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Interpolation between key frames

e Parameters to be interpolated

m Position of an object

m Scale of an object

m Orientation of an object

m Joint angle between two joints
m Color attribute of an object



Interpolation between key frames

e Interpolation between frames is not trivial

= Appropriate interpolating function
m Parameterization of the function

= Maintain the desired control of the interpolated values over time

e Example
= (-5,0,0) at frame 22, (5,0,0) at frame 67

o Stop at frame 22 and accelerate to reach a max speed by frame 34

o Start to decelerate at frame 50 and come to a stop at frame 67



Interpolation between key frames

Ry !

desired result undesired result

Need a smooth interpolation with user control



Interpolation between key frames

e Solution
= Generate a space curve
= Distribute points evenly along curve
= Speed control: vary points temporally(B38]_E)
B

Time =10

Time =0

Time =35

Time = 60



Interpolation functions

e Interpolation vs. approximation

An interpolating spline in which the spline  An approximating spline in which only the
passes through the interior control points  endpoints are interpolated; the interior control
points are used only to design the curve

e Interpolation
= Hermite, Bezier, Catmull-Rom, ...

e Approximation
= Bezier, B-spline, NURBS(Non-Uniform Rational B-Spline), ...



Interpolation functions

e Complexity => computational efficiency

= Polynomials

o Lower than cubic(=#)
+ No inflection point (7 5 ), may not fit smoothly to some data points

o Higher than cubic

+ Doesn’t provide any significant advantages, costly to evaluate

o Piecewise(43-B%) cubic \_ //

H““{ -
+ Provides sufficient smoothness i

f/ T,
+ Allows enough flexibility to satisfy constraints such as end-point position and tangents



Interpolation functions

e Continuity within a curve
s Zero-order (I BIELL)
m First order (tangential) (JJ[RI1ZE£ER)
o Suffices for most animation applications
= Second order (fZ=ZELR)
o Important when dealing with time-distance curve
e Continuity between curve segments

= Hermite, Catmull-Rom, cubic Bezier provide first order continuity
between segments




Interpolation functions

JARPN

Positional discontinuity at the  Positional continuity but not
point tangential continuity at the point

circular arcs

R

Positional and tangential continuity  Positional, tangential, and curvature
but not curvature continuity at the continuity at the point
point



none

Continuity

position
(Oth order)

tangent
(1st order)

N

At juéjcion of
two circular arcs

curvature
(2nd order)




Interpolation functions

e Global vs. local control
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Global control: moving one control point changes the entire curve; distant sections may change
only slightly



Global vs. local control

Cubic Bézier Curve with Control Points Shown

7a

Global control

1] BSplineCurvelnteractiveWindow

Local control




Types of Curve Representation

e Explicit y=1(x)
= Good for generating points 4
m For each Input, there Is a unique output

e Implicit f(xyy)=0
m Good for testing if a point is on a curve
= Bad for generating a sequence of points

e Parametric x=1f(u),y =g(u)
= Good for generating a sequence of points
= Can be used for multi-valued function of x

multi-valued function



Example: Representing Unit Circle

e EXxplicit: Cannot be represented explicitly as a function of x

>0
f=0

.

e Implicit form:

f<0
f (X,y)=x%+y?-1=0

e Parametric form:

X=cos(u), y=sin(u), O<u<2n

dRhw
=Y



More on 3-D Parametric Curves

e Parametric form: P(u) = (P,(u), P,(u), P,(u))
m X =P,(u),y=Pyu), z=P,(u)

Space-curve P = P(u) 0.0 <=u<=1.0



Polynomial Interpolation

e An n-th degree polynomial fits a curve to n+1 points

s Example: fit a second degree curve to three points
o y(X)=ax?+bx+c
o points to be interpolated
(X1, Y1)y (X21 ¥2), (X3, ¥3)
o solve for coefficients (a, b, ¢):
3 linear equations, 3 unknowns

e called Lagrange Interpolation



Polynomial Interpolation (cont.)

e Result is a curve that is too wiggly GEEIEY, B EIEEIRY
}

(nonlocal) — this method is poor

x371), change to any control point affects entire curve

L -

e We usually want the curve to be as smooth as possible
= Mminimize the wiggles

= high-degree polynomials are bad
o Higher degree, higher the wiggles!



Composite Segments

e Divide a curve into multiple segments
e Represent each In a parametric form

e Maintain continuity between segments
= position
= Tangent (C1-continuity vs. G1-continuity)
m Curvature

' Py(u) Py(u) 'P5(u)!



Splines: Piecewise Polynomials

e A spline is a piecewise polynomial - many low degree
volynomials are used to interpolate (pass through) the control
noints

e Cubic polynomials are the most common

= lowest order polynomials that interpolate two points and allow the
gradient at each point to be defined - C1 continuity Is possible

= Higher or lower degrees are possible, of course



A Linear Piecewise Polynomial

The simple form for interpolating two points.

/\/\-
P,

Each segment is of the form: (this is a vector equation)

p(u) =up:+ (L-u) p-jid

\_'_l

N s U

Two basis (blending) functions

U




Hermite Interpolation

Hermite Curves—cubic polynomial for two points

P(u) =au®+bu®+cu+d

P(u) = (P.(u), P, (u), P,(u))

Hermite interpolation requires
e Endpoint positions
e derivatives at endpoints

control points/knots

P

To create a composite curve, use the end of one as the beginning of the
other and share the tangent vector



Hermite Curve Formation

e Cubic polynomial and its derivative

Pu)=au’+bu*+cu+d,

P (u)=3au’+2bu+c,

e Given P,(0), P,(1), P’ (0), P’,(1), solve for a, b, c, d
= 4 equations are given for 4 unknowns

P@=a,+b,+c +d,

P(1)=3a, +2b +c,



Hermite Curve Formation (cont.)

e Problem: solve for a, b, c, d

P@=a,+b, +c +d,

P(1)=3a, +2b +c,

e Solution: a, = 2(P,(0) - P, (1) + P,(0) + P, (1)
b, =3(P, (1) — P,(0)) — 2P,(0) - P, (1)
¢, = P.(0)
d, =P(0)




Hermite Curves in Matrix Form

P(u) =au’+bu®+cu+d
P(u)=UTMB

U' =[u’,u®,u,1] is the parameter
M 1s the coefficient matrix
B Is the geometric information

ith segment in
composite curves




Blending Functions of Hermite Splines

e Each cubic Hermite spline is a linear combination of 4 blending functions

P(u) B

2u° —3u® +1
—2u® +3u°

u® —2u® +u

p(u) =

u’ —u’

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

01

=

Hermite Blending
Functions

-0.1

-0.1

-0.2

0.1 > 0.3 0.4 0.5 0.6 0.7 0.8 0.4 1



Hermite Curves demo




Composite Hermite Curve

e Continuity between connected segments Is ensured by using
ending tangent vector of one segment as the beginning
tangent vector of the next.
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Bezier Curves

e Similar to Hermite Curve

e Instead of endpoints and tangents, four control points are given
= points P, and P, are on the curve

= points P, and P are used to control the shape

m Py =Py, p, =Py

m Py = 3(Py-Py), p = 3(Py - Py)




Bezier Curves

e Another representation
= Blend the control point position using Bernstein polynomials

JOE i B, ,(U)R,

where B, , (u) are Bernstein polynomials

Bk,n (u)y=C(n, k)uk (1- u)n—k

n!
C(n,k):m




Bezier Curves




Composite Bezier Curves

e How to control the continuity between adjacent Bezier segment?

m Dy using ending tangent vector of one segment as the beginning tangent
vector of the next.




De Casteljau Construction of Bezier Curves

(B FIEEREE )

e How to derive a point on a Bezier curve?

I e—— °
| A S '
N T W : Interpolation steps
T T TR
27 ,:;’-" 3 Mg . 1. 1/3 of the way between
1 ’ sooh paired points
R 5 2. 1/3 of the way between
o e points of step 1
u 3. 1/3 of the way between

points of step 2

THEPI)KE A



De Casteljau Construction of Bezier Curves

(RS ERERE ) &R

de Casteljau's Algorithm



Bezier Curves (cont.)

e Variant of the Hermite spline

m basis matrix derived from the Hermite basis (or from scratch)

e Gives more uniform control knobs (i3 ) (series of points)

than Hermite



Catmull-Rom Splines

o With Hermite splines, the designer must arrange for consecutive
tangents to be collinear, to get C* continuity. Similar for Bezier.
This gets tedious.

o Catmull-Rom: an interpolating cubic spline with built-in C!
continuity.

e Compared to Hermite/Bezier: fewer control points required, but less
freedom.



Catmull-Rom Splines (cont.)

e Given n control points in 3-D: p4, Po, ..., Py
= Tangent at p; given by s(pi,, — pi.,) for 1=2, ..., n-1, for some s.
= Curve between p; and p;,, Is determined by pi 4, Pi, Pis1s Piso

i+1 i

, 1
Pi ZE(P _P'—l)



Catmull-Rom Splines (cont.)

e Given n control points in 3-D: p4, Po, ..., Py
= Tangent at p; given by s(pi,.; — pi.;) for 1=2, ..., n-1, for some s
= Curve between p; and p;,, Is determined by pi 4, Pi, Pi+1r Piso
= What about endpoint tangents? (several good answers: extrapolate, or
use extra control points pg, Pr+1)
= Now we have positions and tangents at each knot — a Hermite

specification.



Catmull-Rom Spline Matrix

e Derived similarly to Hermite and Bezier
e S IS the tension parameter; typically s=1/2

When s =1/2,
I
2

p(u)=U"




Catmull-Rom Spline

e What about endpoint tangents?
= Provided by users
= Several good answers: extrapolate, or use extra control points py, Pp+1

extra control point
g _(PQ_ P1) P’
1

P =2 (R~ (P~ R)-P)

1
= (2P -P,~R)=




Catmull-Rom Spline

e Example

m



Catmull-Rom Spline

e Drawback

= An Internal tangent is not dependent on the position of the internal point
relative to its two neighbors

Pi'i*1

(Qi, Pi, R\ A G [FHI L o] &



Splines and Other Interpolation Forms

e See Computer Graphics textbooks

e Review

= Appendix B.4 In Parent



Now What?

e We have key frames or points
e We have a way to specify the space curve
e Now we need to specify velocity to traverse the curve

Speed Curves



Speed Curve In Maya

Edit the Speed Curve in the Graph Editor. The Speed Curve displays in purple.
https://help.autodesk.com/view/MAYACRE/ENU/?quid=GUID-BEE97073-A8AD-4EBG-
8035-67C8F3C5492B



https://help.autodesk.com/view/MAYACRE/ENU/?guid=GUID-BEE97073-A8AD-4EB6-8035-67C8F3C5492B

Speed Control

e The speed of tracing a curve needs to be under the direct control of the
animator

e Varying u at a constant rate will not necessarily generate P(u) at a
constant speed.




Non-uniformity in Parametrization

e Generally, equally spaced samples In parameter space
are not equally spaced along the curve

U, —U; # S(uz) _S(Ul)

s(U) = j P (U)? + P, (u)? + P,(u)?du

Time =10

Time =0

Time = 60



Arc Length Reparameterization

e To ensure a constant speed for the interpolated value, the curve
has to be parameterized by arc length (for most applications)

e Computing arc length
= Analytic method (many curves do not have, e.g., B-splines)

a Numeric methods

o Table and differencing

o Gaussian quadrature (Gauss® R AL A )



Why Arc Length Reparameterization? Demo

& ArcLength x
- C | 8 Securs e www.desmos.com =

(- ) w number of points +
- } 14 } !
(; \ n=1
\>) . w
2

(QT P function
p approximation

p approx arc length

®

p actual arc length + 0




Arc Length Reparameterization

e Space curve vs. time-distance function

= Relates time to the distance traveled along the curve, i.e., relates time

to the arc length along the curve



Arc Length Reparameterization

e Glven a space curve with arc length parameterization

= Allow movement along the curve at a constant speed by stepping at equal arc length
Intervals

m Allows acceleration and deceleration along the curve by controlling the distance
traveled in a given time interval

e Problems

= Given a parametric curve and two parameter values u, and u,, find arclength(u,,u,)

= Given an arc length s, and parameter value u,, find u, such that arclength(u,,u,) = s



Arc Length Reparameterization

e Converting a space curve P(u) to a curve with arc-length
parameterization
m Find s=S(u), and u=S-1(s)=U(5s)
m P*(s)=P(U(s))

e Analytic arc-length parameterization is difficult or impossible for

most curves, e.g., B-spline curve cannot be parameterized with arc
length.

= Approximate arc-length parameterization



Forward Differencing ([S1RTZ4Y)

e Sample the curve at small intervals of the parameter
e Compute the distance between samples
e Build a table of arc length for the curve

u Arc Length

0.0 0.00
0.1 0.08
0.2 0.19
0.3 0.32

0.4 0.45




Arc Length Reparameterization Using
Forward Differencing

e Glven a parameter u, find the arc length
= Find the entry in the table closest to this u
= Or take the u before and after it and interpolate arc length

Imearly u Arc Length
0.0 0.00
0.1 0.08
0.2 0.19
0.3 0.32

0.4 0.45




Arc Length Reparameterization Using
Forward Differencing

e Given an arc length s and a parameter u,, find the
parametric value u, such that arclength(u,, u,)=s

= Find the entry In the table ! Arc Length

closest to this u using 0.0 0.00
binary search 0.1 0.08
= Or take the u before and after 0.2 0.19

it and interpolate linearly 0.3 0.32

0.4 0.45




Arc Length Reparameterization Using
Forward Differencing

e Easy to implement, intuitive, and fast

e Introduce errors

= Super-sampling in forming table
o 1000 equally spaced parameter values + 1000 entries in each interval
o Better interpolation

o Adaptive forward differencing



Arc Length Reparameterization Using
Adaptive Forward Differencing

Lengths A + B — C above error tolerance Lengths A + B — C within error tolerance

Lengths A + B — C erroneously report that the error is within tolerance



Time =0

Time = 35

Time = 60

Given an arc-length parameterized space curve, now what’s the next step?
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R EiEHIHZE (Speed Control)

Jinear ~ .easelnOut

Most common speed curves



EEiEHIHZ (Speed Control)

e Glven an arc-length parameterized space curve, how to control the
speed at which the curve is traced?

m By a speed-control function that relates an equally spaced time interval
to arc length

o Input time t, output arc length: s = S(t)
o Linear function: constant speed control

o Most common: ease-in/ease-out

+ Smooth motion from stopped position, accelerate, reach a max velocity, and then decelerate

to a stop position



Speed Control Function

e Relates an equally spaced time interval to arc length

= Input time t, output arc length: s = S(t)
s Normalized arc length parameter

S
1 4

0.8
0.6
0.4
0.2

s=ease(t)

Start at O,

slowly increase

in value and gain
speed until the
middle value and
then decelerate as
it approaches to 1.



Constant Velocity Speed Curve

0.8
0.6
04

0.2

e Moving at 1 m/s If meters and seconds are the units
e Too simple to be what we want



Distance Time Function and Speed Control

e We have a space curve p=P(u) and a speed control function s=S(t).
For a given t, s=5(t)

= Find the corresponding value u=U(s) by looking up an arc length table for a

given s

= A point on the space curve with parameter u: p=P(U(S(t)))



Pu) -

Speed Control

Speed Control Curve

0

e

u Arc Length
0.0 0.00 S
0.1 0.08 :
u* 0.2 019 |S* ..
0.3 0.32 o ////“
0.4 0.45 e |

t*

T
0.6

T
08
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Distance Time Function

e Assumptions on distance time function

= The entire arc length of the curve is to be traversed during the given

total time

= Additional optional assumptions

o The function should be monotonic (E
FhERER)

o The function should be continuous

IERY, S0

SERY) int (WIEARE

S



Ease-in/Ease-out

e Most useful and most common ways to control motion
along a curve

Arc length /
(distance) /

Time

Equally spaced samples in time specify arc length required for that frame



Ease-in/Ease-out

Gentleman’s Duel — Slow In and Slow Out



The End



