
Sketch-based Shape-preserving Tree Animations

Yutong Wang1, Luyuan Wang1, Zhigang Deng2,3, Xiaogang Jin1∗

1 State Key Lab of CAD&CG, Zhejiang University, Hangzhou, 310058, China
2 Virtual Reality and Interactive Technique Institute, East China Jiaotong University

3 Computer Science Department, University of Houston, Houston, TX, USA

jin@cad.zju.edu.cn

Abstract
We present a novel and intuitive sketch-based
tree animation technique, targeting on gener-
ating a new type of special effect of smoothly
transforming leafy trees into morphologically
different new shapes. Both topological consis-
tencies of branches and meaningful inbetween
crown shapes are preserved during the transfor-
mation. Specifically, it takes a leafy tree and
a user’s sketch describing the silhouette of the
desired crown shape under a certain viewpoint
as the input. Based on a self-adaptive multiscale
cage tree representation, branches are locally
transformed through a series of topology-aware
deformations, and the resulting tree conforms to
the user-designed shape, demonstrating better
aesthetics compared to global single cage-based
methods. By interpolating the transformations,
we are able to create visually pleasing shape-
preserving animations of trees transforming
between two crown shapes. Our proposed
framework also provides an efficient way to
interactively edit leafy trees towards desired
shapes, demonstrating its potential to leverage
existing tree modeling frameworks by provid-
ing flexible and intuitive tree editing operations.

Keywords: sketch-based editing, tree ani-
mation, shape-preservation, special effects

1 Introduction

Despite its long history, the study of tree an-
imations remains active. Other than animat-

ing real-wrold scenarios, such as trees’ growth
process [1, 2] and their interactions with envi-
ronment [3, 4], special requirements of animat-
ing stylized trees arise in the film and anima-
tion industry in order to nurture the mysterious
atmosphere with compelling visual effects [5].
Consequently, topology-aware approaches have
been proposed to generate smooth transforma-
tions between trees, and achieved visually com-
pelling special effects [6, 7, 8]. However, they
do not put explicit efforts on preserving a se-
quence of morphologically continuous crowns
when transforming between trees with special-
ized crown shapes, leading to less meaningful
inbetween trees, see Figure 10 (top row).

In this paper, we propose a novel sketch-
based shape-preserving tree animation method,
which smoothly transforms a leafy tree into cus-
tom crown shapes defined by designers’ sketch-
es while preserving the morphological mean-
ings of inbetween trees. Our method contributes
to a new type of special visual effect for leafy
trees. Figure 1 shows an example of fluidly
transforming a Salix with sphere-like crown in-
to a heart-shaped one. It is noteworthy that both
the topological consistencies of branches and
the morphological meanings of crowns are p-
reserved during the animation. One additional
benefit of our method is that it also provides an
intuitive way to efficiently control and edit leafy
trees into desired crown shapes using one user-
designed sketch alone.

The key technical challenge to achieve shape-
preserving tree animations is how to transform
tree branches to form morphologically meaning-

Figure 1: Shape-preserving transformations of a sphere-shaped Salix into a heart-shaped one.

ful crown shapes while preserving their topolog-
ical hierarchies. To tackle the challenge, we pro-
pose a self-adaptive multiscale cage-based de-
formation strategy to hierarchically propagate
the transformations of crowns to tree branches.
Specifically, the input leafy tree is first abstract-
ed into a skeleton-lobe representation [7], where
the foliage is clustered into canonical geome-
tries (i.e., lobes) in order to describe the tree in
a hierarchical multiscale manner. The morpho-
logically meaningful and continuous inbetween
trees are achieved by first gradually deforming
the tree’s crown according to the designer’s s-
ketch, and then hierarchically propagating the
deformation to tree branches based on the self-
adaptive multiscale cage tree, in which the n-
odes are the view-dependent silhouettes serving
as cages and the edges maintain their topologi-
cal hierarchies. Since branches are transformed
under both topology-aware and shape-aware de-
formations, the morphological meanings of the
resulting trees are guaranteed.
Contributions. To the best of our knowledge,
our work creates the first not only topologically-
consistent but also shape-preserving animation-
s of transforming leafy trees into morphologi-
cally different new shapes. The contribution-
s are twofold: (i) a novel tree animation algo-
rithm that smoothly transforms a tree to crowns
with custom shapes while preserving the topo-
logical consistency of branches and morpholog-
ical meanings of crown shapes; (ii) an intuitive
tree editing method that allows designers to di-
rectly control the shape of the tree through view-
dependent oversketching operations.

2 Related Work

Shape-guided tree modeling. To date, a large
number of shape-guided tree modeling methods
have been proposed to generate trees conform-
ing to custom crown shapes. Specifically, there

are 3D shape-guided methods [9, 10, 11, 12]
and sketch-based interactive methods [13, 14,
15, 16]. However, both of them only generate
static trees and are sensitive to the change of the
guidance shapes. In other words, whenever the
guidance shape is changed, the algorithm just re-
run to regenerate a new tree. Because of the low
efficiency and no warranty of topologically con-
sistent tree branches, they are not suitable for
generating shape-preserving tree animations.
Tree animations. Existing literature on tree
animations can be roughly classified into two
categories: animating trees’ development and
their interactions with environment. Procedural
methods such as [1, 17, 2] have been proposed
to create botanically plausible tree growth ani-
mations by interpolating a number of predefined
developmental parameters. However, none of
them is capable of generating shape-preserving
animations of transforming leafy trees into cus-
tom shapes. The main reason is that these de-
velopmental parameters have no direct associa-
tion with on trees’ crown shapes, and interpolat-
ing them cannot guarantee to generate morpho-
logically continuous and meaningful inbetween
crowns. In addition to growth animations, vari-
ous efforts have been conducted to deform and
prune branches of a tree in order to generate re-
alistic responses to environmental factors, such
as wind [18, 4], light [3], fire [19, 20], and ob-
stacles [21, 3]. Despite that the shape of the tree
is changed according to the environment, it can-
not be smoothly transformed into a user-defined
shape since existing methods do not put explicit
efforts on preserving the morphological mean-
ings of trees’ crown shapes.
Topology-aware tree animations. Recent
works [6, 7] create topologically consistent
animations between two topologically varying
trees. However, [6] does not handle the ani-
mations of foliage. Although [7] addresses the
smooth transformations of foliage, it fails to
preserve the morphological meanings of inbe-

Figure 2: The pipeline of our method.

tween trees’ crowns, leading to less compelling
visual effects when transforming between trees
with custom crowns. In addition, this method
requires exact two trees as input whereas ours
only requires one tree and a designer’s sketch
describing the silhouette of the desired crown.

3 Approach Overview

Figure 2 illustrates the main steps of our shape-
preserving tree animation approach. Given a
leafy tree (Figure 2(a)), it is first converted into
a branching-pattern aware, skeleton-lobe repre-
sentation using [7] (Figure 2(b)). From a certain
viewpoint, designers are allowed to change the
shape of the tree by either oversketching the de-
tected crown’s silhouette (open sketch) or draw
a new shape describing the desired crown shape
under the viewpoint (closed sketch), see Figure
2(c), where the crown silhouettes are plotted in
blue whereas designers’ sketches are plotted in
red. The crown deforms according to the new
silhouette, and hierarchically propagates the de-
formation to tree branches based on a multi-
scale cage tree (MCT), which preserves the hi-
erarchical topology of both tree branches and
their corresponding lobes. As a result, the tree
is gradually transformed, and a fluid animation
of transforming a tree into the sketched crown
shape is generated (Figure 2(d)).

4 Skeleton-lobe Representation

Given a leafy tree, we first abstract it into a
branching-pattern aware, skeleton-lobe repre-
sentation as in [7]. Below we summarize the
essential terms pertinent to our work. Readers
are referred to [7] for more algorithm details.
Chain. To describe the branching hierarchies of
a tree, we label the tree branches with hybrid or-

derings [7] and define the consecutive branches
without ordering changes as a chain.
Branching pattern. In real world, the arrange-
ment of branches at a branching point generally
follows one of three patterns: alternative, oppo-
site and whorled [22]. In this paper, we encode
the branching patterns into chain groups, which
consist of chains growing at the same branching
points while sharing the same orderings.
Lobe. The general term used for canonical ge-
ometry formed by a cluster of leaves.

Multiscale lobe descrip-
tions. Following the work
of [7], three types of lobes
(see inset) are defined in
our work. Specifically,
the inner lobe (IL), which only contains leaves
growing at the tip of a chain, is interpreted as the
finest scale of description; the outer lobe (OL)
conveys a coarse description of a chain’s foliage
by describing the shape formed by the leaves
that covers all its substructures; the group out-
er lobe (GOL), defined as the coarsest scale of
description, depicts the general shape of a chain
group’s foliage and mathematically equals to the
union of OLs of the chains within the group. It
is noteworthy that the GOL is equivalent to OL
if and only if the chain group consists of only
one chain. This leads to a multiscale description
of a tree’s foliage, see Figure 3(a). At the coars-
est scale, the tree is only described by the root
chain group and the GOL, which is also referred
as the crown in this paper. More detailed fo-
liage is described at finer scales, where the tree
is described by higher-ordered chain groups and
their GOL/OLs, and at the finest scale, the tree
is described by all the chain groups and the ILs.
Branching pattern-aware topology tree. With
the multiscale lobe descriptions, we encode
their topological hierarchies into a branching

pattern-aware topology tree (i.e., the BPTT) [7],
see Figure 3(b). Nodes of the BPTT are defined
as a tuple Ni :=< GOLi, GCi >, where GOLi

is the GOL of the chain group GCi exhibiting
a certain branching pattern. Edges in the BPTT
are defined in the form of (Ni, Nj), implying a
hierarchical relationship between Ni and Nj on
the condition that GOLi is the parent of GOLj .

Figure 3: Multiscale representations of a tree.

5 Sketch-based Tree Animation

5.1 Sketch-based Crown Editing

The shape-preserving tree animation is initiat-
ed by the change of the tree’s crown. In our
method, we employ view-dependent sketching
operations to interactively edit a leafy tree’s
crown shape. The edit of a crown is accom-
plished in two steps: (i) detect the crown’s sil-
houette; (ii) oversketch a part of the silhouette
(open sketch) or redraw a new (closed) sketch to
describe the desired shape, see Figure 2(c).
Silhouette detection. Among various sil-
houette detection approaches [23], we choose
the object-space silhouette (or simply the sil-
houette) for its accuracy and convenience
to potential editing operations. Specifically,
the silhouette is piecewise linear, denoted as
S = {pi | i ∈ (1, . . . , n)}, and pi satisfies ni ·
(pi − C) = 0, where ni is the vertex normal
and C is the viewing position.
Silhouette oversketching. Designers are al-
lowed to either draw an open sketch (red line
in Figure 2(c) top row) to slightly modify the
crown shape (Figure 2(d) top row) or redraw

a closed sketch (red line in Figure 2(c) bottom
row) to define a new shape (Figure 2(d) bottom
row). Both of the sketches are view-dependent,
representing the projection of the desired crown
shapes in the screen space, which are later trans-
formed to the object space by establishing a
mapping to the crown silhouette using screen s-
pace arc-length parameterization [24].

5.2 View-dependent Multiscale Cage Tree

According to the BPTT, under a certain view-
point, the silhouettes of a tree’s lobes, includ-
ing GOLs, OLs and ILs, also exhibit hierarchi-
cal features. In addition, the fact that coarser
scale lobes fully envelop the finer scale lobes
makes it reasonable to consider the coarser s-
cale silhouettes as cages of the finer scale silhou-
ettes. Therefore, we formalize the hierarchical
silhouettes into a multiscale cage tree (in graph-
theoretic sense), i.e., MCT, in which the nodes
are the view-dependent silhouettes, viewed as
cages, and the edges encode the parent-child re-
lations between nodes, see Figure 5. Based on
the objects that are directly influenced by the
changes of cage vertices, two types of cages
are distinguished: leaf cages, corresponding to
the IL’s silhouettes, that directly deform tree
branches, and internal cages (none-leaf cages),
the silhouettes of the GOL and OL, that only af-
fect the finer scale cages.

Figure 5: The view-dependent multiscale cage tree.

It is noteworthy that the hierarchical and mul-
tiscale nature of the MCT implies that a coars-
er scale cage only directly controls the deforma-
tion of its child cages at the finer scale and any
cage vertex can only be controlled by the parent
cage. In other words, when a cage at a certain s-
cale changes, the transformation should only be
propagated downwards the MCT hierarchy. In
addition to maintain the topological hierarchies
of lobes’ silhouettes, the MCT brings two addi-
tional benefits. It not only preserves the morpho-

Figure 4: The main steps of the baseline transformation.

logical consistencies of branches and lobes by
ensuring that transformations can only be prop-
agated from the coarser scale cages to the finer
scale cages, but also provides the capability of
producing local transformations at any scales,
see the self-adaptive cages in Section 5.4.1.

5.3 The Baseline Transformation

Our algorithm hierarchically propagates the
transformation induced by the sketch down-
wards the MCT to the finer scale internal cages
and finally to leaf cages, resulting in a shape-
preserving transformation of the tree. Specifi-
cally, it works in three steps, see Figure 4.
Step 1: transform internal cages (Figure 4(b)).
We employ mean value coordinates (MVC) [25]
to compute the new cage vertices resulted from
the transformation of the coarser cages. By
definition, the MVC of a point pi inside a given
cage C is a set of parameters wij satisfying
pi =

∑
vj∈C wijvj , where vj is the cage vertex.

This implies that any point inside a cage can be
represented as a linear combination of the cage
vertices. Therefore, when the coarser scale cage
is transformed, the new position of a finer scale
cage vertex p

′
i is calculated using the MVC wij

as p
′
i =

∑
vj∈C wijv

′
j , where C is the coarser

scale cage and v
′
j is the changed cage vertex.

Step 2: transform lobes (Figure 4(c)). The
change of an internal cage automatically in-
duces the corresponding lobe to deform. By fix-
ing the cage vertices as constraints, we use the
Laplacian deformation algorithm [24] to com-
pute the deformed shape by minimizing the fol-
lowing linear system:∑

v
′
i∈M

‖L
(
v
′
i

)
− σi‖2 +

∑
vj∈C
‖v′

j − vj‖2, (1)

where L (·) is the Laplacian operator, σi is the
Laplacian coordinate computed using cotangent
weights, v

′
i is the transformed surface point, and

vj is the constraint cage vertex with transformed
new position v

′
j . The first term perserves the

local details of the shape in L (·), and the sec-
ond term penalizes the changes of the constraint
points during the transformation.
Step 3: transform tree branches (Figure 4(d)).
Tree branches are not transformed until the
transformation is propagated to the leaf cages.
To maintain the topological consistency, they
are transformed by two consecutive deformation
propagations: the backward and forward propa-
gation. Given a branch and its transformed IL,
the target position of the branch tip is calculated
using the MVC coordinates [25]. Served as a
constraint point, the branch tip is transformed
to the target position and the transformation is
propagated backwards to the root of the branch
using Eq. (1). Once done, the branch forwards
the transformation to its child branches by
fixing the child roots as the constraint points
and performing the transformation in the similar
way using Eq. (1).

By interpolating the transformation process,
the tree is smoothly transformed into the design-
er’s custom shape, without violating branches’
topological consistencies.

5.4 Shape-preserving Transformation

Although maintaining the topological consis-
tency, the above propagation does not guarantee
the shape-preserving transformations of tree
branches. In other words, the resulting trees
might poorly match the designer’s expectations,
see the circled regions in Figure 6(b). Two
major factors that weaken the aesthetics of
the resulting trees are poor crown coverage
and unnaturally deformed branches, which
can be solved by employing shape-aware self-
adaptive cages and pruning branches outside the
designer’s desired shapes, respectively.

5.4.1 Self-adaptive Cages

Figure 6: Comparison of the baseline transforma-
tion (b) and the self-adaptive shape-
preserving transformation (c).

The issue that a resulting tree poorly conforms
to the target crown shape (green regions in Fig-
ure 6(b)) arises when the branches of the in-
put leafy tree do not give a full coverage of
the crown (Figure 6(a)). Unfortunately, this
is a natural phenomenon of real world trees s-
ince the growth of both branches and leaves
are influenced by environmental factors, which
might shed branches and leaves because of light-
s, winds, etc. In our baseline transformation
algorithm, cages and tree branches are trans-
formed according to the constraint points com-
puted by MVC coordinates that preserve the po-
sitions of the constraint points relative to their
corresponding cages. Consequently, the uncov-
ered regions of the input crown remain uncov-
ered after the transformation, leading to unsatis-
fying result, see Figure 6(b).

To solve the problem, we introduce the shape-
preserving self-adaptive cage into the baseline
transformation, which automatically deforms
the finer scale cages to “fill-in" the uncovered
regions of their parental cages at the coarser
scale. Specifically, when an internal cage is
transformed and prior to forwarding the trans-
formation to its children, we analyze and parti-
tion the cage into segments based on the cover-
age of the child cages, see Figure 7(a). Each of
the segments is characterized as one of the two
types: the covered or uncovered segments, de-
noted as O and F , respectively. A segment is
label asO if there are at least one child cage that
is partially matched within a distance threshold
(10 pixels in the screen space), otherwise it is
labeled as F , see Figure 7(a).

To maximize the coverage, we greedily de-
form the child cages. For instance, given an F

segment with neighboring segments Oi and Oj ,
for every child cage that is partially matched to
either Oi or Oj within a threshold (10 pixels in
the screen space), we perform Laplacian defor-
mation [24] to adjust the cage with strategically
selected constraint points. With the entire child
cage considered as the region of interest, the ver-
tices of the cage that are partially matched to the
Oi or Oj segment are automatically selected as
constraint points. Furthermore, with the map-
pings induced by the screen-space arc-length pa-
rameterization [24] of the child cage and the F
segment, the cage vertices that are matched with
the F segment are also selected as additional
constraint points. As a result, the cage is de-
formed to cover the F segment and then propa-
gates the transformation to the finer scale cages
based on the MCT.

Figure 7: Self-adaptive cages.

5.4.2 Pruning Branches

In order to avoid unnaturally transformed
branches, we propose a pruning algorithm to s-
trategically wilt several branches, see the blue
branches in Figure 8(b). The branch pruning is
hierarchically performed based on the MCT. S-
tarting from the coarsest scale, we clip the cage
C with the designer’s sketch using Vatti’s poly-
gon clipping algorithm [26]. In case that the
cage is clipped into multiple pieces, we choose
the one with the largest area as the clipped cage
C′ . The areas of both C and C′ , as well as the
ratio r of the C′’s area to the C’s area, are calcu-
lated. Based on r, branches are pruned by per-
forming the following tests:
(i) if r is smaller than a certain threshold,

which is experimentally set to 30%, the cage is
marked as pruning. Based on the MCT, all of the
child cages are also marked as pruning to avoid
the violation of the topological consistency;
(ii) if r is approximate to 1, it implies that the

cage is nearly completely inside the sketch and
requires no more pruning tests;
(iii) otherwise, we test the finer scale cages

based on the MCT and repeat the process until
the leaf cages are tested or either the above con-
dition (i) or (ii) is satisfied.

In the end, branches whose corresponding
cages are marked as pruning are gradually wilt-
ed using the topology-aware method [7]. Figure
8 demonstrates an example of the branch prun-
ing algorithm.

Figure 8: Comparison of pruning branches.

Ex.
Input Time

Branches # Leaves (per frame)
Fig. 1 5,031 3,830 1.14s
Fig. 2 1,800 1,702 0.32s
Fig. 6 3,917 3,787 2.05s

Fig. 10 3,976 3,852 0.67s
Fig. 12 1,774 1,766 0.57s

Table 1: Runtime statistics.

6 Results and Discussion

6.1 Results

We collected 60 real-world trees from the Inter-
net (i.e., http://www.evermotion.org/). In addi-
tion, 10 designers’ hand-modeled virtual trees
were also incorporated into the dataset to eval-
uate the effectiveness and flexibility of our al-
gorithm. Figure 2 shows the result of smoothly
transforming an oval-shaped Cabbage tree in-
to slightly modified crown shape and a com-
pletely new diamond shape. Figures 1, 10
and 13 demonstrate the visually pleasing shape-
preserving transformations for different tree
species. Please refer to our animation results in
the supplemental video.
Performance. We implemented our algorithm
in C++ on a desktop equipped with Intel c© i7

4.0GHz CPU and 32GB RAM. The runtime s-
tatistics are presented in Table 1. In sum, our
method demonstrated its efficiency of generat-
ing smooth results on an off-the-shelf computer.

6.2 Discussion

Comparison with space colonization method.
Figure 9 compares our work with the space col-
onization method [10], which generates trees
with custom crown shapes using a procedural
growth model to simulate the natural compe-
titions between branches. Although targeting
on generating static trees, the method of [10]
demonstrates the possibility of generating a
shape-preserving animation of tree transforma-
tion from one crown shape to another when
a sequence of consistently transformed crown
shapes is provided. Unfortunately, it failed to
create a smoothly transformed tree sequence
and generated discontinued branches (circled in
red), as shown in Figure 9 (top row).

The reason is that the algorithm [10] must
regenerate a new tree whenever the crown
changes. Even with smoothly transformed
crowns, the procedural nature of the algorith-
m cannot guarantee the generation of topologi-
cally consistent tree branches between consec-
utive frames, leading to unsuccessful anima-
tion. In contrast, our algorithm (the bottom row
in Figure 9) avoids regenerating trees for each
frame. Instead, it gradually deforms the crown
and hierarchically propagates the crown’s trans-
formation to tree branches based on the self-
adaptive MCT, therefore generates more visual-
ly pleasing animation.
Comparison with topologically consistent
morphing. We compared our work with the
most recent and relevant work by Wang et
al. [7], which is capable of generating fluid
morphing effects between two leafy trees. As
shown in the bottom row of Figure 10, our
method demonstrates the equal capability of
preserving branches’ topological consistency
when transforming a tree into a new shape, but
exhibits an evident advantage over the preser-
vation of the meaningful in-between crown
shapes. In addition, our algorithm only takes a
leafy tree and a designer’s sketch to achieve a
visual effect, whereas [7] requires at least two
leafy trees to create a morphing animation.

Figure 9: Comparison between results generated by our method (bottom row) and by the space colonization
algorithm [10] (top row). The latter produces discontinuous tree branches between frames (marked
in red) due to a lack of preservation of branches’ topological consistencies.

Figure 10: Comparison between our method (bottom row) and topologically consistent morphing [7] (top row).
The latter generates less meaningful inbetween crowns due to the branch correspondences unaware
of crown’s morphological meanings.

In addition to visual
comparisons, we quan-
tify the shape preser-
vation of the resulting
tree sequences by mea-
suring the similarities
between the inbetween crowns’ silhouettes and
the morphologically meaningful reference sil-
houettes (see inset), which are achieved by lin-
early interpolating the source and the target
crown silhouettes. The similarities between t-
wo crown silhouettes is measured by the dis-
crete Fréchet distance [27], and the smaller the
distance is, the greater the similarity is. Figure
11 plots the Fréchet distances of both methods
against the time during the animation. Evident-
ly, our method (red plot) demonstrates small-
er distances to the reference silhouettes, imply-
ing greater similarities to the morphologically
meaningful inbetween crown shapes compared
to [7] (blue plot).

The main reason is that [7] directly transform-
s tree branches based on topology-aware cor-

respondences, but does not put explicit effort-
s on maintaining the morphological meanings
of the transformed crown shapes. In contrast,
out method interpolates the crown shapes dur-
ing the animation and hierarchically propagates
the transformation of crowns to tree branches
based on the MCT. Therefore, not only the topo-
logical hierarchy but also the morphologically
consistent and the meaningful in-between crown
shapes are preserved by our algorithm.

Comparison with single cage transformation.
In Figure 12, we compared our self-adaptive
multiscale transformation (Figure 12(d)) with
the single-cage based global transformation
(Figure 12(c)). It is clear that our method cre-
ates better results because of the locally trans-
formed branches based on the self-adaptive M-
CT. Another noteworthy feature of our algorith-
m is the preservation of tree’s natural branches
and foliage. This can be explained by the mul-
tiscale skeleton-lobe representation, which pro-
vides an efficient way to reconstruct botanical-

ly meaningful trees from transformed skeletons,
radii, and lobes [7].

Figure 11: Comparison of the discrete Fréchet Dis-
tance between our method and topologi-
cally consistent morphing [7].

7 Conclusion

Aiming at generating a new type of visual effec-
t, we present a novel and intuitive sketch-based
tree animation method. It takes a leafy tree
and a designer’s sketch as input and smoothly
transforms the tree into the custom crown shape.
Both topologically consistent tree branches and
morphological meaningful inbetween crowns
are maintained by the MCT. Local deformation-
s are supported by the self-adaptive multiscale
cages, resulting in aesthetically pleasing result-
s. In addition, our method could be potentially
integrated into existing sketch-based tree mod-
eling frameworks, such as [15, 14, 16], as an ef-
ficient and convenient way to generate special
effects for leafy trees.

Limitations and Future Work.
Our method still leaves room for
improvement. Because of the
cage-based transformation strat-
egy, the results approximate to
the designers’ sketches by con-
forming to the dominant fea-
tures and ignoring the subtle details (inset). In
addition, since we employ a view-dependent s-
ketch to edit a tree’s crown shape, due to the
lack of 3D information, the crowns of the re-
sulting trees only transform meaningfully when
observed from the viewpoint from which they
are modified. Despite of this, thanks to the mul-
tiscale skeleton-lobe representation, the trans-
formed trees remain to be botanically meaning-
ful when viewed from other viewpoints, see the

top view results shown in Figure 2(d). In the fu-
ture, we plan to improve the crown editing op-
erations by introducing direct three dimensional
controls, and make the results meaningful un-
der multiple viewpoints. Another promising fu-
ture direction is to extend the current framework
by generating shape-preserving animations be-
tween two topologically different trees as in [7].

References
[1] Bernd Lintermann and Oliver Deussen. Interactive

modeling of plants. IEEE Computer Graphics and
Applications, 19(1):56–65, 1999.

[2] Sören Pirk, Till Niese, Oliver Deussen, and Boris
Neubert. Capturing and animating the morphogen-
esis of polygonal tree models. ACM Transactions on
Graphics (TOG), 31(6):169, 2012.

[3] Sören Pirk, Ondrej Stava, Julian Kratt, Michel Ab-
dul Massih Said, Boris Neubert, Randomir Mech,
Bedrich Benes, and Oliver Deussen. Plastic trees:
interactive self-adapting botanical tree models. ACM
Transactions on Graphics (TOG), 31(4):50, 2012.

[4] Sören Pirk, Till Niese, Torsten Hädrich, Bedrich
Benes, and Oliver Deussen. Windy trees: Computing
stress response for developmental tree models. ACM
Transactions on Graphics, 33(6):204, 2014.

[5] Arthur Shek, Dylan Lacewell, Andrew Selle, Daniel
Teece, and Tom Thompson. Art-directing disney’s
tangled procedural trees. ACM SIGGRAPH 2010
Talks, 53, 2010.

[6] Yutong Wang, Xiaowei Xue, Xiaogang Jin, and Zhi-
gang Deng. Creative virtual tree modeling through
hierarchical topology-preserving blending. IEEE
Transactions on Visualization and Computer Graph-
ics, 23(12):2521–2534, 2017.

[7] Yutong Wang, Luyuan Wang, Zhigang Deng, and
Xiaogang Jin. Topologically consistent leafy tree
morphing. Computer Animation and Virtual Worlds,
28(3-4), 2017.

[8] Guan Wang, Hamid Laga, Ning Xie, Jinyuan Jia,
and Hedi Tabia. The shape space of 3d botanical
tree models. ACM Transactions on Graphics (TOG),
37:1–18, 2018.

[9] Przemyslaw Prusinkiewicz, Mark James, and
Radomír Měch. Synthetic topiary. In Proceedings of
the 21st Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH ’94), pages
351–358. ACM, 1994.

[10] Adam Runions, Brendan Lane, and Przemyslaw
Prusinkiewicz. Modeling trees with a space coloniza-
tion algorithm. In In Proceedings of Eurographics
Workshop on Natural Phenomena, pages 63–70,
2007.

[11] Rui Wang, Yinhui Yang, Hongxin Zhang, and Hujun
Bao. Variational tree synthesis. Computer Graphics
Forum, 33(8):82–94, 2014.

Figure 12: Comparison with the single cage-based global transformation. The input (a), the crown silhouette
(blue) and the designer’s sketch (red) (b), the results by the single cage-based global transformation
(c) and our method (d).

Figure 13: A fairy scene of transforming leafy trees into a moon and three stars.

[12] Ondrej Stava, Sören Pirk, Julian Kratt, Baoquan
Chen, R Měch, Oliver Deussen, and Bedrich Benes.
Inverse procedural modelling of trees. In Computer
Graphics Forum, volume 33, pages 118–131. Wiley
Online Library, 2014.

[13] Makoto Okabe, Shigeru Owada, and Takeo Igarash.
Interactive design of botanical trees using freehand
sketches and example-based editing. Computer
Graphics Forum, 24(3):487–496, 2005.

[14] Jamie Wither, Frédéric Boudon, M-P Cani, and
Christophe Godin. Structure from silhouettes: a new
paradigm for fast sketch-based design of trees. Com-
puter Graphics Forum, 28(2):541–550, 2009.

[15] Xuejin Chen, Boris Neubert, Ying-Qing Xu, Oliv-
er Deussen, and Sing Bing Kang. Sketch-based tree
modeling using markov random field. ACM Transac-
tions on Graphics (TOG), 27(5), 2008.

[16] Steven Longay, Adam Runions, Frédéric Boudon,
and Przemyslaw Prusinkiewicz. Treesketch: inter-
active procedural modeling of trees on a tablet. Pro-
ceedings of the International Symposium on Sketch-
based Interfaces and Modeling, 107–120, 2012.

[17] Przemyslaw Prusinkiewicz. Modeling plant growth
and development. Current Opinion in Plant Biology,
7(1):79–83, 2004.

[18] Yili Zhao and Jernej Barbič. Interactive authoring
of simulation-ready plants. ACM Transactions on
Graphics (TOG), 32(4):84, 2013.

[19] Shiguang Liu, Tai An, Zheng Gong, and Ichiro Hagi-
wara. Physically based simulation of solid object-
sâĂŹ burning. In Transactions on Edutainment VII,
pages 110–120. Springer, 2012.

[20] Sören Pirk, Michał Jarząbek, Torsten Hädrich, Do-
minik L Michels, and Wojciech Palubicki. Inter-
active wood combustion for botanical tree models.
ACM Transactions on Graphics (TOG), 36(6):197,
2017.

[21] Wojciech Palubicki, Kipp Horel, Steven Longay,
Adam Runions, Brendan Lane, Radomír Měch, and
Przemyslaw Prusinkiewicz. Self-organizing tree
models for image synthesis. ACM Transactions on
Graphics (TOG), 28(3):58, 2009.

[22] Michael A Dirr. Manual of woody landscape plants:
their identification, ornamental characteristics, cul-
ture, propagation and uses. Stipes Publishing Co,
1990.

[23] Aaron Hertzmann. Introduction to 3d non-
photorealistic rendering: Silhouettes and outlines.
Non-Photorealistic Rendering, SIGGRAPH Course
Notes, 99(1), 1999.

[24] Andrew Nealen, Olga Sorkine, Marc Alexa, and
Daniel Cohen-Or. A sketch-based interface for
detail-preserving mesh editing. ACM Transactions
on Graphics (TOG), 24(3):1142âĂŞ–1147, 2005.

[25] Tao Ju, Scott Schaefer, and Joe Warren. Mean val-
ue coordinates for closed triangular meshes. ACM
Transactions on Graphics (TOG), 24(3):561–566,
2005.

[26] Bala R Vatti. A generic solution to polygon clipping.
Communications of the ACM, 35(7):56–63, 1992.

[27] Thomas Eiter and Heikki Mannila. Computing dis-
crete fréchet distance. Technical report, Tech. Re-
port CD-TR 94/64, Information Systems Departmen-
t, Technical University of Vienna, 1994.

