastly, since our current method uses uniform grids,
it can only work in a relatively small domain. It cannot
simulate swarms in an unlimited wide space. To overcome
this limitation, one potential solution would be to apply non-
uniform grids to solve both the potential field and the noise
field (i.e., using sparse grids for the areas that contain a small
number of insects. We plan to explore this as one of our
future works.

Our current approach can generate various types of noise-
aware insect motions using different parameters. However,
gain and scale values are chosen empirically. Considering
different insects typically have distinct swarm behaviors,
these parameter value should be insect-specific. Also, since
various insect species may react to boundaries in different
ways, Equations 3 and 6 are expected to be insect-specific
as well. This inspires us to look into an interesting inverse
problem in the future: If we are able to acquire insect
trajectories of various insects in a controlled environment,
inversely solving the noise parameters from the acquired
insect data would provide unprecedented knowledge and
insights to many scientific fields that study biological motion
of insects.

Acknowledgments

Xiagang Jin was supported by the China 863 program (Grant
no. 2012AA011503), the National Natural Science Founda-
tion of China (Grant no. 61272298), and Zhejiang Provincial
Natural Science Foundation of China (Grant no. Z1110154).
Zhigang Deng was supported by the Joint Research Fund for
Overseas Chinese, Hong Kong and Macao Young Scientists
of the National Natural Science Foundation of China (Grant
No. 61328204).

References

[BA05] BAERENTZEN J., AANAES H.: Signed distance compu-
tation using the angle weighted pseudonormal. Visualization and

Computer Graphics, IEEE Transactions on 11, 3 (2005), 243–
253. 5

[BHN07] BRIDSON R., HOURIHAM J., NORDENSTAM M.:
Curl-noise for procedural fluid flow. ACM Trans. Graph. 26, 3
(July 2007). 4, 8

[BHR10] BORST A., HAAG J., REIFF D. F.: Fly motion vision.
Annual Review of Neuroscience 33, 1 (2010), 49–70. 3

[BJCC∗97] BEN-JACOB E., COHEN I., CZIRÓK A., VICSEK
T., GUTNICK D. L.: Chemomodulation of cellular movemen-
t, collective formation of vortices by swarming bacteria, and
colonial development. Physica A: Statistical Mechanics and its
Applications 238, 1-4 (1997), 181–197. 3

[BKBS13] BRECHT J., KOLOKOLNIKOV T., BERTOZZI A., SUN
H.: Swarming on random graphs. Journal of Statistical Physics
151, 1-2 (2013), 150–173. 3

[BSC∗06] BUHL J., SUMPTER D. J. T., COUZIN I. D., HALE
J. J., DESPLAND E., MILLER E. R., SIMPSON S. J.: From
disorder to order in marching locusts. Science 312, 5778 (2006),
1402–1406. 2

[CSJ13] CHAO Q., SHEN J., JIN X.: Video-based personalized
traffic learning. Graphical Models 75, 6 (2013), 305–317. 3

[FTT99] FUNGE J., TU X., TERZOPOULOS D.: Cognitive mod-
eling: Knowledge, reasoning and planning for intelligent charac-
ters. In Proceedings of the 26th Annual Conference on Computer
Graphics and Interactive Techniques (New York, USA, 1999),
SIGGRAPH ’99, ACM Press/Addison-Wesley Publishing Co.,
pp. 29–38. 2

[GD11a] GU Q., DENG Z.: Context-aware motion diversification
for crowd simulation. Computer Graphics and Applications,
IEEE 31, 5 (2011), 54–65. 3

[GD11b] GU Q., DENG Z.: Formation sketching: An approach
to stylize groups in crowd simulation. In Proceedings of Graph-
ics Interface 2011 (Ontario, Canada, 2011), GI ’11, Canadian
Human-Computer Communications Society, pp. 1–8. 3

[GD13] GU Q., DENG Z.: Generating freestyle group formations
in agent-based crowd simulations. Computer Graphics and
Applications, IEEE 33, 1 (2013), 20–31. 3

[GKM∗01a] GOLDENSTEIN S., KARAVELAS M., METAXAS
D., GUIBAS L., AARON E., GOSWAMI A.: Scalable nonlinear
dynamical systems for agent steering and crowd simulation.
Computers & Graphics 25, 6 (2001), 983–998. 3

[GKM∗01b] GOLDENSTEIN S., KARAVELAS M., METAXAS
D., GUIBAS L., GOSWAMI A.: Scalable dynamical systems for
multi-agent steering and simulation. In Robotics and Automation,
2001. Proceedings 2001 ICRA. IEEE International Conference
on (Seoul, Korea, 2001), vol. 4, IEEE, pp. 3973–3980. 3

[GvdBL∗12] GUY S. J., VAN DEN BERG J., LIU W., LAU R.,
LIN M. C., MANOCHA D.: A statistical similarity measure
for aggregate crowd dynamics. ACM Trans. Graph. 31, 6 (Nov.
2012), 190:1–190:11. 3

[HM95] HELBING D., MOLNÁR P.: Social force model for
pedestrian dynamics. Phys. Rev. E 51 (May 1995), 4282–4286. 2

[JCP∗10] JU E., CHOI M. G., PARK M., LEE J., LEE K. H.,
TAKAHASHI S.: Morphable crowds. ACM Trans. Graph. 29, 6
(Dec. 2010), 140:1–140:10. 3

[JXW∗08] JIN X., XU J., WANG C. C. L., HUANG S., ZHANG
J.: Interactive control of large-crowd navigation in virtual
environments using vector fields. Computer Graphics and
Applications, IEEE 28, 6 (2008), 37–46. 3

[KOOP11] KULPA R., OLIVIERXS A.-H., ONDŘEJ J., PETTRÉ
J.: Imperceptible relaxation of collision avoidance constraints in

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd



Xinjie Wang & Xiaogang Jin & Zhigang Deng & Linling Zhou / Inherent Noise-Aware Insect Swarm Simulation

virtual crowds. ACM Trans. Graph. 30, 6 (Dec. 2011), 138:1–
138:10. 3

[KSHF09] KAPADIA M., SINGH S., HEWLETT W., FALOUTSOS
P.: Egocentric affordance fields in pedestrian steering. In
Proceedings of the 2009 Symposium on Interactive 3D Graphics
and Games (New York, USA, 2009), I3D ’09, ACM, pp. 215–
223. 2

[LCHL07] LEE K. H., CHOI M. G., HONG Q., LEE J.: Group
behavior from video: A data-driven approach to crowd simula-
tion. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (Aire-la-Ville, Switzerland,
2007), SCA ’07, Eurographics Association, pp. 109–118. 2, 3

[LCS∗12] LI Y., CHRISTIE M., SIRET O., KULPA R., PETTRÉ
J.: Cloning crowd motions. In Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation
(Aire-la-Ville, Switzerland, 2012), SCA ’12, Eurographics Asso-
ciation, pp. 201–210. 3

[McI07] MCINNES C. R.: Vortex formation in swarms of inter-
acting particles. Phys. Rev. E 75 (Mar 2007), 032904. 8

[MH10] MOISE E. R. D., HENRY H. A. L.: Like moths to
a street lamp: exaggerated animal densities in plot-level global
change field experiments. Oikos 119, 5 (2010), 791–795. 7

[Mor63] MORSE R. A.: Swarm orientation in honeybees. Science
141, 3578 (1963), 357–358. 2

[NGCL09] NARAIN R., GOLAS A., CURTIS S., LIN M. C.:
Aggregate dynamics for dense crowd simulation. ACM Trans.
Graph. 28, 5 (Dec. 2009), 122:1–122:8. 3

[OPOD10] ONDŘEJ J., PETTRÉ J., OLIVIER A.-H., DONIKIAN
S.: A synthetic-vision based steering approach for crowd
simulation. ACM Trans. Graph. 29, 4 (July 2010), 123:1–123:9.
3

[PAB07] PELECHANO N., ALLBECK J. M., BADLER N. I.:
Controlling individual agents in high-density crowd simulation.
In Proceedings of the 2007 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (Aire-la-Ville, Switzerland,
2007), SCA ’07, Eurographics Association, pp. 99–108. 2, 3

[Per02] PERLIN K.: Improving noise. ACM Trans. Graph. 21, 3
(July 2002), 681–682. 3

[PvdBC∗11] PATIL S., VAN DEN BERG J., CURTIS S., LIN M.,
MANOCHA D.: Directing crowd simulations using navigation
fields. Visualization and Computer Graphics, IEEE Transactions
on 17, 2 (2011), 244–254. 3

[Rey87] REYNOLDS C. W.: Flocks, herds and schools: A dis-
tributed behavioral model. SIGGRAPH Comput. Graph. 21, 4
(Aug. 1987), 25–34. 2, 8

[Rey99] REYNOLDS C. W.: Steering behaviors for autonomous
characters. In Proceedings of the Game Developers Conference
(1999), pp. 763–782. 2, 8

[RMC95] RAUCH E. M., MILLONAS M. M., CHIALVO D. R.:
Pattern formation and functionality in swarm models. Physics
Letters A 207, 3-4 (1995), 185–193. 2

[RMD∗03] ROGERS S. M., MATHESON T., DESPLAND E.,
DODGSON T., BURROWS M., SIMPSON S. J.: Mechanosensory-
induced behavioural gregarization in the desert locust schistocer-
ca gregaria. Journal of Experimental Biology 206, 22 (2003),
3991–4002. 2

[RMT01] RAUPP MUSSE S., THALMANN D.: Hierarchical mod-
el for real time simulation of virtual human crowds. Visualization
and Computer Graphics, IEEE Transactions on 7, 2 (2001), 152–
164. 2

[SAC∗08] SUD A., ANDERSEN E., CURTIS S., LIN M.,
MANOCHA D.: Real-time path planning in dynamic virtual
environments using multiagent navigation graphs. Visualization
and Computer Graphics, IEEE Transactions on 14, 3 (2008),
526–538. 3

[SASBJ11] SHKLARSH A., ARIEL G., SCHNEIDMAN E., BEN-
JACOB E.: Smart swarms of bacteria-inspired agents with
performance adaptable interactions. PLoS Comput Biol 7, 9 (09
2011), e1002177. 3

[SESG08] STREFLER J., ERDMANN U., SCHIMANSKY-GEIER
L.: Swarming in three dimensions. Phys. Rev. E 78 (Sep 2008),
031927. 7

[Set96] SETHIAN J. A.: A fast marching level set method for
monotonically advancing fronts. Proceedings of the National
Academy of Sciences 93, 4 (1996), 1591–1595. 5

[SJ12] SHEN J., JIN X.: Detailed traffic animation for urban road
networks. Graphical Models 74, 5 (2012), 265–282. 3

[ST05] SHAO W., TERZOPOULOS D.: Autonomous pedestrians.
In Proceedings of the 2005 ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation (New York, USA, 2005), SCA
’05, ACM, pp. 19–28. 2

[STD74] STUMM-TEGETHOFF B., DICKE A.: Surface structure
of the compound eye of various drosophila species and eye
mutants of drosophila melanogaster. Theoretical and Applied
Genetics 44, 6 (1974), 262–265. 2

[SWL11] SEWALL J., WILKIE D., LIN M. C.: Interactive hybrid
simulation of large-scale traffic. ACM Trans. Graph. 30, 6 (Dec.
2011), 135:1–135:12. 3

[TB04] TOPAZ C., BERTOZZI A.: Swarming patterns in a
two-dimensional kinematic model for biological groups. SIAM
Journal on Applied Mathematics 65, 1 (2004), 152–174. 3

[TCP06] TREUILLE A., COOPER S., POPOVIĆ Z.: Continuum
crowds. ACM Trans. Graph. 25, 3 (July 2006), 1160–1168. 2, 3,
5, 6, 8, 9, 10

[TYK∗09] TAKAHASHI S., YOSHIDA K., KWON T., LEE K. H.,
LEE J., SHIN S. Y.: Spectral-based group formation control.
Computer Graphics Forum 28, 2 (2009), 639–648. 3

[Vul90] VULINEC K.: Collective security: aggregation by insects
as a defense. Insect defenses (1990), 251–288. 7

[WMW86] WYVILL G., MCPHEETERS C., WYVILL B.: Data
structure for soft objects. The Visual Computer 2, 4 (1986), 227–
234. 5

[YEE∗09] YATES C. A., ERBAN R., ESCUDERO C., COUZIN
I. D., BUHL J., KEVREKIDIS I. G., MAINI P. K., SUMPTER D.
J. T.: Inherent noise can facilitate coherence in collective swarm
motion. Proceedings of the National Academy of Sciences 106,
14 (2009), 5464–5469. 2, 3

[ZMR∗08] ZHAN B., MONEKOSSO D., REMAGNINO P., VE-
LASTIN S., XU L.-Q.: Crowd analysis: a survey. Machine Vision
and Applications 19, 5-6 (2008), 345–357. 2

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd


