
Automatic Pose and Wrinkle Transfer for Aesthetic Garment Display

Abstract

We present an automatic and semantic pose and wrinkle transfer method from one garment onto an-
other for aesthetic display, which is previously performed by professional artists using a knowledge-intensive
and time-consuming process. Given a source garment model with fine wrinkle details in a specific pose
and another target garment model with a similar style in a neutral pose but without fine wrinkle details,
our approach can automatically transfer the pose and wrinkle details faithfully from the source to the tar-
get using a two-stage process. In the semantic correspondence establishment stage, we construct a dense
correspondence between the source and the target by utilizing their semantic information in 2D patterns.
Specifically, we first obtain the initial correspondence points on the paired 2D patterns by leveraging their
semantic information. These marker points, which act as constraints, are mapped to their corresponding 3D
models. We then establish their per-triangle correspondence using a non-rigid Iterative Closest Point (ICP)
algorithm. In the deformation transfer stage, we transfer the pose and wrinkle details from the source to
the target by solving an optimization problem. Extensive experiments validate that our method is able to
generate better results compared to state-of-the-art methods, and it can lead to significant time savings for
fashion designers.
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1. Introduction1

Online shopping for apparel has been the fastest growing sales channel in the last decade. In recent years,2

lots of clothing retailers are beginning to sell their apparel products using digital samples for fast fashion.3

These digital garments are aesthetically displayed with rich wrinkle details in some specific poses in order to4

attract more customers. Creating such high-quality digital garments is a laborious and knowledge intensive5

task. This process involves 2D pattern design, pattern arrangement on the mannequin, cloth simulation6

(Browzwear, 2000-2020; CLO, 2020; Optitex, 1988-2020), and fine-tuned sculpting (ZBrush, 2020). For7

interactive design, a simulated cloth model is usually created with a limited resolution. To achieve a more8

visually appealing appearance, the simulated cloth model is often sculpted to add fine high-frequency details9

to the garment using a digital sculpting tool like ZBrush (ZBrush, 2020). Such sculpting tools use dynamic10

levels of resolution to allow sculptors to make local changes to their models. However, such a sculpting11

process may take an experienced designer hours to create a satisfactory result. For a garment with the same12

or a similar design, the time-consuming sculpting process has to be repeated practically from scratch, even13

the only difference is the size. This motivates us to develop an automatic method to eliminate the laborious14

sculpting process.15

The above problem can be considered as the deformation transfer from a source triangle mesh onto a16

target triangle mesh (Sumner and Popovic, 2004), which has received considerable attention in the past17

decades. In (Sumner and Popovic, 2004), the user needs to manually build a correspondence map between18

the triangles of the source and those of the target by specifying some vertex markers. Coating transfer19

can also be employed to switch geometric details between meshes with different topologies (Sorkine et al.,20

2004). However, this method may result in a certain degree of “blurring” artifacts. GeoBrush (Takayama21

et al., 2011) first selected ROIs on the source and target models interactively, and then cloned the arbitrary22

high-resolution surface features on the source model continuously to the specified area of the target model in23

real time. However, this approach cannot handle large pose changes. Using displacement maps, the details24

of high-quality meshes can be transferred to low-resolution meshes using metric learning (Berkiten et al.,25
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2017). Nevertheless, their method ignored pose transfer and the generated details were not identical to the26

source, especially for the characteristics of wrinkles in specific parts of the models. The digital garments27

for online display are usually quite dense, ranging from 10k triangles to 100k triangles. Specifying vertex28

markers for these kind of garment models accurately is both time consuming and error prone. To eliminate29

the laborious sculpting process for garments, the key challenge is to establish the correspondence map for30

deformation transfer automatically while preserving the pose and wrinkle details faithfully. State-of-the-art31

methods are either not automatic (Sumner and Popovic, 2004; Takayama et al., 2011) or unable to generate32

high-quality transfer results (Sorkine et al., 2004; Berkiten et al., 2017).33

For two garments with similar styles, or different sizes of the same style, their 2D patterns are usually34

similar, as shown in Figure 2. Based on this observation, we try to develop an automatic method to transfer35

the pose and wrinkles from one garment onto another faithfully to reduce the time consuming sculpting36

process by making full use of the semantic information of the 2D patterns of garments. We introduce a novel37

strategy for building semantic correspondences on garments automatically to replace the manual marking38

process in traditional deformation transfer methods. Unlike other types of models, 3D garment models have39

special semantics in their corresponding 2D patterns, which are utilized in our paper to establish dense40

correspondences between the source and target models. Since each 2D pattern corresponds to a particular41

body part, the semantic information is implied in its attributes and geometric contour features. Thus, a42

novel framework is presented to quickly generate 3D high-quality garment models with specific pose and43

wrinkle information transferred from high-quality source models.44

In summary, our work makes the following contributions:45

• A novel automatic and semantic deformation transfer framework designed for 3D garments, which can46

faithfully transfer the fine-grained pose and wrinkle details of high-resolution source models to target47

models in a neutral pose with similar styles, or different sizes of the same style, for aesthetic online48

garment display in e-commerce.49

• A semantic correspondence establishment strategy to automatically align the source and target models50

by leveraging the semantic information of 2D patterns unique to garments.51

• A 3D high-quality garment dataset consisting of 18 paired models of various types. Each pair consists52

of a garment and its fine-tuned sculpted counterpart as well as their patterns for further research.53

2. Related Work54

Garment Modeling with Wrinkles. For the past decades, great efforts have been made to enhance the55

realism of garment models. Researchers use either dynamic or static methods to obtain geometric details56

such as fine wrinkles on garments. Traditional physics-based simulation (PBS) methods (Jiang et al., 2017;57

Selle et al., 2009) can simulate garments with rich geometric details but at the cost of high-resolution mesh58

and much computation time. Other works compromise accuracy and physical correctness for speed (Bouaziz59

et al., 2014; Müller et al., 2007; Müller, 2008). Besides, many approaches try to find a balance between speed60

and accuracy by adding wrinkle details on low-resolution coarse meshes (Gillette et al., 2015; Goldenthal61

et al., 2007; Kavan et al., 2011; Kim et al., 2013; Rohmer et al., 2010). Data-driven methods (de Aguiar et al.,62

2010; Guan et al., 2012; Kim et al., 2013; Wang et al., 2010; Xu et al., 2014) can provide fast simulation by63

trading space for time or using some kind of approximation. This method in (Wang et al., 2010) leveraged64

a precomputed database to enhance the low-resolution clothing simulation based on joint proximity locally.65

However, the synthesized mesh may have more wrinkles compared to the ground truth. To bridge the gap66

between skinning and physical simulation, de Aguiar et al. (2010) learned and preserved essential dynamic67

properties of cloth motions with corresponding folding details. Near-exhaustive precomputation method68

can generate realistic secondary motion of clothing deformations by exhaustively searching a motion graph69

(Kim et al., 2013). However, the method relies on a large database which requires a high memory space and70

computational cost. Dressing arbitrary body shapes in any poses without physical simulations can also be71

simulated with a learned model (Guan et al., 2012). In recent years, deep learning-based garment modeling72

receives considerable attention. Lähner et al. (2018) presented a method to generate accurate and realistic73
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clothing deformation from real data capture with a conditional Generative Adversarial Network. However,74

artifacts may arise because of the occlusion of the body from the camera view.75

Sketch-based Garment Modeling. Another way to construct garment models is based on sketches. Folds76

were modeled by sweeping a cylindrical profile along a user sketched path in (Turquin et al., 2007). Jung et al.77

(2015) presented a method to generate smooth developable surfaces with pre-designed wrinkles from multi-78

view sketches, and this method focused on the garments with stiff fabric or leather products. More recently,79

BendSketch (Li et al., 2017) translated user input into surface detail geometry but cannot guarantee that the80

resulting folds are physically plausible. Besides, Li et al. (2018) presented an interactive system to support81

intuitive fold and pleat design, and generated physically reproducible fold-enhanced garments . These sketch-82

based methods can generate fold-enhanced garment models, but the results lack fine wrinkle details that83

are equally essential for clothing display. In (Wang et al., 2018), the data-driven learning framework could84

generate 3D draped garment shapes similar to the input 2D sketches. However, it may not satisfy the fold85

and wrinkle details induced by external forces applied to the garment. Although the aforementioned works86

can produce garment models with plausible folds and wrinkles, compared to the manually fine-sculpted87

garment models, they cannot guarantee the aesthetics and faithfulness of the geometric details for online88

apparel display in e-commerce.89

Garment Modeling Using Commercial Software. Existing popular 3D garment design software packages90

(Browzwear, 2000-2020; CLO, 2020; Optitex, 1988-2020) adopt a 2D-to-3D design pipeline. Designers man-91

ually edit 2D patterns, sew them, and simulate the draping effects of the garment on the mannequin with92

some interactive methods. By specifying different cloth parameters, designers can obtain realistic wrinkles93

and folds of diverse cloth materials. However, the simulated result is usually not pleasing enough for online94

display. A time-consuming sculpting process is frequently employed to add fine details to the designed gar-95

ments using professional software such as (ZBrush, 2020) in order to generate high-quality garment models.96

Our objective is to automate this laborious process for garments with the same or similar styles.97

Shape Correspondence. A key step in our algorithm is to establish a semantically correct dense corre-98

spondence between the source and target. Shape correspondence and its applications have been extensively99

investigated in the past decades (Biasotti et al., 2016; van Kaick et al., 2011; Tam et al., 2013). Early shape100

matching methods focused on establishing pointwise correspondences between two non-rigid shapes (Huang101

et al., 2008; Ovsjanikov et al., 2010; Tevs et al., 2009). Later methods (Kezurer et al., 2015; Maron et al.,102

2016; Solomon et al., 2016) managed to deal with the computational complexity of quadratic assignment103

problems to reduce the computation cost. Recently, functional maps (Kovnatsky et al., 2013; Ovsjanikov104

et al., 2012; Rodolà et al., 2017) have been employed for non-rigid shape matching. Even orientation-105

preserving and bijective pointwise correspondences between non-rigid shapes can also be dealt with this106

kind of methods (Ren et al., 2018). For deformation transfer, a non-rigid iterated closest point algorithm107

with regularization was employed using the user-selected marker points to establish a per-triangle corre-108

spondence between the source and tagert models (Sumner and Popovic, 2004). In our scenario, the topology109

and semantics of garments are quite complex, and manually selecting marker points is time-consuming and110

error-prone. Different from the aforementioned methods, our garment models have their unique semantic111

information, and we make full use of these information stored in 2D patterns to automatically establish a112

dense correspondence.113

Mesh Deformation Transfer. Deformation transfer (Sumner and Popovic, 2004) presented an efficient114

way to copy the deformations exhibited by pose and subtle geometric changes from a source mesh onto a115

different target mesh by manually specifying some maker points. It can also be extended to accommodate116

complex models consisting of multiple arbitrary components (Zhou et al., 2010). To reduce the laborious117

process of mesh animation, a semantic method was developed to transfer existing mesh deformation from118

one character to another by inferring a correspondence between the shape spaces of two characters (Baran119

et al., 2009). However, this method is designed to preserve the semantic characteristics of the motion. To120

reduce the substantial user effort to label the correspondences, a VAE-Cycle GAN (VC-GAN) network-based121

method is developed to automate the deformation transfer between two unpaired shape sets (Gao et al.,122

2018). Our approach differs from these methods in that we make use of the semantic information of 2D123

patterns associated with their corresponding garments.124
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Figure 1: Algorithm overview. Our input is a source garment model with fine wrinkle details (the leftmost image) and its 2D
patterns (the rightmost image) as well as its neutral pose without sculpting (the middle image)) (See the upper part in (a)),
and another target garment model of a similar style in a neutral pose without fine wrinkle details as well as its 2D patterns (See
the lower part in (a)). Note that the necessary 3D high-quality information for (a) is readily available in our database, which
contains garments designed by professional garment modeling software. We first obtain a set of pointwise correspondence by
utilizing the semantic information of 2D patterns (b). Then, we map these point pairs to their corresponding 3D models as
the patterns and its corresponding garment model share the same UV coordinates (c). After that, we perform a non-rigid ICP
algorithm with regularization, using the sparse point-to-point correspondence as constraints, to establish a per-triangle dense
correspondence between the source and target (d). Deformation transfer is finally employed to generate the posed output with
wrinkle details similar to the high-quality source model (e).

3. Methodology125

The input of our method consists of source and target garment models as well as their 2D patterns, which126

are designed by professional designers using commercial garment modeling software (See Figure 1). The user127

specifies a garment without pose and detailed wrinkles as the target T , and then our system searches for128

another garment with the same or similar style from the database as the source S, both of which requires a129

draping garment model simulated by wearing on an A-pose mannequin. Moreover, the input source garment130

consists of an additional model, denoted as deformed source S′, which contains the pose and detailed wrinkle131

information of the source garment designed for online display. The fine wrinkles of S′ are carefully sculpted132

by professional artists for aesthetic display. For each garment, such a sculpting process takes about three133

hours in average using Zbrush. Our objective is to transfer the pose and wrinkle information from the source134

to the target so that the target may have a visually similar appearance with fine wrinkle details.135

As shown in Figure 1, we first establish an initial vertex correspondence between the 2D patterns of136

the source and the target according to their semantic information. Then, we map the paired points onto137

their corresponding 3D models because the 2D patterns and their 3D garment counterpart share the same138

set of UV coordinates. The mapped points on the reference source and target models are enforced as139

constraints of the non-rigid iterated closest point (ICP) algorithm for establishing a per-triangle source-to-140

target correspondence. Finally, we generate the output by performing a deformation transfer method similar141

to the one in Sumner and Popovic (2004).142

Semantic Correspondence. We utilize the semantic information of 2D patterns to establish a dense per-143

triangle correspondence between the source and target. A complete garment is usually sewn from multiple144

patterns, each of which has its specific attribute (Figure 2, e.g., body front, sleeves left, etc.). Garments of the145

same or similar styles generally have similar 2D patterns (Figure 2). Such a similarity of patterns is implied146

in the corners on the outline. The attributes and the corresponding geometric contour features constitute147

the semantic information of the patterns. We generate an initial pointwise correspondence automatically148

with the help of semantic information associated with two given patterns, which is effective in solving the149

correspondence problem.150
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Figure 2: 2D patterns of a V-neck T-shirt and a round-neck T-shirt of similar style, along with the merge result of part of
the V-neck T-shirt patterns for correspondence-building between two sets of patterns. (a) 2D patterns of a V-neck T-shirt.
(b) 2D patterns of a round-neck T-shirt. (c) Merged pattern results of pattern 1 with 2, and pattern 3 with 4 of the V-neck
T-shirt. (d) The body front and body back patterns of the round-neck T-shirt correspond to the two merged patterns in (c),
respectively.

2D-3D Mapping. The mesh topologies of a simulated model and its patterns are usually different in151

garment modeling software (e.g., (CLO, 2020)). Therefore, we cannot establish the correspondence naively152

according to the vertex indices of the 2D patterns and their corresponding 3D model. Fortunately, the153

simulated 3D model and its 2D patterns share the same UV set, and therefore we can utilize this information154

as a bridge to determine the initial vertex constraints between 2D patterns and its corresponding 3D model155

by searching for vertices that have the same UV coordinates.156

Pose and Wrinkle Transfer. Before deformation transfer, we should establish the per-triangle dense157

correspondence between the source and target. Here, we use the corresponding vertices obtained from158

our semantic correspondence algorithm as the constraints, and perform a non-rigid ICP algorithm with159

regularization to infer the per-triangle dense correspondence. After that, we employ the method described160

in (Sumner and Popovic, 2004) to perform pose and wrinkle transfer on garments to generate our final161

output garment with the same pose and wrinkle details as the one in S′.162

4. Preprocessing163

To perform our experiments, we build a high-quality garment database with fine wrinkle details. This164

database consists of 18 garments with various styles, and all of them are designed by professional fashion165

designers from fashion industry. Taking the lantern sleeve dress as an example (Figure 3(a)), we first166

arrange 2D patterns around an A-pose character (Figure 3(b)), and then perform physics-based simulation167

to obtain an original draping model. We denote the draping source model and its patterns as S and Spatterns,168

respectively. After that, we apply the same patterns on a posed-character (Figure 3(c)) and obtain another169

garment Spose with a visually pleasing appearance by interactively applying some external forces on certain170

parts of the garment. An additional manually sculpting process is further employed to generate the garment171

S′ with special fine wrinkles that cannot be simulated by up-to-date professional software. This sculpting172

process is operated by professional artists using Zbrush. Note that S, Spose, S
′, and Spatterns make up the173
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Figure 3: Part of the garment modeling steps. A lantern sleeve dress (a), its draping model on an A-pose female character (b),
and the garment with a visually pleasing appearance on the posed character (c).

source part of our input, and they share the same UV set. Similarly, for a given target garment, we denote174

the simulated 3D model draping around the A-pose character and its corresponding set of 2D patterns as T175

and Tpatterns, respectively. To achieve a better wrinkle transfer effect, we smooth garments S and T using176

the open-source implementation of (Vollmer et al., 1999) in (Trimesh, 2020) to filter out unnecessary wrinkle177

details generated by the simulation phase, and finally get the source reference S̃ and target reference T̃ .178

5. Semantic Correspondence179

5.1. Semantic Information of 2D patterns180

Each pattern is represented by an attribute and its contour as mentioned above. A shirt example is181

shown in Figure 2. For each pattern that makes up the corresponding 3D garment, its attribute is defined182

according to the body parts it covers (Figure 2 (a)(b)). We can thus quickly locate similar source and target183

patterns using such attributes. Furthermore, for paired source and target patterns, we can use the geometric184

features of the corners of their contours to obtain accurate point correspondences. However, two garments185

with a similar style cannot guarantee that they have the same number or attributes of patterns. To this186

end, we introduce Pattern Merge and Pattern Split operations to tackle this problem. From the garments’187

semantic information, we can find the pattern pairs that need to be merged and the corresponding edges188

with the same number of vertices. We use the corresponding edges as boundary constraints and perform189

a non-rigid ICP algorithm (Sumner and Popovic, 2004) to align one pattern to another in the same pairs.190

Finally, we merge the vertices in the corresponding edges to connect the two patterns.191

5.2. Pattern Preprocessing for Special Cases192

Pattern Merge. A pattern merge example is shown in Figure 2, where (a) and (b) display a V-neck193

T-shirt and a round-neck T-shirt without one-to-one pattern correspondence. In this case, patterns 8 and194

9 in (a) have the same attributes with patterns 3 and 4 in (b), respectively. Therefore, they can directly195

correspond to each other according to the attributes. However, even for patterns with the same attributes,196

there are no corresponding patterns in (b) for patterns 1, 2, 3 and 4 in (a). Fortunately, according to the197

semantic information of the garment, patterns 1 and 2 in (a) can be considered equivalent to pattern 1 in198

(b) by dividing it into two parts. Therefore, we can merge patterns 1 and 2 in (a) to get a new merged199

pattern and assign the attribute body front (Figure 2 (c), left) to it. Similarly, we can perform the same200

operation on patterns 3 and 4 in (a) to get another new pattern body back (Figure 2 (c), right). In this way,201

patterns 1 and 2 in (a) and patterns 3 and 4 in (a) can find their corresponding patterns in (b) to obtain202
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Figure 4: Pattern split example. Patterns of the source gown are shown in purple (left) and patterns of the target gown are
shown in orange (right). We split all patterns ((a) and (d)) from the position semantically corresponding to the waistline of
the human body (the red lines shown in (b) and (e)), so as to obtain new patterns corresponding to the dress part of the gowns
((c) and (f)). Note that the outlines of the two patterns in (c) and (f) (from left to right) are very similar, which ensures that
we can obtain accurate correspondences between the two split sets of patterns in the subsequent steps.

the initial semantic correspondence. Patterns 5, 6 and 7, which make up the neckline in (a), can be ignored203

in the initial correspondence establishment process since there is no corresponding pattern in (b).204

Pattern Split. For the case of two gowns with similar styles (See Figure 4), the contours of 2D patterns205

of the source and target are different in the upper part but quite similar in the lower dress part. In such a206

scenario, we divide the model into the upper and lower parts along the waistline and process them separately,207

since the changes of pose and wrinkle details usually happen in the lower parts.208

5.3. Pattern Corner Determination209

Our algorithm ensures that each pattern in the source patterns can find a corresponding pattern in210

the target patterns with the employment of the semantic pattern attribute. Given one pair of the source211

and target patterns denoted as (P S
i ,P

T
j ), we can establish an initial correspondence using the rigid ICP212

algorithm (Jubran et al., 2021). We note that the artists set the same orientations for (P S
i ,P

T
j ) when213

creating them. Thus we can simply align P S
i and P T

j with scale and translation variations. We traverse the214

whole mesh of each pattern of (P S
i ,P

T
j ) to find the source contour V S

C = {vS1 ,vS2 , ...,vSm} and the target215
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contour V T
C = {vT1 ,vT2 , ...,vTn }, respectively. For a contour vertex, we calculate the cosine value of the angle216

γ between its two adjacent contour edges. When cos γ > −0.8, we take the angle as a corner of the pattern.217

By traversing all the contour vertices, we can get the corner set of the patterns (P S
i ,P

T
j ):218

CS = {vcS1 ,vcS2 , ...,vcSp } ⊂ V
S
C , (1)

CT = {vcT1 ,vcT2 , ...,vcTq } ⊂ V
T
C , (2)

where p, q are the corner numbers of the source pattern and the target pattern, respectively. Although219

(P S
i ,P

T
j ) are similar in their contour shape, we note that their numbers of corners are not necessary to be220

the same.221

5.4. Corner Vertex Correspondence222

Before establishing the correspondence between the corners of the source pattern PSi and the target223

pattern PTj , we first align them in the three-dimensional coordinate system by scaling and translation.224

Then we calculate the Laplacian coordinates (Sorkine, 2005) of all vertices of the source pattern PSi , which225

is denoted as ∆S = {δS1 , δS2 , ...}. Similarly, we calculate the Laplacian coordinates of all vertices of the226

target pattern PTj , and denote them as ∆T = {δT1 , δT2 , ...}. Let {vcSk ∈ C
S , 1 6 k 6 p} be a corner vertex of227

the source pattern PSi , and its Laplacian coordinate δcSk . We establish the following energy function:228

E = −(δcSk · δcTl − ‖vcSk − vcTl ‖
2
). (3)

The first term of the function is the dot product of the Laplacian coordinates of δcSk and δcTl , and the229

second term is the square distance between the two vertices. The smaller the value of the energy function in230

Equation 3 is, the higher the semantic similarity of the two corner vertices compared by the function. With231

the source pattern corner vertex vcSk , we suppose that the energy function in Equation 3 is minimized when232

the target pattern corner vertex vcTl is taken. Similarly, for the corner vertex vcTl of the target pattern,233

we assume that the energy function gets the minimum when the corner vertex of the source pattern takes234

vcSk . Then vcSk and vcTl are considered as a mutually corresponding vertex pair. By traversing all the corner235

vertices of the paired source pattern PSi and target pattern PTj using the method described above, we can236

build a one-to-one mapping between part of the source and target corner vertices and get an initial sparse237

vertex correspondence index set:238

MC = {(cSr0 , c
T
r0), (cSr1 , c

T
r1), ..., (cSrnc , c

T
rnc)}. (4)

5.5. Vertex Correspondence Generation239

Taking the obtained vertex pairs in MC as constraints, we perform Laplacian deformation on the vertices240

V S
C = {vS1 ,vS2 , ...,vSm} that constitute the contour line of the source pattern PSi by iterative optimization:241

E(V ′S
C ) =

m∑
α=1

‖L(v′Sα )− δSα‖2 +
∑

(cSrβ
,cTrβ

)∈MC

‖v′cSrβ − vcTrβ ‖
2, (5)

where V ′S
C = {v′S1 ,v′S2 , ...,v′Sm} is the deformed source pattern contour vertices set to be optimized, and242

L is the Laplace operator. The first term of Equation 5 indicates that the geometric features of deformed243

source pattern contour vertices should be as close as possible to those before the deformation, in which244

{δS1 , ..., δSm} is the Laplacian coordinate set of the original source pattern contour vertices. The second term245

indicates that the new position of each paired corner vertex on the source pattern should be equal to the246

corresponding point on the target pattern.247

Based on the Laplacian deformation results, we can calculate the one-to-one correspondence of the non-248

corner vertex of the source pattern PSi and target pattern PTj by finding the aforementioned mutually closest249
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point, and get the new correspondence vertex pairs on the contour. We add these new pairs to MC and250

denote the updated vertex pair set as M ′
C .251

By setting the updated M ′
C as constraints, we perform another Laplacian deformation on all the vertices252

of the source pattern PSi . A deformed source pattern P ′S
i is obtained through an iterative solution, and253

P ′S
i and PTj are well-aligned at the same time. We then traverse all vertices on P ′S

i and PTj . When a pair254

of vertices is closest to each other, it is considered that these two vertices are corresponded. Through the255

above-described method, we can finally generate a dense vertex correspondence between the paired patterns.256

5.6. 2D-3D Vertex Mapping257

Since 2D patterns are the unfolded cloth of 3D garment models, an edge stitched on the 3D garment258

model corresponds to at least two edges of different patterns, which causes different topologies between the259

simulated garment and its corresponding patterns in the clothing modeling software (e.g., (CLO, 2020)).260

Nevertheless, for each vertex vip in the pattern, there exists a corresponding vertex vis in the simulated261

model. As discussed in Section 4, patterns and the simulated model share the same UV set, and therefore262

vis can be located easily according to the UV coordinates of its vip . As we leverage the semantic information263

of 2D patterns to establish a one-to-one vertex correspondence between the 3D source and target garment264

models, our method can deal with models with different topologies. By now, we can obtain a vertex265

constraint set Mcons between S̃ and T̃ :266

Mcons =
{

(vSi1 ,v
T
i1), (vSi2 ,v

T
i2), ..., (vSim ,v

T
im)
}
. (6)

By setting Mcons as constraints, we perform the non-rigid iterated closest point with regularization to267

obtain per-triangle correspondences between S̃ and T̃ . Finally, we employ the deformation transfer method268

to transfer the pose and wrinkles from Ssculpted to the target T̃ . For more details about the non-rigid ICP269

and deformation transfer algorithm, please refer to (Sumner and Popovic, 2004).270

6. Experiments271

We have implemented our presented framework in C++ on a desktop computer equipped with Intelr272

CoreTM i7-7700K CPU at 4.2GHz, 32.0GB of RAM, and NVIDIAr GeForce GTX 1060 GPU. The run-time273

statistics are presented in Table 1, which demonstrates that our proposed method can efficiently generate274

new high-quality garment models on an off-the-shelf computer. As shown in Table 1, the time for semantic275

2D pattern correspondence step and the non-rigid ICP step vary from a few seconds to a few minutes,276

depending on the number of vertices of the input meshes and the complexity of garment patterns. The277

deformation transfer process takes seconds on average without optimization. The total running time of our278

framework for generating a target model displayed in our paper is 1-2 minutes on average. The experimental279

group of gowns has the largest number of faces. The source model has 403.8k faces and the target has 364.5k280

faces, but the total running time is still less than 9 minutes.281

Table 1: Runtime statistics for each pair of models.

# Source faces # Target faces CB (2D)1 CB (ICP)2 DT3 Total

Gowns 403.8k 364.5k 329.148s 135.608s 42.605s 507.361s
Women’s casual trousers 116.9k 86k 44.405s 9.98s 6.149s 60.534s

Lantern sleeve dresses 18.4k 23.3k 136.274s 9.512s 7.856s 153.642s
Qipao and polo dress 127.4k 107.6k 63.87s 57.175s 5.813s 126.858s
Men’s sports suit top 150k 122.9k 60.017s 71.62s 13.786s 145.423s

Men’s sports suit bottom 83.5k 78k 24.8s 34.923s 3.918s 63.641s

1 2D pattern correspondence building.
2 Dense correspondence building via ICP mehod.
3 Deformation transfer phase.

9



(a) (b) (c) (d) (e) (f)

Figure 5: Pose and wrinkle transfer results of “gowns” and “women’s casual trousers”. For garment “gowns”, we show the source
models in purple and the target models in orange. Meanwhile, the two models in column (a) correspond to their smoothed
reference source models, respectively. The purple model in column (b) (upper) represents the sculpted deformed source model,
and the orange model in column (b) (bottom) represents the transfer result of our method. For garment “women’s casual
trousers”, column (c) and (e) represent the smoothed reference source (upper) and target (bottom) models, and column (d)
and (f) represent the sculpted deformed source model (upper) and our transfer results (bottom) from two perspective views.

In Figure 5, generated high-quality garment models with poses and detailed wrinkle information are282

semantically identical to the given source garment model. In addition, we also display our transfer results283

of four sets of garments with textures (See Figure 12 and Figure 13). Figure 13 illustrates that our method284

can deal with surfaces of different topologies. Results show that our algorithm can transfer pose and wrinkle285

characteristics from the source garment to the target faithfully.286

6.1. Ablation Studies287

We present smoothing preprocessing and automatically-built correspondence as the two ablation studies288

to validate the effectiveness of our algorithm.289

Smoothing Preprocessing. As shown in Figure 6, without smoothing preprocessing, the effect of deforma-290

tion transfer is severely affected by the original geometric details of the models, and the fine-grained details291

of Ssculpted is challenging to reproduce.292

Automatically-built Correspondence. As shown in Figure 7, our method can automatically generate293

semantically correct dense correspondences between the source and the target, and obtain high-quality294

result in one minute (See Table 1, the third row), which competes against the original deformation transfer295

method (Sumner and Popovic, 2004) that takes about 20 minutes for manually selecting 50 pairs of marker296

points on S̃ and T̃ . Moreover, it can release designers from making mistakes for manual operations.297

6.2. Comparisons to Other Methods298

Comparison to (Berkiten et al., 2017). We compare our method to the algorithm proposed in (Berkiten299

et al., 2017), which learns the relationships between the geometric features and the displacement map300

(expressed as a texture) by deploying metric learning on the source model instead of establishing dense301

correspondences between the source and target meshes. As illustrated in Figure 8, the method of Berkiten302

et al. fails to transfer most of the wrinkle details of the sculpted source model compared to our method. In303

addition, our method can transfer the poses of Ssculpted to the target garments, which cannot be represented304

by their displacement map.305
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(c) (d) (e) (f)(b)(a) (g) (h)

Figure 6: Ablation study for smoothing preprocessing. We use two rows to render the same models from two different
perspective views. The trousers shown in orange in the left half are the result without smoothing processing, where (a) is the
original simulated source model S, (b) is the same fine-grained sculpting result Ssculpted as (f), (c) is the original simulated
target model T , and (d) is the result without smoothing preprocessing. The trousers shown in purple in the right half are the
result of our method with smoothing preprocessing, where (e) is the reference source model S̃, (f) is the fine-grained sculpting
result Ssculpted of S̃, (g) is the reference target model T̃ , and (h) is the final result. As shown in (d), although the pose is
successfully transferred to the target model, it can be observed that the wrinkles details are not smooth and lack aesthetics.

(a) (b) (c) (e)(d)

Figure 7: Ablation study for the correspondence establishment. The figure consists of two rows, each row shows the same
model from two different perspective views. The women’s casual trousers shown in green are the reference source S̃ (a), the
sculpted source Ssculpted (b), and the reference target T̃ (c). (d) is the result of deformation transfer (Sumner and Popovic,
2004) whose correspondence is established manually. (e) is the result of our presented framework whose correspondence is
established automatically based on the semantic information of patterns.
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(a) (b) (c) (d) (e)

Figure 8: Comparison to the algorithm trousers in (Berkiten et al., 2017). We use two sets of casual trousers models with
similar styles for testing. As shown in the figure, the models shown in gray are the reference source (a), the sculpted source
(b), and the reference target (c), respectively. The result generated by the method of (Berkiten et al., 2017) is shown in orange
and the result produced by our algorithm is shown in blue.

 (b)  (c)  (e) (d) (a)

Figure 9: Comparisons to the method of (Takayama et al., 2011). The input of our algorithm is the smoothed reference source
(a), the deformed source with a specific pose and fine wrinkle details (b), and the reference target with a similar style (c). The
input of (Takayama et al., 2011) is the deformed source (b) and the reference target (c). The result of (Takayama et al., 2011)
is shown in orange (d), and the result of our algorithm is shown in purple (e). The red boxes in (b) represent the ROI, and the
red boxes in (d) and (e) represent the transfer results of GeoBrush (Takayama et al., 2011) and our algorithm, respectively.
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Comparison to (Takayama et al., 2011). Due to the limitations of the canvas and ROI selection of the306

method in (Takayama et al., 2011), we can only select one ROI on the deformed source model (Figure 9 (b))307

each time to clone the details in this area onto the specified area of the target model. As a result, wrinkle308

details of the source deformed model cannot be continuously cloned onto the target (Figure 9 (c)). For the309

above reasons, we select three regions on the trouser legs of the deformed source as ROI, and clone the310

details of these regions onto the target reference in three times respectively. As shown in Figure 9, the red311

box in (b) represents the ROI, and the red boxes in (d) and (e) represent the transfer results of GeoBrush312

(Takayama et al., 2011) and our algorithm, respectively. Although GeoBrush can maintain the features of313

the details of the cloned ROI to a large extent, there is still a certain degree of distortion and discontinuity314

for wrinkles between two regions.315

Comparisons to (Sorkine et al., 2004). When the source and the target models have different topologies,316

Sorkine et al. (2004) find a dense mapping between their parametric domains using a few manually marked317

feature points for initial correspondences to perform the coating transfer. Since coating transfer cannot318

handle large shape changes, we first transfer the pose information from the source to the target model using319

deformation transfer (Sumner and Popovic (2004)). As shown in Figure 10, the coating information comes320

from the deformed source model and its filtered model without surface details (Figure 10 (c) and (b)), and321

we transfer the coating information onto the target model (Figure 10 (d)) using the dense mapping between322

the parametric domains of the filtered source model (Figure 10 (b)) and the target model (Figure 10 (d)).323

It can be seen from the figure that the result of coating transfer cannot preserve the wrinkle details (Figure324

10 (e)) and has visual interpenetration artifacts between triangles, while our method can generate plausible325

results with aesthetic appearance. This may due to the fact that the parametric domains of garments have326

large distortions and are independent of each other. The dense mapping found in the parametric domains327

using sparse correspondences cannot encode the strong semantic correspondences demanded in our method.328

（a） （b） （c） （d） （e） （f）

Figure 10: Comparisons to the method of (Sorkine et al., 2004). The input to coating transfer is the deformed source model
(c) along with its filtered model without surface details (b), and the reference target (d). The input to our algorithm is the
reference source (a), the deformed source (c) and the reference target (d). The coating transfer result is shown in orange (e),
and our result is shown in purple (f). Comparisons show that our method can generate better results.

6.3. User Study329

We present five types of garments to 21 participants in sequence, where the manually sculpted source330

model and the automatically generated target model via our method in each type are randomly displayed331

for similarity comparison. A five-point scale is adopted, where 5 stands for the most similar score, and 1332

represents the most dissimilar score. Table 2 shows the score distributions from the 21 participants across333

the five types of garments. Most of the scores are greater than 3, which validates the effectiveness of our334

pose and wrinkle transfer method.335

7. Conclusions and Limitations336

We have presented an automatic method to transfer pose and wrinkle details of the reference garment337

models to target models with the same or similar styles faithfully. Our key contribution is establishing the338
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Table 2: Distribution of similarity comparison score.

5 4 3 2 1

Gowns 10 (47.62%) 11 (52.38%) 0 0 0
Lantern sleeve dresses 4 (19.05%) 14 (66.67%) 3 (14.29%) 0 0

Men’s sports suits 9 (42.86%) 7 (33.33%) 5 (23.81%) 0 0
Qipao and polo dress 9 (42.86%) 7 (33.33%) 3 (14.29%) 2 (9.52%) 0

Women’s casual trousers 9 (42.86%) 9 (42.96%) 3 (14.29%) 0 0

dense correspondences between source and target models via the latent semantic information of 2D patterns,339

which releases the time and expertise requirements for manually selecting marker points. Experiments340

validate that our method can perform garment mesh deformation transfer efficiently and generate garment341

models for online display aesthetically.342

Our method has some limitations. First, when the source and the target garment models have signifi-343

cantly different shapes, our method may fail because of their obvious differences of patterns. This limitation344

can be easily eliminated by augmenting the sculpted garment database. Second, our method does not deal345

with the collisions induced by the deformation transfer explicitly. As a result, self-penetration artifacts may346

arise in some garment models with complex rich wrinkle details (e.g., polo dress shown in Figure 11 (a), and347

lantern sleeve dress shown in Figure 11 (b)). Moreover, as we do not consider the underlying mannequin348

during deformation transfer, penetrations between the garment and the mannequin may arise, as shown in349

Figure 11 (c). We can eliminate both the self-penetration artifacts and penetrations between the garment350

and the mannequin by adding collision handling (Wu et al., 2018) at the cost of wrinkle detail changes to351

a certain extent. Third, for different trouser sizes, our automatic approach may lead to transfer position352

deviations, as shown in Figure 7 (e) marked with red boxes. In such scenarios, semantic information such353

as joints should also be taken into consideration.354

(a)

(b) (c) (d)

Figure 11: Penetration artifacts. Self-penetration artifacts (marked with red boxes) may arise for the resulting garments, such
as the polo dress (a) and lantern sleeve dress (b). Penetrations may also exist (marked with red boxes) between the garment
and the mannequin when we dress the transferred garment back to the mannequin (c), and such artifacts can be eliminated by
collision handing methods (such as (Wu et al., 2018)) to generate plausible results (d).
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(a) (b) (c) (d) (e) (f)

Figure 12: Transfer results rendered with textures. From top to bottom in each row: Qipao and polo dress, lantern sleeve
dress, men’s sports suits, top garment of men’s sports suits, and bottom of men’s sports suits. For men’s sports suits, we
show the top and bottom garment separately in two rows. The three columns on the left represent source garments, and the
three columns on the right represent target garments. In columns (a) and (d), we show the reference model of each group of
garments. In columns (b), (c) and (e), (f), we show the same models from two different perspective views. Columns (b) and
(c) are the manually-sculpted deformed garments, and columns (e) and (f) are the outputs of our method.
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(a) (b) (c) (d) (e)

Figure 13: Transfer results between surfaces of different topologies. As shown in the figure, we showcase each model from
two perspective views (front and back). Column (a) is the reference source model, column (b) is the deformed source model,
column (c) is the reference target model, and column (d) is our transfer result. Compared to the source models (a, b), the
target models (c, d) have two holes in the sleeves. Column (e) shows a real women’s shirt with notched sleeves, which inspires
the design of the target model (c, d).
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