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Figure 1: Our parametric facial reshaping method automatically simulates the weight-change of a 2D portrait image and generates a fatter
or thinner face as intended. (Middle) is the original input image of Albert Einstein; (left) is the result of reshaping degree -2, which indicates
losing weight by 2 degrees; (right) is the result of reshaping degree +2, which implies gaining weight by 2 degrees.

Abstract

We present an easy-to-use parametric image retouching method for
thinning or fattening a face in a single portrait image while main-
taining a close similarity to the source image. First, our method re-
constructs a 3D face from the input face image using a morphable
model. Second, according to the linear regression equation derived
from the depth statistics of the soft tissue in the face and the user-
set parameters of reshaping degree, we calculate the new positions
of the feature points. Third, the Laplacian deformation method is
employed to calculate the deformed positions of non-feature points
in the 3D face model. Finally, we seamlessly blend the projected
reshaped face region in 2D image with the background using image
retargeting method based on mesh parametrization. Our model-
based reshaping process can achieve globally consistent editing ef-
fects without noticeable artifacts. The effectiveness of our algorith-
m is demonstrated by experiments and user study.
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1 Introduction

Faces are essential to make a first impression, consciously or uncon-
sciously. Facial appearance is also vital for communication. Beau-
tiful faces are pleasurable to look upon [Liao et al. 2012]. Since
facial shape is an important determinant of beauty, it can be desir-
able to modify a face to be fatter or thinner in order to be more
attractive. To accomplish this, a facial weight-change simulator is
needed to measure model growth and shape modification. Poten-
tial applications of this simulator are not limited to the beauty and
medical industries. It also plays an important role in digital enter-
tainment, and film and television production.

Photo retouching is able to present convincing adjusted faces while
maintaining the natural appearance of the face. However, process-
ing of facial images is particularly delicate compared to other im-
ages. The reason is that people are relatively good at determining
the smallest differences in the appearance of a face. Therefore, this
time-consuming work must generally be performed by a skilled,
talented retouching artist. Since retouching is experience-based,
the result relies heavily on the users’ preference and effort. The
process is also not parametric, which makes it especially difficult to
control the degree of weight change.

The most related work to ours is proposed by Danino et al. [2004]
who presented a parametric 2D facial weight-change simulator
based on 2D empirically knowledge. This method can generate
realistic results when the input face is frontal with neutral facial
expressions. However, this method does not use the semantic infor-
mation of the underlying face model, and the background is simply
warped without considering the contents of the image. As a result,
it may introduce obvious artifacts when the weight-change is large
(see Figure 8). Another related work is introduced by Zhou et al.
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Figure 2: Algorithm overview. Derived from input image (a), a 3D face model is calculated (b). Based on forensic research results and
user-specified reshaping degree +3, Laplacian deformation is performed (c). Afterwards, a feature-relevant control mesh (d) is built on the
original image. The target mesh (e) is produced by solving a mesh parametrization problem which preserves deformed face features with
minimal visual distortion to the background. Standard texture mapping is finally used to render the target image, as shown in (f).

[2010] who proposed an image retouching technique for realistic
reshaping of human bodies in a single image. This model-based ap-
proach can create desired reshaping effects by changing the degree
of reshaping which characterizes a small set of semantic attributes.
However, it cannot deal with facial reshaping directly. Moreover, it
relies on a large 3D whole-body morphable model which may limit
its application.

Inspired by the work of Zhou et al. [2010], we present an image-
based facial reshaping method using a linear regression equation.
The weight change deformation of a face is parameterized by ad-
justing BMI (Body Mass Index) values [De Greef et al. 2006]. We
first reconstruct a 3D face model from the input 2D image using
a morphable model [Blanz and Vetter 1999], and label the feature
points on the 3D face model. Then, we calculate the deformed po-
sitions of feature points according to the reshaping degree related
to BMI. After that, we generate the deformed 3D face model using
the Laplacian deformation method, and project it into 2D image as
the deformed face region. With the help of content-aware image
retargeting approach by Guo et al. [2009], we finally blend the de-
formed face region and the background to obtain the reshaped 2D
image.

The contributions of this work are: (i) a novel geometric weight-
change simulator is presented, which is automatic, fast, and robust;
(ii) parametric deformation of the face caused by varying BMI is
based on a reliable face tissue depth database, which leads to a re-
shaped face in compliance with life experience and the repeatable
reshaping process.

2 Related Work

2.1 Weight-change Simulator

Few approaches to weight-change simulation have been proposed
during the past decades. It first appeared in the innovative work of
Blanz and Vetter [1999]. The morphable 3D face model was built
on hundreds of 3D face scans. Certain features, including weight,
were manually labeled and mapped to the parameter space. Thus,
weight-change simulation could be achieved by adjusting weight
parameters. However, the simulated result is greatly affected by the
constraints of the database. If the reshaping parameter is beyond the
scope of the database, the reshaped face is probably unsatisfactory.
Moreover, the hair part of the image is particularly problematic.
Danino et al. [2004] presented a facial weight-change simulator for
2D images. The face region is divided into regions characterized
by different weight-change patterns. Its overall process is fast and
robust, and the results are clear, sharp, and realistic. Nevertheless,
the transformation between the original part and modified face parts

are empirically defined without considering the semantic informa-
tion of the underlying face model. In addition, the input images are
limited to frontal face images with neutral facial expressions, and
the involved warping method is not content-aware.

2.2 3D Face Reconstruction

There exist lots of face reconstruction methods based on a single
image. In the exceptional work of Blanz and Vetter [1999], a mor-
phable face model was matched to a given 2D image by optimizing
the parameters for the similarity between the 2D rendering of the
morphable model and the original 2D image. Similar to the mor-
phable head model, Chai et al. [2012] computed around 100 prin-
cipal components for a collected head model database and fitted a
3D head model to the input image. After that, a plausible high-
resolution strand-based 3D hair model was developed for portrait
manipulations, such as portrait pop-ups. Compared to previous 3D
facial databases, FaceWarehouse [Cao et al. 2014] provided a much
richer matching collection of expressions which can depict most
human facial actions. Different from these approaches, we are in-
terested in facial reshaping based on a face image.

In 3D craniofacial reconstruction, Greef et al. [2006] conducted a
large-scale study on how facial soft tissue thickness changes ac-
cording to sex, age, and weight. They studied 967 Caucasian sub-
jects of both sexes, and varying ages and BMI, and measured their
facial soft tissue thickness on 52 facial feature points. For each
factor and for both sexes separately, a multiple linear regression of
thickness versus age and BMI was calculated. Our weight-change
simulation is inspired by their regression equations.

2.3 Image Resizing and Retargeting

Many content-aware image retargeting techniques have recently
been proposed. Following the insightful survey conducted by
Shamir and Sorkine [2009], the approaches fall into two cate-
gories: discrete and continuous. In discrete methods, seam carv-
ing and cropping were adopted to resize the input image. Contin-
uous approaches optimized mapping using constraints, leading to
content-aware resizing. Similar to body-aware image warping by
Zhou et al. [2010], we embed the input image into a 2D triangular
mesh, which is used to drive image warping to guarantee coherent
resizing effects across the background. An approach to image re-
targeting employing mesh parametrization was proposed by Guo et
al. [2009], which achieved the goals of emphasizing the important
while retaining the surrounding context with minimal visual distor-
tion. The preservation of salient objects and image structures was
maintained by optimizing a constrained energy.



Figure 3: 3D face deformation results. The image on the left is the original image. The following images are the 3D face deformation results
of reshaping degree -4, -2, 0, +2, and +4, respectively.

3 Algorithm

We divide a portrait image into two regions: face region and the re-
maining region. For simplicity, we call the remaining region as the
background region in our paper. A reshaping algorithm of a portrait
image requires several steps. Figure 2 illustrates the outline of our
algorithm. A 3D face model is first reconstructed using the method
developed by Blanz and Vetter [1999]. Based on forensic research
results and the reshaping degree assigned by the user, deformed fa-
cial point positions are set (Section 3.1). Laplacian transformation
is conducted afterwards (Section 3.2). Since only changing the face
region is likely to introduce noticeable distortion to the background,
a retargeting method is adopted (Section 3.3).

3.1 3D Face Reshaping

Our face reshaping algorithm is inspired by forensic research results
by Greef et al. [2006]. This study was focused on how sex, BMI and
age influence the depths of facial soft tissue. The population in their
research consisted of 457 males and 510 females of varying ages
and BMIs. They selected 52 feature points where 10 points located
on the midline and 21 points located bilaterally. The selection of
these feature points was based on the ability to reliably locate them
on the face. A multiple linear regression of soft tissue thicknesses
versus BMI and age was calculated for male and female separately,
as tabulated in Table 2.

Our work differs from that of Greef et al.’s in that we add two ex-
tra control points (points 53 and 54 in Table 2) and set the limit
for reshaping degrees to make it more suitable for our framework.
Without feature points 53 and 54, the deformed 3D faces are like-
ly to introduce artifacts around the pterion. The linear regression
equation can be expressed as follows:

Y = b0 + b1 × age+ b2 ×BMI,

b0 = (b10, b
2
0, ..., b

54
0 ),

b1 = (b11, b
2
1, ..., b

54
1 ),

b2 = (b12, b
2
2, ..., b

54
2 ),

(1)

where vector Y represents the tissue depths of the 54 feature points,
BMI represents the body mass index, and b1, b2 represent partial
regression coefficients, respectively.

Moreover, there should be a limit for losing weight. Even someone
is emaciated, the depths of soft tissue are still above 0. Therefore,
we define the limit of the reshaping degree for the ith point Ti as:

Ti = −
1

bi2
(bi0 + bi1 × age+ bi2 ×BMI), i = 1, 2, ..., 54. (2)

For a particular input image, the age of a person remains un-
changed. Therefore, with varying BMIs, the updated feature point

positions are only influenced by b2. We assume that the variation
of facial tissue depth is along the feature point normal direction:

S′i = Si +
dbi2 ×Ni

100
, i = 1, 2, ..., 54, (3)

where Si is the ith feature point position before deformation, S′i is
the deformed ith feature point position, d is the reshaping degree,
and Ni is the corresponding normal of the ith point.

(a) (b)

Figure 4: Illustration of feature points. The total number of fea-
ture points is 54, with 10 located on the midline and 22 located
bilaterally.

3.2 3D Face Deformation

The 3D face model for the input portrait image is reconstructed
using the method proposed by Blanz and Vetter [1999]. They col-
lected 200 head structure data using laser scans and exploited the
statistics of the dataset to derive a morphable model and a paramet-
ric description of faces. Then, a fitting algorithm is developed to
match the morphable model to the input 2D face image under shape
and texture constraints. After that, a 3D face model conforms to the
2D face image is reconstructed. As a preparation to our algorithm,
one of the generated models needs to be labeled with feature points
manually. Since the topology of the morphable model mesh re-
mains the same, we can use the pointwise correspondence to locate
the feature points on other face models automatically.

After obtaining the deformed feature point positions in Section 3.1,
various methods are capable of calculating the displacements of
the non-feature points. Noh et al. [2001] proposed to use Radi-
al Basis Functions to solve this problem. A human face is full
of abundant geometric details, and human perception is extreme-
ly sensitive to facial distortion. Therefore, we employ a Laplacian
deformation method similar to that employed by Liao et al. [2012],
which is based on the differential surface representation proposed



by Sorkin et al. [2004]. By utilizing Laplacian deformation, geo-
metric details are preserved as optimally as possible.

The 54 feature points are assigned as handles, which are moved to
new positions. The updated positions of feature points are calculat-
ed in Section 3.1. A better result is obtained if the handle constraints
are satisfied in a least square sense. With cxi , cyi and czi representing
the x, y, z coordinates of the new position of the ith feature point,
respectively, the 54 handle constraints for x-coordinates are:

xi = cxi , i ∈ 1 . . . 54. (4)

Thus, all deformed face point positions x̃ are obtained by solving
the following quadratic minimization problem:

x̃ = argmin
x

(‖Lx− δx‖2 +
54X
i=1

|xi − cxi |), (5)

where matrix L is the topological Laplacian of the face mesh, x is
the vector of the x-coordinate of all vertices, and δ is the Laplacian
coordinate matrix. The y and z coordinates are calculated in the
same way.

The 3D face deformation results are shown in Figure 3. The nega-
tive reshaping degree indicates the decrease of BMI, which means
losing some weight. On the contrary, positive reshaping degree rep-
resents the increase of BMI.

3.3 Image Retargeting

Directly projecting a reshaped 3D face model into a 2D image will
introduce visual artifacts. To address this, a content-aware im-
age warping method is desired. Our method is based on Guo et
al. [2009], which avoids the distortion of the salient object and re-
tains the surrounding background with slight distortion. In their ap-
proach, a feature consistent mesh is generated using a constrained
Delaunay triangulation algorithm according to the feature points
extracted from the 2D input image. Several constraints, including
boundary, saliency, and structure, are defined to avoid distorting
salient objects in the optimization process for retargeting. After
a stretch-based mesh parametrization process, the homomorphous
target mesh is calculated, and the resulting image is rendered using
texture mapping.

3.3.1 Background Region

The control mesh should be consistent with image structure and
retain uniformity of point density. The boundary of the input image
is discretized first, and all of the points are set as control points. For
the background part, the Canny operator is employed, and other
control points are detected. Some additional points are added to
keep the points well-distributed. As shown in Figure 5 (a), the blue
points represent the control points in the background.

3.3.2 Face Region

The control points on face regions are selected based on the result of
the Canny operator, as well. Once we obtain the 3D face model and
the deformed model in Section 3.2, a pointwise correspondence is
set. Consequently, the deformed face region can be achieved easily.
The ith point of the original morphable model is projected into the
image space and marked as Pi. P ′i stands for the projected position
of the ith point on the deformed model. The control mesh on the
face region expands or shrinks with varying reshaping degrees. In
Figure 5(c), the deformed constraint mesh is drawn on the source
image. With +3 reshaping degree, the constrained mesh over the
face expands.

3.3.3 Face Contour

After 3D face deformation, the locations of vertices of 3D faces
will change, and also their 2D projections in 2D image. As a result,
the adjusted 2D control points of the contour profile are likely to
shift from the contour of the deformed 3D model, which will lead
to noticeable artifacts after the retargeting process. Therefore, the
control points along the contour profile of the face must be care-
fully selected. Let Mc be the set of the contour points along the
source image, P c

i be the ith point in Mc, and P c
0 , P

c
1 , . . . , P

c
n are

in clockwise order along the contour. With a predefined threshold l,
the control points are selected by minimizing the following energy
function:

minEt + λEd, (6)

where Et is employed to distribute the control points uniformly a-
long the contour of the face region, andEd is employed to constrain
the shifting of control points from the deformed contour. They are
defined as follows:

Et =

8
><
>:

∞ n = 0.

(dA)
2 n = 1.P

Pc
i
∈Mc

((darc(P
c
i , P

c
(i+1)%n)− l)2) n > 1.

(7)

Ed =
X

Pc
i
∈Mc

(d(P c
i , B)2 + d(P c

i
′, B′)2), (8)

where B stands for the background of the source image, B′ is the
deformed background, n is the number of points in setMc, dA rep-
resents the length of the contour along the face region in the source
image, λ is the weight factor balancing the influence of distance
threshold constraints and location energy, which is set to 10 for our
results, and d is the Hausdorff distance between points and set. If x
is a point and S is the set of points, the distance from x to S is:

d(x, S) = inf{d(x, S) : s ∈ S}. (9)

darc(P
c
i , P

c
i+1) stands for the length of the face contour from P c

i

to P c
i+1 in a clockwise order.

Equation 6 is minimized by adding one selected control point in
Mc each time, which results in the largest decrease of energy. The
selected point in each iteration is located between the adjacent dots
with the longest distance along the contour. Thus, the above pro-
cess in general can be efficiently implemented. The final solution is
reached if adding a point does not reduce energy.

3.4 Constrained Mesh Parametrization

Based on the control points selected from the background, face re-
gion and face contour, the constrained Delaunay triangulation algo-
rithm is utilized to generate a feature-consistent mesh, as shown in
Figure 2(d). Using the method proposed by Guo et al. [2009], the
homomorphous target mesh is achieved, as shown in Figure 2(e).
The background part is rendered using texture mapping, while the
face region part is rendered based on the 3D deformed model. Fi-
nally, the reshaped image is obtained, as shown in Figure 2(f).

Figure 5 shows the comparison of control mesh before and after 3D
face deformation. The control mesh of the face region (see Figure
5(b)) is fattened after 3D face deformation (see Figure 5(c)). In this
example, the reshaping degree (Figure 5(a)) is +3 degrees.
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Figure 5: Control mesh comparison before and after 3D face de-
formation. The red dots in (a) are the control points on the contour
profile as hard constraints, the green dots on the face are regarded
as hard constraints, and the blue points on the background are set
as soft constraints. The four points on the corners of the picture are
set as fixed points. (b) is the hard constrained mesh superimposed
on the source image. (c) is the comparison of deformed mesh super-
imposed on the source image. Since the reshaping degree is +3, the
face contour expands, and the background needs to be compressed.

4 Results and Discussions

We have implemented our algorithm on a desktop PC with Intel I7
4.0 GHz CPU and 32 G memory. The average computation time
is about 0.6 seconds for images with dimensions 640×480; 1.2
seconds for dimensions 800×600; and 1.6 seconds for dimension-
s 1024×768. We tested our method on a variety of facial images
with various backgrounds and poses. Figure 6 shows some exam-
ples. For each example, the image in the middle is the input portrait,
the left and right images are the reshaping results of -2 degrees and
+2 degrees, respectively.

4.1 Comparisons

One available facial reshaping work is the facial weight-change
simulator proposed by Danino et al. [2004]. This approach consists
of the following steps. First, a user marks thirteen landmarks on the
portrait along the cheek and two landmarks around the neck. With a
user-specified reshaping degree, the new locations of the landmarks
are calculated based on empirically determined coefficients. After
that, a thin-plate spline warping is employed to obtain the deformed
facial image. To eliminate the artifacts in the deformed background,
a synthetic background with a similar color is used to replace the
actual background.

For frontal-view face images with neutral facial expressions and
simple backgrounds, this method can produce realistic results.
However, it may produce artifacts for non-frontal-view face images
because some landmarks are hidden. In their method, landmarks
are labeled along the cheek region and neck region. After applying
a non-linear thin-plate spline warping to the input image, obvious
distortions in other face regions will arise, such as eye regions and
cheek regions shown in Figures 7 (b) and (e). When the reshap-
ing degrees are large, Danino et al.’s method will produce obvious
artifacts (see the distortions in Figures 8 (b) and (d)). For facial
images with complex backgrounds, their method will also generate
unnatural distortions because their image warping is not content-
aware. Since our approach recovers the 3D face model to simulate
the weight-change of face and employs the content-aware image
retargeting method, we can generate natural results with various
expressions and poses.

We also compare our reshaping results with untouched portrait im-
ages. We collected the pictures of some celebrities who have ex-

Figure 6: Reshaping results. The left column is the reshaping de-
gree of -2, the middle column is the original input image, and the
right column is the reshaping degree of +2.

perienced weight change from being underweight to overweight or
backwards. Figures 10 (b-d), (g-i) are camera images and (a), (e),
(f), (j) are our reshaping results. These reshaping results share a
close similarity with the camera images.
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source image [Danino et al. 2004] ours

Figure 7: Comparison results. (a) and (d) are input images. (b)
and (e) are results of Danino et al.’s method, while (c) and (f) are
our results. Please pay attention to the differences in the regions
marked in red boxes.

4.2 User Study

We have designed a user study to objectively verify the effective-
ness of our facial reshaping method by measuring whether a hu-
man subject can differentiate between our reshaping images and
untouched portrait images among various individuals of both sexes
and varying BMIs.

Examples. We generate several reshaping images using our method
described in Section 3, which is called ours. We also collect var-
ious unprocessed images which contain human faces via the In-
ternet, which is called real. The individuals shown in real have
experienced significant changes of weight.

Study details. We recruit 25 subjects for this task. Each subject
views 16 pairs of images of the same individual. Subjects are told
to choose the most realistic image in the image pair. Two refer-
ence untouched images are provided in order to give users a more
comprehensive impression of the person shown in the image pair.
The first part of the user study is called RT. Ten of these pairs con-
tain one real image and one reshaping image of the same person
taken from different places. One example is shown in Fig 9 (a-d).
(a) is our reshaping result and (b) is an untouched image. (c) and
(d) are both untouched images, which are provided as references.
The second part of this user study is called ST. The remaining six
pairs contain one real image and the reshaping image on which it
is based. One example of this is shown in Figure 9 (e-h). (f) is the
original image, and (e) is the reshaping result generated from (f).
(g) and (h) are provided as reference images for this pair.

Test Value = 0.50
95%CI

Mean P-value(2-tailed) Lower Upper
RT 0.4960 0.956 0.3369 0.6551
ST 0.4533 0.640 0.2119 0.6947

Table 1: User study results. The statistics results of one-sample,
two-tailed t-test for RT and ST. Test value is 0.5 (50%). CI stands
for Confidence Interval of the difference.

These image pairs are presented in a randomly permuted order, and

(a)

(b) (c)

(d) (e)
source image [Danino et al. 2004] ours

Figure 8: Comparison results. (a) is the input image, (b) and (d)
are the results of Danino et al.’s method while (c) and (e) are our
results.

the placement (left or right side) of real and ours is randomized, as
well.

Results. We analyze the user study data of the two cases (RT,ST)
separately. When the objects are asked to pick which image ap-
peared more realistic in the RT test, 49.6% of the subjects choose
ours. By performing a one-sample, two-tailed t-test for these 10
examples, we find out that subjects cannot find significant differ-
ences between our results and the real images (p-value >> 0.05).
Therefore, the results of ours are as realistic as real to some extent.
Regarding the ST part, fewer subjects chose ours (45.33%). Com-
pared with the source image, subjects are able to distinguish the
source image better. However, the t-test result of ST demonstrates
that the difference is also not substantially obvious. Through this
user study, we can conclude that our method is able to create natural
reshaping results.

4.3 Limitations

For very large reshaping degrees, our approach may generate arti-
facts as shown in Figure 8. In our current implementation, the neck
region of the input image is considered as background. As a re-
sult, the artifacts near neck regions may become obvious when the
reshaping degrees are large (see Supplementary Video).

Gaining or losing some weight will influence the appearance of the
face. When gaining weight, a person’s facial contours tend to ex-
pand, wrinkles seem reduced and, to some extent, a double chin
emerges. When losing weight, a person’s facial contours tend to
shrink, wrinkles seem increased and, to some extent, a double chin
disappears. Our current approach cannot simulate such wrinkle
changes and ”double chin” changes.

5 Conclusions and Future Work

We have proposed an effective image reshaping system to thin or
fatten a face based on user input reshaping degree. After we gain
a 3D morphable face model, forensic data are used to parameterize
the reshaping process of the 3D model. We rely on the deformed
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Figure 10: Comparison results. (b-d) and (g-i) are camera images. (a), (e), (f), (j) are our reshaping results.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9: User study examples. (a-d) are the images used in user
study RT, while (e-h) are used in user study ST. (a, e) are our re-
shaping results, and (b, f) are untouched images. (c, d, g, h) are un-
touched camera images as well, which are provided as references.
In RT, ours (a) is compared with another camera image taken un-
der a different circumstance (b). In ST, ours (e) is compared with
the source image (f).

3D model to reshape the source image. We introduce a novel ap-
proach for choosing control points along the profile of the face. the
effectiveness of our parametric weight-change reshaping method is
proved by examples and user study. Our system provides a real-
time solution to reshaping a camera image by simply setting re-
shaping degree.

We are currently working on several enhancements to our reshaping
system. Although the current system allows reshaping face regions,
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Figure 11: User study results. The subjects are asked to choose the
images that appear more realistic. In RT, 49.6% subjects choose
ours. In ST, 45.3% subjects choose ours.

the neck region should be added to generate more visually pleasing
results. In addition, there are more extensions to render the face
region with the reconstructed face morphable model, such as re-
lighting. We are also interested in extending our approach to the
mobile phone platform.
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Point numbers and descriptions Males Females

b0 b1 p b2 p RMSE b0 b1 p b2 p RMSE

1 Supraglabella 1.7 5.0 * 104.5 ** 0.6 2.7 2 62 ** 0.6
2 Glabellla 2.5 3.2 103.1 ** 0.7 3.4 -2 77 ** 0.8
3 Nasion 3.6 11.9 ** 87.9 ** 1.2 4.8 15 ** 42 ** 1.3
4 End of nasal 1.8 2.4 37.6 ** 0.6 1.7 -2 * 36 ** 0.5
5 Mid-philtrum 11.4 -37.2 ** 22.8 1.7 9.7 -39 ** 39 * 1.6
6 Upper lip margin 11.3 -36.5 ** 17.7 2.0 10.6 -18 ** -21 1.7
7 Lower lip margin 11.0 -30.5 ** 92.0 ** 2.1 10.1 -9 37 2.0
8 Chin-lip fold 7.4 11.7 * 107.0 ** 1.3 7.9 23 ** 54 ** 1.2
9 Mental eminence 3.4 29.7 ** 238.3 ** 1.7 5.5 12 ** 174 ** 1.7
10 Beneath chin 1.7 2.4 190.8 ** 1.3 2.9 9 * 118 ** 1.5

32/11 Frontal eminence 1.7 1.0 108.4 ** 0.7 2.3 1 76 ** 0.6
33/12 Supraorbital 1.8 5.1 148.8 ** 0.9 3.3 0 95 ** 0.8
34/13 Lateral glabella 5.0 -15.0 ** 55.6 ** 1.3 4.9 -15 ** 48 ** 1.1
35/14 Lateral nasal 3.4 -9.1 * 30.6 * 0.6 3.9 -14 ** 10 0.6
36/15 Suborbital 4.0 6.9 199.1 ** 2.3 7.7 -29 ** 130 ** 2.2
37/16 Inferior malar 5.2 36.9 ** 452.6 ** 3.3 12.3 6 249 ** 2.8
38/17 Lateral nostril 10.2 -29.5 ** 25.7 1.5 9.9 -32 ** 14 1.3
39/18 Naso-labial ridge 12.0 -32.3 ** -4.2 2.0 9.6 -55 ** 70 ** 1.6
40/19 Supra canina 10.5 -21.3 * 25.8 2.0 10.6 -57 ** 20 1.7
41/20 Sub canina 7.2 -13.6 149.9 ** 1.7 9.2 -31 ** 82 ** 1.5
42/21 Mental tubercle ant. 4.2 23.4 ** 208.9 ** 1.4 6.6 8 129 ** 1.5
43/22 Mid lateral orbit 2.8 -3.5 83.9 ** 0.7 4.1 -1 42 ** 0.9
44/23 Supraglenoid 8.3 -34.2 ** 109.7 * 2.8 8.2 -34 ** 104 ** 1.9
45/24 Zygomatic arch -1.2 -5.1 315.4 ** 1.2 3.0 -15 * 194 ** 1.4
46/25 Lateral orbit -0.3 -13.4 * 364.9 ** 1.4 5.2 -44 ** 266 ** 1.7
47/26 Supra-M2 12.4 9.6 565.5 ** 3.4 22.5 -56 ** 275 ** 2.9
48/27 Mid-masseter muscle 6.7 -9.1 447.0 ** 4.5 13.4 -47 ** 194 ** 3.3
49/28 Occlusal line 8.8 -36.0 ** 503.4 ** 2.4 13.1 -58 ** 340 ** 2.0
50/29 Sub-M2 5.4 1.8 516.5 ** 3.2 14.2 -27 250 ** 3.2
51/30 Gonion 2.0 -2.8 547.0 ** 3.0 7.5 -30 ** 340 ** 2.4
52/31 Mid mandibular angle -4.1 45.9 ** 562.0 ** 2.5 3.8 12 329 ** 2.3
54/53 Pterion 1.7 1.0 108.4 ** 0.7 2.3 1 76 ** 0.6

Table 2: Linear regression equation: partial regression coefficients, the root mean square (RMS) errors and the significance levels. ∗p <
0.05, ∗ ∗ p < 0.01.
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