Solid Mathematical Marbling

Shufang Lu, Xiaogang Jin, Aubrey Jaffer, Fei Gao, and Xiaoyang Mao

Abstract—Years of research have been devoted to computer-generated two-dimensional marbling. However, three-dimensional
marbling has yet to be explored. In this paper, we present mathematical marbling of three-dimensional solids which supports a compact
random-access vector representation. Our solid marbling textures are created by composing closed-form 3D pattern tool functions. The
resulting representation is feature preserving and resolution-independent. When implemented on the GPU, our representation enables
efficient color evaluation during the real-time solid marbling texture mapping. Our method consumes very little memory because only
the mathematical functions and their corresponding parameters are stored. In addition, we develop an intuitive user interface and a
genetic algorithm to facilitate the solid marbling texture authoring process. We demonstrate the effectiveness of our approach through

various solid marbling textures and 3D objects carved from them.

Index Terms—Solid texture, texture generation, 3D marbling.

1 INTRODUCTION

Volumetric modeling is a topic of increasing interest in
the computer graphics community. It enriches diverse
graphics applications, such as scientific visualization,
education, computer games, and training activities. Solid
texture, as a special case of volumetric data, associates
color or other attributes with each 3D point in a volume.

Marbling is a traditional art of aqueous surface design
which produces patterns for decorations. In the real
world, marbling textures are widely used for decoration
from jewelry and scarves to greeting cards and tissue
boxes. In computer graphics, there are several methods
to simulate marbling art and create textures accordingly.
One important application of these marbling textures
is to map them onto the surface of 3D objects for
rendering. However, all the current computer-generated
marbling textures belong to 2D textures. Solid marbling
texturing has several notable advantages over its 2D
counterpart. The most important one is that the solid
texturing method can well represent 3D objects that are
carved out of some continuous 3D solid materials. The
tissue box model in Figure 7 is a good example while 2D
approaches may have difficulties in maintaining conti-
nuity across all faces of the box. Moreover, a same solid
marbling texture can be easily reused for different 3D
shapes because no surface parameterization is necessary.
In addition, solid texturing supports cross sectioning and
volume rendering of 3D shapes. Therefore, it is desirable
to develop a solid marbling texture generation method
for 3D texturing.

o S. Luand G. Fei are with the College of Computer Science and Technology,
Zhejiang University of Technology, Hangzhou 310023, P. R. China. E-
mail: {sflu, feig}@zjut.edu.cn.

o X. Jin is with the State Key Lab of CAD&CG, Zhejiang University,
Hangzhou 310058, P. R. China. E-mail: jin@cad.zju.edu.cn.

o A. Jaffer is with Digilant, Boston, MA, USA. E-mail: agj@alum.mit.edu.

o X. Mao is with University of Yamanashi, Kofu, Yamanashi, Japan. E-mail:
mao@yamanashi.ac.jp.

Nevertheless, constructing high-quality solid marbling
textures with real-time rendering performance and lim-
ited video memory is a challenging task. First, conven-
tional solid textures consume large amounts of memory
for the 3D grid due to the third dimension, and this con-
sumption becomes worse with the increasing resolution
of the solid texture. Second, in many applications, one
is required to render high-resolution results preserving
sharp features and smooth color variations on surfaces.
Third, the creation of solid marbling textures should be
flexible and intuitive in real-time.

Real-world marbling patterns are created by first drop-
ping color paints onto the surface of water and then
stirring the surface with tools. Some existing digital
marbling systems generate marbling textures by solving
the 2D Navier-Stokes equations on the computer by
regarding it as a 2D Computational Fluid Dynamics
(CFD) problem [1]. To generate solid marbling textures,
a straightforward solution would be to solve the Navier-
Stokes equations directly in the volumetric space. How-
ever, achieving this goal is not currently feasible. The
CFD method is costly both in terms of computation
time and memory consumption. To meet the aforemen-
tioned requirements, we develop 3D marbling pattern
tool functions inspired by the 2D mathematical marbling
method [2]. Our approach attains the desired properties
of compact storage, resolution independence, and effi-
cient random access, and it is particularly suitable for
real-time rendering. Color variations within a volume
are compactly represented using mathematical function-
s which support efficient color evaluation during the
rendering process. Sharp features of rendered objects
remain crisp at any magnification due to the vector
representation.

Our paper has the following contributions. (1). We
present solid mathematical marbling by means of closed-
form 3D mathematical pattern tool functions. To the best
of our knowledge, this is the first attempt to simulate
solid marbling. (2). We develop a novel volumetric rep-

resentation for solid marbling textures which is compact,
resolution-independent and supports random access for
real time rendering. (3). We develop an intuitive user
interface and an evolutionary design scheme to facilitate
the authoring of solid marbling textures.

2 RELATED WORK

In this section, we focus on techniques for marbling
texture simulation and solid texture generation which
are most relevant to our work.

2.1 Marbling Texture

In recent years, researchers have attempted to devel-
op digital marbling design systems to create marbling
textures on the computer. In the process of real-world
marbling, patterns are created through the manipulation
of floating pigment on the liquid surface. Therefore,
most of the marbling simulation methods are based
on the 2D computational fluid dynamic simulation by
numerically solving the Navier-Stokes equations. This is
a time-consuming task. To support real-time feedback,
Jin et al. first implemented the marbling process on the
GPU to achieve high efficiency [1]. Xu et al. [3] and
Zhao et al. [4] further revised this method to reduce the
blurring effects. In these methods, to solve the equations
numerically, a grid-based Euler technique is employed
by discretizing the computational domain to a grid of
M x N cells, where M, N are the width and height of the
simulation domain. The parameters (velocity, density,
pressure, and others) are defined at the center of each
cell. Several arrays are required to store the states for one
time step. By analogy, to create solid marbling textures,
one naive way is to simply extend these methods from
2D to 3D. However, numerically solving 3D Navier-
Stokes equations for solid marbling texture generation
is challenging. First, solving 3D Navier-Stokes equations
requires large memory consumption by 3D grids with
respect to solid texture resolution. Second, numerical
calculation of 3D Navier-Stokes equations is computa-
tionally expensive and may have difficulties providing
real-time feedback on the current commodity hardware.
Third, the solid textures created in this way are reso-
lution dependent and insufficient resolution often leads
to blurry interpolated texture mapping results. In con-
trast to previous physically-based methods, in which the
shape is tracked with a concentration density field in
Eulerian grids, Ando and Tsuruno presented an interac-
tive system for designing 2D marbling textures in vector
format based on a fast CFD simulator and an explicit
surface tracking method [5]. In their method, marbling
paints are represented as enclosed contours which are
moved by fluid flow to form the silhouette of marbling
texture. Differing from these methods, Lu et al. develop
mathematical marbling using closed-form mathematical
expressions [2]. The system they developed supports
five incompressible types of pattering tools which are
frequently used in the traditional marbling process. The

transform functions are reversible, and have explicit for-
ward and backward forms. Therefore, we develop solid
marbling by extending the 2D mathematical marbling
tools to their 3D counterparts.

2.2 Solid Texture Generation

Solid textures can be used in various scenarios, including
modeling natural elements like wood and stone, describ-
ing the interior or cross sections of volumetric objects,
and representing the 3D objects with consistent textures
both on the surface and in the interiors in rendering.
Please refer to the recent survey [6] on solid texture
synthesis techniques for detailed references in this field.

Procedural solid textures: Procedural approaches are
the most common solid texture synthesis methods by
introducing turbulence noise functions. A representa-
tive example is the famous Perlin noise introduced in
1985 [7]. Recently, Lagae et al. [8] presented a new
procedural noise based on the sparse convolution and
the Gabor kernel that offers accurate control over the
intuitive parameters of the noise. These procedural solid
texture algorithms do not save explicit copies, but gen-
erate texture colors over volumetric space by point-wise
evaluations. Specifically, to evaluate the color of the point
being textured, the 3D position of the point is used in
the noise function on the fly. Our vector solid marbling
texture representation adopts a similar point-wise color
evaluation as procedural methods. It can be regarded as
another kind of procedural approach for designing solid
textures, but offers more flexible and intuitive control of
solid texture generation and anti-aliased rendering of 3D
surfaces.

Vector solid textures synthesis: Texture synthesis is a
popular method for solid texture generation. This kind of
method is usually based on 2D or 3D texture exemplars.
However, most of these solid textures are in voxel level
and resolution-dependent. The idea of compact vector
representation for solid textures is introduced by Wang
et al. [9]. It is resolution independent and feature pre-
serving which is achieved by dividing a texture volume
into multiple regions. Region boundaries corresponding
to the original sharp features are represented by SDFs,
and color variations within the regions are calculated
by RBFs. Zhang et al. [10] adopt gradient solids to
compactly represent solid textures following significant
features guided by tensor fields derived from curves
sketched by the user. Combining the procedural texture
and exemplar-based synthesis seamlessly, Shu et al. [11]
generate impressive vector-represented results for aggre-
gate solid materials. However, most of the solid texture
synthesis methods require synthesizing the solid texture
in an entire solid block and are time consuming.

3 SoLID MARBLING TEXTURE REPRESENTA-
TION

In our method, we use several 3D pattern tool functions
derived from the 2D mathematical marbling method [2]

3D Pattern Tool Functions
Deformation Functions (DF)

(DF,, DF,,,, -- DF,, DF))

Injection Functions (IF)

IF,, |[Basic shape S(r,C, ID)— LayColor

IF..; ||Basic shape S (r,C, ID)_]

[ine] G ors] o]| |
|

2 -

e

Basic shape éz(l',C. ID)—
Basic shape S,(r,C, ID)y—

Fig. 1. The representation of solid marbling textures.

to create solid marbling textures in three-dimensional
volumes. Our 3D pattern tool functions have the same
incompressibility and reversibility properties as their
2D mathematical marbling tools. In 2D marbling, ink
injections, lines, and circles pattern functions induce de-
formations in the plane. Analogically, for solid marbling,
injections, lines, circles (cylinders, tori) and wavy pattern
functions induce deformations in 3D space.

Algorithm 1 Solid Marbling Texture Calculation for P

Input: The coordinates of current point P;
The set of deformation functions (DF,, ..., DF});
The set of basic shapes (S, ..., S1);
The set of injection functions (I Fyy,, ..., [F1);
The set of layer colors LayColor[16];
The background color bg;

Output: The color of point P;

1: fori=n—1do
P+ DF;(P)
end for

:forj=m—1 do

if ||P — CJ” S] then
return LayColor[/D;]

else
P« IF;(P)

10: end if

11: end for

12: return bc

RS BN LI R

3D pattern tool functions are of two types: an injec-
tion function for basic pattern creation, and a set of
deformation homeomorphisms (continuous bijections) to
transform the basic pattern to complex marbling effects.
The injection (basic pattern) contains a set of basic shapes
having as parameters: radius r, center C and layer /D
for color. The deformation functions include line, com-
b, spherical, vortex, and wavy pattern operations. The
solid marbling textures are defined by the composition
of these mathematical functions with parameters. As
shown in Figure 1, a solid marbling texture represen-
tation consists of a set of deformation functions where
DF; is the first deformation function and DF,, is the
last deformation function of the sequence, and a set of
basic shapes where S is the first shape and S, is the last
shape injected, and the corresponding injection functions
from I F} to IF,,. To compute the color of a point P € R3,
we first use P as input to obtain the new position of the

point under the applied deformation functions. Then, we
use the point to identify which basic shape the point is
located in. If it is inside the current basic shape, its color
is assigned by the color of the basic shape. Otherwise,
the point will be further moved for the following basic
shapes. The pseudo code for calculating the color for a
single point is shown in Algorithm 1. The whole texture
can be obtained by computing all the points on the GPU
in parallel.

In the next section, we describe our 3D pattern tool
functions for solid marbling textures in detail.

3.1

We focus on creating solid marbling textures from
scratch rather than synthesize textures from exemplars.
Therefore, at the start of the process, inclusions in vol-
umetric space will be created by injection operations.
We use a series of spheres as the basic shape in the
basic pattern. The previously injected shapes are pushed
aside by the subsequently injected ones and their shapes
may change. Given a point P and an injected sphere
with center C and radius r, if ||P — C|| < r, point P is
within the sphere and takes its color. Otherwise, point P
is transformed to a new position radially from the center
C:

Injection Function

2

TF(P) = C+ (P—C)y 1 d 1)

P—CJ[>

In addition, we can reuse the 2D injection function to
generate cylinders parallel to the one of the XYZ axis.
Take the cylinder parallel to the Z-axis as an example,
its deformation function is given by

IF(P) =[Cy,Cy, P+
S e e

Others shapes can be injected in a similar way. Once
a pattern composed of basic shapes is created, we use
deformation tools to advect this basic pattern to create
complex marbling effects. Our mathematical function
tools are named line, comb, spherical, vortex, and wavy.
The inputs for these functions are the coordinate vector P
and the tool parameters; the output is coordinate vector

Q.

3.2 Line Pattern Function

This function provides an interface for pattern defor-

mation by running lines through the 3D space in any
direction. It is governed by:

wA

—P- M 3

Q-P- S M, ®)

where scalars w and A control the maximum shift and

sharpness of the shift gradient, respectively. M is the unit

vector in the direction of the line, N is a unit vector

perpendicular to the line. d = |(P — A) - N|, where A

is a point on the line, and - denotes the dot product.

According to the deformation function given in Eq. (3),
the transformation caused by this operation is roughly
inversely proportional to the distance from the point to
the tine.

3.3 Comb Pattern Function

The deformation function representing a single line
stroke can be composed with others to form a comb
pattern function. The comb pattern function is useful
for designing a pattern with evenly spaced multiple
parallel lines. The mapping function of the comb tool can
be represented by composing all the lines” deformation
functions directly. However, there is a problem that the
computation time will be substantially increased as the
number of lines increases. To make the algorithm more
efficient, we adopt a single distance calculation function
to represent the displacement from the closest parallel
lines as

d = s/2—|fmod(d,s) — s/2|, 4)

where d is the distance from P to the arbitrary line, and s
is the spacing between the parallel lines. As a result, the
comb pattern function is the same with the line pattern
function in Eq. (4) by replacing d with d'. It is computed
only once regardless of the number of the parallel lines.

3.4 Spherical Pattern Function

The spherical function is responsible for generating
a spherical tine-line pattern. Under this operation, as
shown in Figure 2, the point P is mapped to Q by

Q=C+ (P-C)R, ®)

where C is the center of the spherical tine line, and R is
the rotation matrix calculated by:

R = RZ (Q)Ry (B)Rz (7)7 (6)

where «, 3, v are the yaw, pitch, and roll angles, respec-
tively. R, (7), Ry(58), R.(a) are the matrices for rotation
about the X, Y, and Z axis of a coordinate system, and
they are governed by

1 0 0

Ro(y)=| 0 cos(by) —sin(by) |,

| 0 sin(by) cos(by)

[cos(bB3) 0 sin(bB)
R,(8) = 0 10 :

| —sin(bB) 0 cos(bB) |

[cos(ba) —sin(ba) 0]
R.(a) = | sin(ba) cos(ba) 0

0 0 1]

The parameter b controls the direction of the spherical
pattern as follows:
b— 1, if direction is clockwise,
] -1, if direction is counterclockwise.

@)

N

Fig. 2. lllustration of the spherical tine-line pattern func-
tion.

Any rotation matrix R in volume space can be obtained
by these three using matrix multiplication.

The spherical motion is computed similarly to the line
motion. For a given center point C, the motion along the
arc containing a point P is made inversely proportional
to the minimum radial distance from P to the tine sphere.
The scalars w and A in this operation play the same role
as they are in the line pattern function. In this case,
as shown in Figure 2, points are displaced along arcs
around a center point C, where its angle subtended at
Cis 6§ = I/(||P—C||), the length of the displacement
arc is | = wA\/(d+ A), and d = ||P — C|| — r. Similar
to the injection function, the spherical function can also
be generalized to a torus or cylinder in 3D space by
replacing d with |[(P,, P,) — (Cg,Cy)|| — .

3.5 Vortex Pattern Function

The vortex pattern function is used for designing vor-
tices patterns by using the same mapping function as
the spherical pattern function (see Eq. (5)) except for
the displacement term d. For this function, we set d =
||P — C||, where C is the center of the vortex. As a result,
the moving distance of a point P in the vortex pattern
function only depends on its position and center, while
the spherical pattern function depends on the position,
center, and radius.

3.6 Wavy Pattern Function

This function provides an interface for generating wavy
patterns in 3D space. Given a rotation matrix R as de-
scribed in Section 3.4, let u, v, and w be the transformed
x, Yy, z unit vectors:

u=R-[1 0 0]",
v=R-[0 1 0],

w=R-[0 0 1],

(@) (b) (O (d (e ®

Fig. 3. Results with different pattern functions. Given the original input (a), different intricate textures emerge by
applying the line pattern function (b), comb pattern function (c), spherical pattern function (d), vortex pattern function

(e), and wavy pattern function (f), respectively.

The wavy pattern coordinate transformation is:
Q:P—f(P'lLP'V)W, (8)

where f is a sinusoidal displacement function. Various
kinds of displacement functions f can be designed. We
present two examples here, they are an egg-crate in
Eq. (9) and the concentric ripples in Eq. (10), respectively.

f(z,y) = a1 sin(wir + 1) + agsin(way + ¢2), (9)

f(@.y) = arsin(wi(® +y7) + 1) (10)
By interactively specifying the amplitudes a; and as, the
wavelengths w; and ws, and the phases ¢; and y3, we
obtain a variety of wavy paths.

Figure 3 illustrates different intricate textures gener-
ated by applying our five pattern functions to the same
input shown in Figure 3(a). The combination use of these
five functions can create complex visually pleasing solid
marbling textures.

4 CREATING SOLID MARBLING TEXTURES

4.1 Creating from Scratch

Our system hides complex and abstract mathematical
functions from users by providing intuitive and simple
user interfaces. With these tool functions, users can
drop or splash basic shapes onto the canvas using the
injection functions to create a basic design. Then, by
tuning the parameters of each composed function, users
can create a wide variety of textures easily. All controls
are exercised by dragging or clicking the mouse. Our
system also provides users with flexible controls like
undo and redo (history functions) to exploit their best
designs interactively through trial and error. Even for a
ready-made marbling textures, users can still instantly
change the texture colors, which is obviously impossible
for other solid texture synthesis methods. Furthermore,
our system can save a user’s design steps to a file for
later reuse. Equipped with those user-friendly functions,
our approach enables users to try out different tool
functions without tedium and frustration.

4.2 Creating by Genetic Operations

In addition to direct design, our system provides an
evolutionary design method especially well suited for
non-experts to design solid marbling textures [12]. It has
four genetic operations: random alteration, function re-
combination, swapping, and changing initial state. These
operations create new textures by modifying either the
basic pattern creation or deformation stages. Random
alteration introduces variations to selected textures by
modifying the parameters of the deformation functions.
Function recombination is used to exchange deformation
pattern functions of selected parents to create offspring.
Swapping exchanges the initial pattern and deformation
functions of two selected designs. “Changing the initial
state” replaces the initial pattern with a new one. The
workflow of the evolutionary design of solid marbling
textures is:

o Step 1. Generation of an initial population: A pop-
ulation of 9 solid marbling textures is assembled
either by random generation or by loading existing
designs.

o Step 2. Selection: A user evaluates the aesthetic qual-
ity of the textures and picks the preferred designs.

o Step 3. Genetic algorithm: New solid marbling tex-
tures are created using one of the four genetic
operations.

 Step 4. Repeat from Step 2 until the user is satisfied
with a resulting solid marbling texture.

5 RENDERING WITH SOLID MARBLING TEX-
TURES

As stated in Section 3, the solid marbling texture is repre-
sented by mathematical functions and supports random
access by any given 3D coordinate. Therefore, for a given
3D object, our method can render high-quality views by
parallel computing the marbling texture on-the-fly. The
texture rendered on the object may have aliasing arti-
facts because it is based on the pattern deformation. To
reduce these artifacts, we have implemented antialiasing
using the two-pass deferred shading technique shown in
Figure 4:
o In the first pass of rendering, the positions and nor-
mals of 3D objects are rendered into the geometry
buffer (G-buffer) as a series of textures.

0

(3D Parern | (RUSANASIY
Tool Functions

Fig. 4. Two-pass rendering process.

Rendering (FPS)
Dataset | #Deformation Functions #Injection Functions Storage (KB) No-antialiasing 3 x3 5Xx5
Fig. 5(b) 10 110 4 1,556 225 84
Fig. 6(a) 16 126 5 945 143 54
Fig. 7(a) 15 27 3 1,225 312 127
Fig. 7(b) 0 83 2 1,840 429 171
Fig. 7(c) 4 150 4 873 156 59
Fig. 7(d) 49 185 11 368 57 21
Fig. 7(e) 5 29 2 2,440 530 209
Fig. 7(f) 0 500 10 272 34 13
TABLE 1

Rendering performance with different numbers of tool functions for the solid marbling textures. The performance is
measured by rendering the textured 3D object in a 512 x 512 screen resolution on an NVIDIA GeForce GTX 660.

o In the second pass, we render screen-aligned quadri-
laterals by retrieving the per-pixel attributes stored
in the G-buffer in the first pass.

The position of each pixel is utilized to compute the
diffuse color using the applied 3D pattern tool functions
of the solid marbling texture. Specifically, given a 3D
point P, the rendering process first backward traverses
the deformation functions to obtain the new coordinate
of the point, and then uses the new coordinate to
backward traverse the injection functions to obtain the
diffuse color as the pseudo code shown in Algorithm
1. The position and normal of each pixel are together
used for calculating the shading. The final composition
is obtained by combining the diffuse color and shading
effects. During this process, super-sampling is employed
as an antialiasing scheme to obtain high-quality texture
mapping effects. Figure 5 shows the improved rendering
result with antialiasing (Figure 5(b)) in contrast to the
one without antialiasing (Figure 5(a)). Figures 5(c-d) are
the results of zooming in on Figures 5(a-b), respectively.

6 RESULTS AND DISCUSSIONS

We have implemented our rendering algorithm on the
GPU to obtain high efficiency at interactive frame rates.

Our computer is equipped with a 3.2GHz Intel Core i5-
3470 CPU and an NVIDIA GeForce GTX 660 graphics
card. The implementation of our rendering algorithm
uses HLSL pixel shaders. Similar to the deferred shading
system, the rendering time of solid marbling texture
mapping is proportional to the number of tool func-
tions and screen resolution, while independent of the
viewpoint and model complexity. For the 3D objects
in this paper, the implementation achieves real-time
performance at a screen resolution of 512 x 512 (in pixel),
even with 5 x 5 supersampling antialiasing.

Table 1 lists the performance of 3D pattern function-
s (including deformation functions and injection func-
tions), the memory consumption, and rendering perfor-
mance for different solid marbling textures applied to
3D objects. At fixed resolution, the rendering cost and
memory storage is linearly dependent on the number
of 3D pattern tool functions. The rendering performance
decreases with an increasing number of tool functions
and supersampling grids.

Compared to other vector solid texture synthesis
methods, the vector representation proposed by Wang
et al. [9] consumes 17%-26% of the storage of a bitmap
version at the same grid resolution for a solid texture
with three 8-bit color channels. The method by Shu
et al. [11] has made the storage no more than 1MB

©

Fig. 5. Comparison between non anti-aliasing (a) and
anti-aliasing (b) solid marbling results applied on a vase.
(c-d) are the results of zooming in on the vase in (a-b),
respectively.

memory space even without compression. As shown
in Table 1, the storage consumption of our method is
much smaller than that of current vector solid texture
techniques, occupying only a few kilobytes.

Most of solid texture synthesis methods generate
bitmap solid textures [6]. Similar to traditional 2D
bitmap textures, high resolution bitmap solid textures
consume too much of GPU memory while low resolution
causes blurry results when mapping onto 3D objects.
Fortunately, our vector solid marbling textures solve
these problems because of their resolution independen-
t representation. Very sharp curves and details even
at high zoom levels on 3D objects can be preserved
while reducing the texture memory consumption. A
comparison between vector solid marbling texture and
bitmap solid marbling textures is shown in Figure 6. The
bitmap solid marbling texture is derived by rasterizing
the same vector solid marbling texture at the resolution
of 512 x 512 x 512.

The previous mathematical marbling method also
supported rendering surface details on 3D objects [2].
However, there are significant differences between these
techniques. The method of Lu et al. [2] applies a 2D

Fig. 6. Comparison between a vector and a bitmap solid
marbling texture. (a) A vase rendered with a solid marbling
texture. (b) The upper inset shows a close-up view of the
bitmap texture on the vase, while the lower inset is the
same view of the vector texture on the vase. The bitmap
texture generated from rasterizing the vector version has
the resolution of 512 x 512 x 512.

marbling texture onto a 3D object. In comparison, the
newly developed method not only renders vector tex-
tures, but also completely eliminates texture distortions
and complex plane parameterizations.

Figure 7 demonstrates some representative results of
our vector solid marbling textures, effortlessly applied
onto a variety of 3D objects without planar parametriza-
tion. The upper inset shows the mapping results on
different 3D objects, and the details are presented at the
bottom (see Figure 7(a-f)).

Limitations. Compared to CFD-based approaches, our
mathematical marbling suffers from a lack of “dynamic
realism” in the design process. Although our approach
can achieve real time performance, the employed super-
sampling scheme is time consuming. Since aliasing often
occurs at high-frequency regions in the solid marbling
textures, it is desirable to develop a better antialiasing
method.

7 CONCLUSIONS

In this paper we have introduced a novel method for
generating solid marbling textures by using 3D pattern
tool functions. We have successfully extended the 2D
mathematical marbling method to three dimensions. The
experiments show that the method produces pleasing
visual effects. The representation of our solid marbling
texture is compact, supports random access, and is res-
olution independent. Our framework can render high-
quality solid textures preserving sharp features in real
time on the GPU. To facilitate the authoring of solid
marbling textures, we have introduced an intuitive user
interface and a genetic algorithm. Textures can be easily
generated both by direct design and guided evolution.

Our approach provides a new means to design specific
solid textures.

In addition to creating solid marbling textures from
scratch and guided evolution, converting a given 2D
marbling texture exemplar to a solid marbling texture
is an interesting direction for further research. Further-
more, we are excited about the possibilities of using
pattern tool functions for 3D modeling and editing in
the future.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for
their constructive comments to improve the manuscript.
Shufang Lu was supported by the National Natural
Science Foundation of China (Grant no. 61402410) and
Zhejiang Provincial Natural Science Foundation of China
(Grant no. LQ14F020004). Xiaogang Jin was supported
by the National Natural Science Foundation of China
(Grant no. 61472351).

REFERENCES

[1] X. Jin, S. Chen, and X. Mao, “Computer-generated marbling
textures: a gpu-based design system,” IEEE Computer Graphics and
Applications, vol. 27, no. 2, pp. 78-84, 2007.

[2] S. Lu, A. Jaffer, X. Jin, H. Zhao, and X. Mao, “Mathematical
marbling,” IEEE computer graphics and applications, vol. 32, no. 6,
pp. 26-35, 2012.

[3] J. Xu, X. Mao, and X. Jin, “Nondissipative marbling,” IEEE
Computer Graphics and Applications, vol. 28, no. 2, pp. 3543, 2008.

[4] H. Zhao, X. Jin, S. Lu, X. Mao, and J. Shen, “Atelierm++: a fast
and accurate marbling system,” Multimedia Tools and Applications,
vol. 44, no. 2, pp. 187-203, 2009.

[5] R. Ando and R. Tsuruno, “Vector graphics depicting marbling
flow,” Computers & Graphics, vol. 35, no. 1, pp. 148-159, 2011.

[6] N. Pietroni, P. Cignoni, M. Otaduy, R. Scopigno et al., “Solid-
texture synthesis: a survey,” IEEE Computer Graphics and Appli-
cations, vol. 30, no. 4, pp. 74-89, 2010.

[7] K. Perlin, “An image synthesizer,” ACM Siggraph Computer Graph-
ics, vol. 19, no. 3, pp. 287-296, 1985.

[8] A.Lagae and G. Drettakis, “Filtering solid gabor noise,” in ACM
Transactions on Graphics (TOG), vol. 30, no. 4. ACM, 2011, p. 51.

[9] L. Wang, K. Zhou, Y. Yu, and B. Guo, “Vector solid textures,” in
ACM Transactions on Graphics (TOG), vol. 29, no. 4. ACM, 2010,
p- 86.

[10] G.-X. Zhang, Y.-K. Lai, and S.-M. Hu, “Efficient synthesis of
gradient solid textures,” Graphical Models, vol. 75, no. 3, pp. 104-
117, 2013.

[11] Y. Shu, Y. Qian, H. Sun, and Y. Chen, “Efficient texture synthesis
of aggregate solid material,” The Visual Computer, vol. 30, no. 6-8,
pp. 877-887, 2014.

[12] S.Lu, P. Mok, and X. Jin, “From design methodology to evolution-
ary design: An interactive creation of marble-like textile patterns,”
Engineering Applications of Artificial Intelligence, vol. 32, pp. 124—
135, 2014.

Shufang Lu is an assistant professor at the
College of Computer Science and Technolo-
gy at Zhejiang University of Technology. Her
research interests include marbling simulation,
non-photorealistic rendering and image pro-
cessing. She received her PhD in computer sci-
ence from Zhejiang University. Contact her at
sflu@zjut.edu.cn.

Xiaogang Jin is a professor at the State Key
Laboratory of CAD & CG at Zhejiang University.
His research interests include implicit surface
computing, cloth animation, crowd and group
animation, texture synthesis, and digital geom-
etry processing. Jin received his PhD in applied
mathematics from Zhejiang University. Contact
him at jin@cad.zju.edu.cn.

Aubrey Jaffer is a mathematician and da-
ta scientist at Digilant in Boston MA. His re-
search interests include convection, radiative
transfer, numerical analysis, algebraic geome-
try, symbolic algebra, and space filling curves.
Aubrey has a BS in Mathematics from the Mas-
sachusetts Institute of Technology. Contact him
at agj@alum.mit.edu.

Fei Gao is a professor at the College of Comput-
er Science and Technology at Zhejiang Univer-
sity of Technology. He received his PhD degree
in mechanical engineering from Zhejiang Univer-
sity in 2004. His research interests include im-
age processing, computer vision, and computer-
aided design. Contact him at feig@zjut.edu.cn.

Xiaoyang Mao is a professor at the University of
Yamanashi in Japan. Her research interests in-
clude non-photorealistic rendering, texture syn-
thesis, perception and affect based rendering
and visualization. Xiaoyang Mao recieved her
BS in computer science from Fudan University
in China and her MS and PhD in computer
science from the University of Tokyo. Contact her
at mao@yamanashi.ac.jp.

®

Fig. 7. Results of our vector solid marbling textures mapped onto different 3D objects. (a-f) are the details of zooming
in on each object.

