
1

Mathematical Marbling
Shufang Lu, Aubrey Jaffer, Xiaogang Jin, Hanli Zhao, and Xiaoyang Mao

Abstract—Marbling is the art of creating stone-like or intricate abstract decorations from liquid inks floating on water or gel. Although
the fluid dynamics of marbling processes can be simulated, we introduce a mathematical approach with closed-form expressions. Our
approach improves control, ease of implementation, parallelism, and speed, which enables real-time visual feedback as well as the
creation of vivid flowing animations. Designs can be started from a blank sheet or raster images and videos. When started from a
blank sheet, our approach can produce compact resolution-independent vector outputs. The transforms for our marbling operations
all have inverse transforms. Forward application is used to generate compact resolution-independent vector-based output; inverse
application is used to generate pixel-based output. In both cases, the closed-form expressions preserve the quality and sharpness of
the designs. The efficiency and effectiveness of our method are demonstrated via extensive comparisons with existing digital marbling
techniques. We also show various applications including cyclic texture tiling, scene decoration, surface detail rendering for 3D objects,
image editing, and interactive video processing.

Index Terms—Marbling art, vector image, closed-form expression, surface details rendering.

✦

1 INTRODUCTION

Marbling is a decorative art with several distinct tradi-
tions originating in Asia, perhaps as long as 1000 years
ago. It spread to Europe in the 16th century where its pri-
mary application was producing endpapers and covers
for books. Mechanized bookbinding caused the decline
of marbling in the West; but it has enjoyed a revival as
a folk art since the 1970s. Some of the Asian traditions
have continuity from ancient times; in Japan, the Hiroba
Family claims to have made marbled paper since 1151.
Although primarily used for decoration, marbling has
security applications. Marbling the edges of ledger books
makes missing pages apparent and documents written
over pale marbling are tamper-resistant.

The beauty of the swirling and wavy patterns, the
use of different kinds of tools, and the fascination of
color dispersion all contribute to its distinctive appeal.
Historically, traditional designs are abstract or have a
stone or fibrous appearance. Motif and floral designs are
thought to have originated around the 18th century.

The traditional marbling process consists of three steps
[1]. First of all, the background liquid is placed in a
tray and the paints are sprinkled or dropped onto the
liquid surface with eyedroppers or brushes to create an
initial design. The liquid layer has to be thick enough
to keep the paints floating on its surface. Then, styluses,
combs (also called rakes), and other tools are used to

• S. Lu and X. Jin are with the State Key Lab of CAD&CG, Zhe-
jiang University, Hangzhou, 310027, P. R. China. E-mail: {lushufang,
jin}@cad.zju.edu.cn.

• A. Jaffer is with TextMyFood LLC., One Broadway, 14th Floor Cambridge,
Massachusetts 02142 USA. E-mail: agj@alum.mit.edu.

• H. Zhao is with Wenzhou University, Wenzhou, 325035, P. R. China.
E-mail: hanlizhao@gmail.com.

• X. Mao is with the Department of Computer and Media Engineering,
University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-0016,
Japan. E-mail:mao@yamanashi.ac.jp.

change the initial pattern. The comb’s tines are arranged
with different spacings to create different effects. As
the marbler runs the tools back and forth across the
tray, the complex marbling design emerges. An intricate
pattern usually requires several strokes. Once the pattern
is completed, the marbler gently applies a sheet of paper,
fabric, or some other material onto the tray in order to
capture the pattern. The painting created on the surface
is finally transferred to the contact material.

The patterning tools and how they are manipulated
are crucial in producing impressive features. Many mod-
ern marblers are in search of new effects or techniques
to heighten their expressivity. Unfortunately, it is not an
easy task since the marbling process consists of several
steps and one must start from scratch when any mistake
is made.

Digital simulation systems based on complex physical
models have been commonly used to create marbling im-
ages [2], [3]. However, these methods suffer from blurry
contours because the time-iterative-relaxation nature of
the solver makes dissipation inevitable. The more mar-
bling operations are applied, the more blurry the result
becomes. Therefore, it is difficult for them to produce
publication-quality marbling images as fine features will
be lost. This motivates us to find simple closed-form
mathematical formulas to simulate the marbling process.

The major technical contribution of the paper is to
provide simple yet closed-form deformation formulas
for marbling process simulation, while avoiding the
computational cost of full fluid simulation. It is an
approximation that is rich enough to capture a large
collection of phenomena. In addition to simplicity, the
use of mathematical formulas is also advantageous in
terms of control, speed, ease of implementation, par-
allelism, and vector output. It enables the generation
of beautiful designs with real-time visual feedback and
the progressive fluid-like illustration of the marbling

2

process.
The vector output of marbling images solves the dissi-

pation problem completely, which is a challenging issue
in existing physics-based methods, and preserves the
sharp contours in the resulting images. We implement
our design process on the programmable graphics hard-
ware (GPU) to provide a real-time intuitive feedback.
Moreover, various extensions and applications, includ-
ing cyclic texture tiling, scene decoration, high-quality
surface detail rendering on 3D objects, image editing,
and interactive video processing, are implemented.

2 RELATED WORK

As one of the traditional arts, marbling has been attract-
ing attention from graphics researchers.

Early work on marbling simulation favored the use
of numerical simulation. Physics-based simulations view
the marbling process as a 2D computational fluid dy-
namics (CFD) problem and try to numerically solve
complicated Navier-Stokes (NS) equations [4]. Akgun [5]
developed a computer-aided paper marbling tool fo-
cused on generating the traditional Turkish art forms.
In order to obtain the effect of fluid fluctuations at
different levels, Acar and Boulanger [6] introduced a
multiscale fluid model as well as a sharp fluid boundary
method to simulate marbling. Although their method
can model highly turbulent marbling effects, it does
not deal with some traditional marbling patterns like
comb patterns. Acar [2] proposed a level-set driven
method which provided a flexible environment to model
a wide range of flows and artistic effects in 2D, and
applied it to marbling. All aforementioned methods were
implemented on the CPU. These methods do not provide
real-time feedback because they have to solve the time-
consuming physics equations. Jin et al. [7] presented a
novel digital marbling framework by solving Navier-
Stokes equations on the GPU. But it suffered from blurry
paint interfaces because of the dissipation. Xu et al. [3]
improved the algorithm by complex high-order advec-
tion schemes to combat energy dissipation. The problem
with this approach is that it may bring instability. Zhao et
al. [8] employed an accurate yet fast third-order unsplit
semi-Lagragian constrained interpolation profile method
to reduce numerical dissipation while retaining stability.

Marbling images generated using CFD models suf-
fer from three limitations. The first is dissipation. Re-
searchers often apply complicated computational mech-
anisms to combat such an effect [9]. Dissipation can lead
to blurring or mixing of colors, which do not conform to
the sharp features of real-world marbling. Dissipation is
inevitable in physics-based methods. Even higher order
advection schemes like fifth-order B-Splines are unable
to eliminate it completely [6]. The second is speed.
Although physics-based simulations have motivated a
number of papers proposing fast solvers for various
scenarios, generating megapixel-sized images with real-
time feedback is still a challenge. The third is control.

Prior methods usually have many physical parameters
(e.g., viscosity of liquids, force of manipulation, etc.)
whose effects on marbling are not obvious.

The commercial software Corel Painter [10] also sup-
ports a powerful image editing function which enables
users to interactively create several traditional marbling
effects. Corel Painter considers the marbling process
as a distortion in which colors are dragged by comb
and mixed into each other. These marbling effects are
quite limited; only wavy path combing in horizontal
and vertical directions is supported. Swirling patterns
cannot be produced with this software. Moreover, their
process is static and users do not receive any progressive
feedback.

Though fluid-like turbulent motions can be simulated
by numerically solving the fluid equations, it is desired
to find a closed-form solution. Perlin [11] introduced a
procedural turbulence noise function called Perlin noise
to generate various kinds of 2D and 3D textures. Due
to its efficiency and simplicity, it is frequently used to
simulate fluid-like animations instead of physics-based
methods. However, since Perlin noise functions have
non-zero divergence, they cannot simulate incompress-
ible fluids. Sims [12] used linear superposition of flow
primitives to modulate velocity vector fields and warp
2D images to create the visual effect of flow. But neither
of these methods is tailored for progressive, interactive
marbling.

Vector graphics, in which primitives are defined ge-
ometrically, is an alternative representation of images.
High-quality images can be obtained since the vector
graphics representation is resolution-independent [13].
Vector images are used for rendering high-quality sur-
face details on 3D objects even at high zoom levels [14],
[15]. Wang et al. [16] introduced an effective vector
representation for solid textures and mapped them onto
mesh surfaces in real time. Ando and Tsuruno [17]
presented a framework for generating marbled images
that can be exported into a vector graphics format and
allowed an arbitrary mouse-controlled interactive mo-
tion of a tine. However, the underlying fluid motion of
this method requires numerically solving complicated
and time-consuming physics equations. In this paper,
we focus on the more intuitive mathematical marbling
while supporting the output of vector geometries and
high-quality surface details for rendering on 3D objects.

3 OUR APPROACH

This paper presents a real-time digital system which
enables artists to create marbling designs similar to
those created by physical means. Our mathematical
treatment of marbling starts with the assumptions of
incompressible and immiscible 2-dimensional fluid inks.
In this section we present in detail our tool function
formulas based on topological computer graphics [18],
which generate marbling designs with sharp contours
and vector marbling outputs.

3

(a) (b) (c) (d) (e) (f)

Fig. 1. Ink-drop pattern: (a-e) the process of dropping color spots with deformation, and (f) the result without
deformation.

3.1 Tool Functions

Our system mainly supports five types of patterning
tools, which are described in the following subsections
with forward transform formulas. These tools are all
frequently used in the traditional marbling process. It is
not difficult to prove that these tool functions are incom-
pressible. A key feature of these marbling transforms is
that the displacement parallel to a line is dependent only
on the perpendicular distance from the line. Because
of this, the backward transform is simply the forward
transform with its displacement negated. Therefore, the
proposed tool functions can all be applied forward and
in the inverse. Forward application is used to gener-
ate vector-based output; inverse application is used to
generate pixel-based output. In both cases, the closed-
form expressions preserve the quality and sharpness of
the design. Though the free-hand curve interaction tool
is not supported directly, its effect can be simulated
similarly by combining existing tools (Figure 10e).

In our mathematical marbling system, patterning is
realized by the deformation of the current pattern under
the applied tool functions. During the design process,
we use the pixel-based image warping implemented
on the GPU to achieve real-time immersive feedback.
Specifically, to determine the color at a point P(x, y) in
current pattern, we use the backward image mapping
method to trace the trajectory for its former position P

′

in the previous pattern, and then copy the color at point
P

′ to point P. For designs started from blank page, as
opposed to starting from a raster image, users can output
the vector graphics representation of marbling images
at the end of marbling process with some delay. Specifi-
cally, a regular n-polygon is used to approximate a paint
drop with a predefined color; then the drop is forward
transformed to create a warped one by displacing the
polygon points.

3.1.1 Ink Drop Function
After pouring the substrate into a tray, the first step
in the marbling process is to add paint drops onto the
liquid. When applying floating color drops onto the
liquid, previously dropped spots are deformed by the
subsequently dropped ones and their shapes can change.
Also, a spot may be dropped right within an existing
one and the existing spot will be forced to spread to
the surroundings. It is quite difficult to simulate this

application process faithfully in physics-based systems.
But a mathematical treatment produces a simple, exact
solution. The first paint drop in the tray forms a circular
spot with area a. If a second drop with area b is put in the
center of the first drop, the total covered area increases
from a to a+ b. Points at the center move from radius 0
to radius

√

b/π, and boundary points move from radius
√

a/π to
√

(a+ b)/π. Therefore, this transformation is
incompressible in the sense that the area of ink regions
other than the one being injected (dropped) does not
change. Given a point P and a paint drop centered at C
with radius r, if |P−C| < r, point P is within the drop
and takes its color, otherwise P is displaced radially from
C:

P
′ = C+ (P−C)

√

1 +
r2

|P−C|2
. (1)

According to the transform function given above, the
last ink drop is rendered last and has a round outline.
However, the second to last drop is distorted by the
last drop. Working backward through the ink droppings,
each will be distorted by all the subsequent drops as
shown in Figure 1(a-e).

Sprays of small droplets cause little distortion to un-
derlying inks, yet require as much computation as if
they were larger. So we provide another function with
no deformation. If the spot overlaps with an existing
one, the overlapped part is overwritten with the newly
dropped one (see Figure 1f).

3.1.2 Tine-Line Pattern Function

This function manipulates a marbling by running tine
lines through it in any direction. Consider the pattern
transformation induced by drawing a single tine straight
from one side of the tank to the other. Points near a tine’s
trajectory are moved in the direction of the tine’s motion.
The amount of motion in the tine’s direction is (roughly)
inversely proportional to the point’s distance from the
tine’s trajectory. There are many possibilities for this
inversely proportional function. The function we choose
parameterizes both the maximum shift and sharpness of
the shift gradient. Because the point’s motion is perpen-
dicular to the shortest distance between the point and
the line, this displacement and its inverse are equally
easily to calculate. So each cohort of points at a distance

4

(a) (b)

Fig. 2. Illustrations of tool functions: (a) the single tine-line
and (b) the circular tine-line.

d from the tine-line is shifted by the same amount. On
an infinite plane, these parallel shifts neither compress
nor expand the inks. In Figure 2a, if L is the tine-line
with arbitrary slope, N is a unit vector perpendicular to
L, A is a point on the tine-line, and M is the unit vector
in the direction of the tine-line L, the mapping for point
P is:

P
′ = P+

αλ

d+ λ
M, (2)

where d = |(P − A)·N| is the displacement function
which represents the distance from point P to the tine
line L, and the scalars α and λ control the maximum
shift and sharpness of the shift gradient (see Figure
3(c-e)). As the composition of homeomorphisms is a
homeomorphism, the mapping of multiple parallel tine-
line strokes can be composed into a single function. This
composite function can comb in any direction (Figure 10a
and 10b). A comb is used to create the classical patterns
called Nonpareil (Figure 6d) and Gel Git (Figure 6e); it
can be further modified to form many other traditional
designs. For evenly spaced multiple tines which move as
a rigid assembly, we define an alternative single function
that represents the displacement from the set of parallel
tines: d′ = s/2−|fmod(d, s)−s/2|, where d is the distance
from P to an arbitrary tine-line of the comb and s is the
spacing between tines. In this way, the mapping function
is computed by replacing d in Eq. (2) with d′. Although
the new function will bring discontinuous derivative
because of the absolute value, it produces similar results
with less computational cost. Figure 3b illustrates the
same tine-line geometry and motion produced by Xu et
al.’s system. In comparison, our tine-line pattern function
is able to provide as visually plausible simulation effects
as those made by physics-based methods.

3.1.3 Wavy Pattern Function

Curved tine trajectories contribute a lot to marbled im-
ages’ beauty and charm. This function generates wavy
patterns in any direction. In our model, the wavy path is
a sinusoidal displacement (versus distance) applied after
a (straight) comb operation described in Section 3.1.2.
The result combined with two operations looks like the
deformation from a comb stroked along a wavy path
as shown in Figure 10(c, d, e). Let f(v) = A sin(ωv + ψ)

(a) original (b) Xu et al. (c) (80, 8) (d) (80, 32) (e) (240, 8)

Fig. 3. Tine-line pattern examples: (a) the original input,
(b) the tine-line geometry motion made by Xu et al.’s
system, and (c-e) our results of varying the value of (α,λ)
with the same single tine-line operation.

be the displacement function. By interactively specifying
the amplitude A, the wavelength ω, and the phase ψ,
users can move a comb in various wavy paths. With this
operation, P is mapped to P′ in the direction at angle t:

P′ = P + f(P·[sin t,− cos t])[cos t, sin t]. (3)

3.1.4 Circular Tine-Line Pattern Function

This function moves tines in circular trajectories con-
trolled by the radius r and center C of the swirl. A
circular tine-line motion is treated similarly to the tine-
line motion. A circle is perpendicular to every radius ray
at their intersection. For a given center point, motion
along the arc containing a point P is made inversely
proportional to the minimum radial distance from P to
the tine circle. The concentric circles each being rotated
by different amounts neither compress nor expand the
inks. The scalars α and λ play the same role here as they
do in the linear transformation of Section 3.1.2. In this
case, as shown in Figure 2b, points are displaced along
arcs around a center point C. Under this operation, point
P is mapped to:

P
′ = C+ (P−C)

(

cos θ sin θ
− sin θ cos θ

)

, (4)

where its angle subtended at C is θ = l/(|P−C|), the
length of the displacement arc is l = αλ/(d+ λ), and
d = ||P−C| − r|.

It should be mentioned that the direction of the cir-
cular tine-line pattern depends on the sign of θ. That is,
if θ is positive, it generates clockwise pattern, and vice
versa. Figure 10f shows an example of the circular tine-
line pattern.

3.1.5 Vortex Pattern Function

. Vortices, which wind more as the center is approached,
are popular in marbling. The vortex pattern can be ob-
tained using the same mapping function as Eq. (4) except
the displacement term d. Different from the circular tine-
line operation, we set the displacement d = |P − C|,
where C denotes the center of the vortex (Figure 4).

5

(a) (b) (c)

(d) (e) (f)

Fig. 4. Comparison of the image quality with different
schemes: (a) aliasing artifacts, (b) blurry effects, (c) sharp
contours with anti-aliasing, and (d-f) zoom in on images
(a-c).

3.2 Preservation of Sharp Contours

Sharp contours between the paints are crucial character-
istics of real-world marbling images. In this section, we
describe how we employ several techniques to preserve
sharp contours between the paints for a marbling of
raster image inputs.

Since our method is based on the image deformation,
it usually generates aliasing artifacts (see Figure 4a). The
general strategy of antialiasing is to compute the image
at a higher resolution and then down-sample it. In our
implementation, we employ the 2×2 Rotated Grid Super-
Sampling (RGSS) antialiasing scheme because of its low
cost and high quality. Other common super-sampling
patterns such as 4 × 4 grid, Quincunx, 4 × 4 checker,
and 8-rooks are also provided [19].

In addition, if we update the image for each operation
and use it as the input of the next operation, contrast
fading occurs and the resulting image is blurred after
some operations. Let n be the number of operations, the
color at point Pn is:

C(Pn) = C(Pn−1) = . . . = C(P1) = C(P0), (5)

where Pi(i = 0, 1, ..., n − 1) is the back-traced point of
Pi+1. Signal diffusion is inevitable unless an ideal sinc
filter is applied. Even high order interpolation methods
like fifth-order B-Spline cannot prevent blurring com-
pletely [6]. As n increases, the result will get more and
more blurry (see Figure 4b). To solve this problem, we
employ an alternative image update scheme similar to
Sims [12]. For each point in the current image, we trace
its mapping point in the ink-drop pattern directly and
copy the color at that point to the current position:

C(Pn) = C(Pn → Pn−1 → . . .→ P1 → P0). (6)

Consequently, the composition operation can be com-
puted in one shader and the improved result is shown in

(a) (b)

(c) (d)

Fig. 5. Rendering high-quality surface details on 3D
objects. (a) A vase rendered with a marbling pattern.
(b) Traditional texture mapping with an 800 × 800 texture
shows very blurry edges in a closeup view. (c) Even an
8000× 8000 texture does not provide sharp edges for ex-
treme closeups. (d) Our surface details rendering method
guarantees crisp edges even for extreme closeups.

Figure 4c. This scheme is also able to show the animation
(evolution) of the marbling process, but unlike the first
scheme, the performance of this scheme will decrease
gradually as the number of operations increases. There-
fore, our system makes both schemes available to users.

3.3 Vector Image Output

Our approach supports compact resolution-independent
vector output when the initial pattern is created from
paint drops. For each initial circular paint drop, we
approximate it by an inscribed regular n-gon filled with
the color of the drop. The value of n is chosen according
to the radius of the drop. We transform the polygon
points of the initial drop to new positions according to
the composite formula derived from the marbling opera-
tions. The displacement of each point is very dependent
on the marbling operations. Two adjacent points in an
initial paint drop may be far apart after the marbling
transformation; therefore under-sampling artifacts may
occur. To reduce the artifacts, we employ an adaptive
refinement scheme to keep the boundary smooth. As
long as the distance between two transformed adjacent
polygon points is larger than a user-specified threshold
T , a new sampling point is inserted in the middle of the
arc subtended by the two points in the initial paint drop.
Empirically, pleasing results can be achieved if we set T

6

to be 1 pixel. A smaller threshold can be used for higher
quality or when magnifying the marbling image.

4 RENDERING SURFACE DETAILS ON 3D OB-
JECTS

Given a parameterized 3D object, simply mapping the
marbling image onto the 3D surface as a texture does
not retain sharp texture features. Figure 5b is a case in
point. Even a high-resolution texture (8000×8000) cannot
faithfully reproduce the crisp boundaries for closeup
views, as shown in Figure 5c.

Our closed-form solution makes it possible to render
high-quality surface details on 3D objects ([14], [15]).
After a marbling texture is designed, we record its
creation history (including parameters for paint drops
and operations). Then, we compute the marbling texture
for 3D objects on-the-fly using the following two steps.
1. Render the 3D object using deferred shading technique
to store per-pixel attributes (positions, normals and tex-
ture coordinates) into local video memory (G-buffer).
2. Render screen-aligned quadrilaterals by retrieving the
per-pixel attributes stored in the G-buffer. To calculate
the color of a pixel with its position located at x, the pixel
shader needs to access the following data structures.
They are the buffer T used to store texture coordinates in
the step 1, the patterning operations f , the paint drops
(col, r, c) (These parameters respectively represent color,
radius, and center.), the background color bc, width w
and height h of the marbling image. We present the
pseudo code in Algorithm 1.

Algorithm 1: Vector Marbling Texture Fetch

tc← T (x)
p← tc ∗ (w, h)
for all operations(f) do
p← f(p)

end for
for all paintdrops(col, r, c) do

if ||p− c|| ≤ r then
return col

end if
end for
return bc

We implement the entire rendering process on the
GPU to obtain the high efficiency. Such a method keeps
sharp curves at high zoom levels in interactive frame
rates and overcomes the limited resolution problem
while reducing texture memory usage. A similar an-
tialiasing scheme as in Section 3.2 is employed for the
anti-alias pass. The resulting image is shown in Fig-
ure 5d.

5 COMPARISONS AND APPLICATIONS

We have implemented our system using HLSL shaders
on the GPU. In order to investigate the performance of

our algorithm, we have run the system on a 1.83GHz
Intel Core 2 Duo E6320 CPU and an NVIDIA GeForce
8800GTS GPU. We show the comparison of performance
of our method and Xu et al.’s approach in Table 1.
It shows that our method with the 2×2 RGSS filter
outperforms Xu et al.’s system by an order of mag-
nitude. In comparison, the interactivity of Xu et al.’s
system is limited to low resolutions due to the time-
consuming physics simulation. Physics-based systems,
including Acar’s CPU-implemented level set method,
cannot achieve real-time performance when designing
high-resolution marbling images. We have also tested
our system on a ThinkPad X61 laptop with an inte-
grated Intel GMA X3100 graphics card and observed
that the system can still achieve 13 FPS when designing
1 megapixel images using the 2 × 2 RGSS filter. As a
result, not only can our method let users design their
marbling images with real-time visual feedback, it can
also enable them to experience the marbling process
immersively because of its vivid fluid-like animations.
Besides of its faster execution, our mathematical model
is able to produce vector images (Figure 3c), whereas the
pattern made by Xu et al.’s (Figure 3b) is a raster one.

Figure 6 shows the step by step procedure of gener-
ating a digital marbling. After the ink-drop pattern is
made (Figures 6a through 6c), we draw a comb along
a straight line from right to left (Figure 6d), and then
draw back the same comb in the opposite direction
with the teeth passing in between where they have
passed before (Figure 6e). These two steps are repeated
in the orthogonal direction (Figure 6f and 6g). Then, we
perform two horizontal combings in opposite horizontal
directions (Figure 6h and 6i). Finally, a wavy pattern
function is applied (Figure 6j). Throughout this process,
users can choose one of the schemes described in Section
3.2. The first one is fast but the very fine details that
arise from repeated raking are blurred by this display
process. However, the second scheme slows down as
the number of operations increases, but the underlying
model preserves all of the fine details without blurry
artifacts. The resolution-independent vector images can
be created at an intermediate stage, with some delay,
and users can zoom in on particular regions to see the
fine detail at any scale. (Figure 1 and Figure 3 show two
simple results, and Figure 8b shows a complex one).

Figure 7 shows the comparison with the algorithm
of Acar’s level set method [2]. Compared with the real
marbling pattern in Figure 7a, we can find that our
mathematical marbling system can generate a pattern
(see Figure 7c) visually similar to the result of physics
simulation (see Figure 7b) under the same manipulation
steps. Figure 8 is another example. It shows that our
system can produce marbling effects comparable to real
artwork.

The software Corel painter supports limited patterning
tool functions. Most of the marbling patterns made by it
are based on the ink-drop pattern function and tine-line
pattern function in vertical and horizontal directions.

7

Resolution Xu et al.’s Ours
(in pixel) approach No-antialiasing 2× 2 RGSS 4× 4 checker 4× 4 grid
512 × 512 30 1560 732 250 239
1024 × 512 15 1265 375 125 120
1024 × 768 10 850 246 83 80
1024 × 1024 12 660 189 64 61
1280 × 1024 7 548 156 55 53

TABLE 1
The performance comparison (in FPS) of our method and Xu et al.’s approach under the same environment.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 6. Images showing the procedure of generating a digital marbling pattern step by step.

(a) (b) (c)

Fig. 7. Comparison of marbling images generated by
different systems: (a) a real marbling pattern [Maurer-
Mathison 1999], (b) result obtained from Acar’s level set
method, and (c) result obtained by our mathematical
marbling system.

(a) (b)

Fig. 8. Comparison between a real-world marbling pat-
tern and our simulation result: (a) a real-world marbling
image, (b) our simulation result. Zoom in with your PDF
viewer to see how our vector marbling pattern preserves
the very high levels of detail.

These two functions in our method are periodic as our
system forces the part beyond the border of the image to
enter the image again from the opposite side. Therefore,

given a tileable input, the image produced by applying
these two functions is still seamless whereas the one
generated by Corel Painter has visible artifacts at seams.

We have applied our method to the field of image
editing and video stream processing. Thanks to the high
processing speed, it is possible to process video streams
in real time. Actually, every frame of the video is a
marbling pattern, and the interesting transformation of
related video pictures can be potentially used in the
area of film-making and advertisement as shown in the
supplementary video.

We have also applied the images created with our
system to scene decoration. The use of marbling textures
for decorating a vase, a book and a tablecloth are shown
in Figure 9a, a window in Figure 9b, and wallpaper,
upholstery and carpeting in Figure 9c.

6 CONCLUSIONS

We have presented a novel method for modeling mar-
bling processes using simple closed-form expressions.
The method can generate authentic-looking marbling
images, both vector and raster. Our real-time design
process running on stock hardware is engaging and
easy to learn and use. Amateurs can produce beautiful
designs in a few minutes. Artists can use the system to
try different designs before they create works with real
marbling materials. For designs starting from a blank
sheet, our approach can create resolution-independent
vector-graphic images.

Real-world marbling processes involve complex fluid
behaviors and chemical and physical interactions. We

8

have been able to model a substantial variety of mar-
bling effects with our tool functions, while avoiding
the computational cost of full fluid simulation. We will
explore more mathematical functions like free-hand tools
to achieve a wider variety of effects in the near future.
For the vector graphics output, the number of vertices
grows quickly with the number of operations. This issue
could be addressed by taking shape simplification into
account. Alternatively, the current polygonal approxima-
tion to a deformed paint drop boundary curve could
be subdivided at the instant that a tine crosses it. We
also plan to design marbling solid textures by extending
our focus to three dimensions, inspired by the research
of [16].

ACKNOWLEDGMENTS

The authors would like to thank Diane Maurer-
Mathison (http://www.dianemaurer.com/) and Galen
Berry (http://marbleart.us/AntiqueSpot.htm) for their
permissions to use the marbling textures in Figure 7a
and Figure 8a respectively. Xiaogang Jin was supported
by the China 973 program (Grant no. 2009CB320801),
the NSFC-MSRA Joint Funding (Grant no. 60970159),
Zhejiang Provincial Natural Science Foundation of China
(Grant no. Z1110154) and the National Natural Science
Foundation of China (Grants 60933007 and 60833007).
Hanli Zhao was supported by the Zhejiang Provin-
cial Natural Science Foundation of China (Grant No.
Y1110004).

REFERENCES

[1] D. Maurer-Mathison, The Ultimate Marbling Handbook: A Guide
to Basic and Advanced Techniques for Marbling Paper and Fabric.
Watson-Guptill Publishing, 1999.

[2] R. Acar, “Level set driven flows,” ACM Trans. Graph., vol. 26, no. 4,
p. 15, 2007.

[3] J. Xu, X. Mao, and X. Jin, “Nondissipative marbling,” IEEE
Computer Graphics and Applications, vol. 28, no. 2, pp. 35–43, 2008.

[4] J. Stam, “Stable fluids,” in SIGGRAPH ’99: Proceedings of the 26th
annual conference on Computer graphics and interactive techniques.
New York, NY, USA: ACM Press, 1999, pp. 121–128.

[5] B. Akgun, “The digital art of marbled paper,” Leonardo, vol. 37,
no. 1, pp. 49–52, 2004.

[6] R. Acar and P. Boulanger, “Digital marbling: a multiscale fluid
model,” IEEE Transactions on Visualization and Computer Graphics,
vol. 12, no. 4, pp. 600–614, 2006.

[7] X. Jin, S. Chen, and X. Mao, “Computer-generated marbling
textures: a GPU-based design system,” IEEE Computer Graphics
and Applications, vol. 27, no. 2, pp. 78–84, 2007.

[8] H. Zhao, X. Jin, S. Lu, X. Mao, and J. Shen, “AtelierM++: a fast
and accurate marbling system,” Multimedia Tools and Applications,
vol. 44, no. 2, pp. 187–203, 2009.

[9] B. Kim, Y. Liu, I. Llammas, and J. Rossignac, “Advections with
significantly reduced dissipation of diffusion,” IEEE Transactions
on Visualization and Computer Graphics, vol. 13, no. 1, pp. 135–144,
2007.

[10] R. Grossman, Digital Painting Fundamentals with Corel Painter 11.
Course Technology PTR, 2009.

[11] K. Perlin, “An image synthesizer,” Computer Graphics, vol. 19,
no. 3, pp. 287–296, 1985.

[12] K. Sims, “Choreographed image flow,” The Journal of Visualization
and Computer Animation, vol. 3, no. 1, pp. 31–43, 1992.

[13] A. Orzan, A. Bousseau, H. Winnemöller, P. Barla, J. Thollot, and
D. Salesin, “Diffusion curves: a vector representation for smooth-
shaded images,” ACM Trans. Graph. (SIGGRAPH 2008), vol. 27,
no. 3, p. 92, 2008.

[14] D. Nehab and H. Hoppe, “Random-access rendering of general
vector graphics,” ACM Trans. Graph. (SIGGRAPH Asia 2008),
vol. 27, no. 5, p. 135, 2008.

[15] S. Jeschke, D. Cline, and P. Wonka, “Rendering surface details
with diffusion curves,” ACM Trans. Graph. (SIGGRAPH Asia 2009),
vol. 28, no. 5, p. 117, 2009.

[16] L. Wang, K. Zhou, Y. Yu, and B. Guo, “Vector solid textures,”
ACM Trans. Graph. (SIGGRAPH 2010), vol. 29, no. 4, p. 86, 2010.

[17] R. Ando and R. Tsuruno, “Vector graphics depicting marbling
flow,” Computers and Graphics, vol. 35, no. 2, 2011.

[18] A. Jaffer, “Topological Computer Graphics,” http://people.csail.
mit.edu/jaffer/Marbling, 2007.

[19] T. Akenine-Möller, E. Haines, and N. Hoffman, Real-Time Render-
ing 3rd Edition. Natick, MA, USA: A. K. Peters, Ltd., 2008.

Shufang Lu is a PhD candidate at the State
Key Laboratory of CAD & CG at Zhejiang
University. She received her BSc degree in
software engineering from Wuhan University
in 2007. Her research interests include mar-
bling simulation, non-photorealistic rendering
and image processing. Contact her at lushu-
fang@cad.zju.edu.cn.

Aubrey Jaffer is a mathematician and one
of the founders of TextMyFood LLC. His re-
search interests include convection, radiative
transfer, numerical analysis, algebraic geome-
try, symbolic algebra, and space filling curves.
Aubrey has a BS in Mathematics from the Mas-
sachusetts Institute of Technology. Contact him
at agj@alum.mit.edu.

Xiaogang Jin is a professor at the State Key
Laboratory of CAD & CG at Zhejiang University.
His research interests include implicit surface
computing, cloth animation, crowd and group
animation, texture synthesis, and digital geom-
etry processing. Jin received his PhD in applied
mathematics from Zhejiang University. Contact
him at jin@cad.zju.edu.cn.

Hanli Zhao is a faculty member of Intelligent
Information Systems Institute, Wenzhou Univer-
sity, Wenzhou, China. He received his B.Eng.
degree in software engineering from Sichuan
University in 2004 and his Ph.D. degree in com-
puter science from Zhejiang University in 2009.
His research interests include non-photorealistic
rendering and general purpose GPU computing.
Contact him at hanlizhao@gmail.com.

9

Xiaoyang Mao is a professor at the University of
Yamanashi in Japan. Her research interests in-
clude non-photorealistic rendering, texture syn-
thesis, perception and affect based rendering
and visualization. Xiaoyang Mao recieved her
BS in computer science from Fudan University
in China and her MS and PhD in computer
science from the University of Tokyo. Contact her
at mao@yamanashi.ac.jp.

10

(a) (b) (c)

Fig. 9. Application to scene decorations: (a) the vase, book and tablecloth decorations, (b) window design, and (c)
wallpaper, upholstery and carpeting in room decorations. These 3D scenes were rendered with ray tracing in 3D
Studio Max.

(a) (b) (c)

(d) (e) (f)

Fig. 10. Various marbling images made by our mathematical marbling system.

