
关键帧插值和速度控制

金小刚
Email: jin@cad.zju.edu.cn

浙江大学CAD&CG系统全国重点实验室

紫金港校区蒙民伟楼512

@Copyright Xiaogang Jin 2/26/2025

mailto:jin@cad.zju.edu.cn

动画中的运动控制

● 运动的表示：用数学方法来表示各类物体的运动

● 运动的控制和编辑：给动画师提供能够表达他意图的方便、直观的控制工具

● 运动的生成：计算每一帧所需的各种运动参数

目标：再现物理世界的运动，超越物理世界的运动

Maya中的插值（Keyframe)
——位置、方向、比例缩放、颜色、形状…

Maya曲线图编辑器(Graph Editor)

Maya曲线图编辑器(Graph Editor)-样条

Interpolation between key frames

● Parameters to be interpolated

■ Position of an object

■ Scale of an object

■ Orientation of an object

■ Joint angle between two joints

■ Color attribute of an object

■ …

Interpolation between key frames

● Interpolation between frames is not trivial

■ Appropriate interpolating function

■ Parameterization of the function

■ Maintain the desired control of the interpolated values over time

● Example

■ (-5,0,0) at frame 22, (5,0,0) at frame 67

○ Stop at frame 22 and accelerate to reach a max speed by frame 34

○ Start to decelerate at frame 50 and come to a stop at frame 67

Interpolation between key frames

desired result undesired result

Need a smooth interpolation with user control

Interpolation between key frames

● Solution

■ Generate a space curve

■ Distribute points evenly along curve

■ Speed control: vary points temporally(时间上)

A

B

C

D

Time = 0

Time = 10

Time = 35

Time = 60

Interpolation functions

● Interpolation vs. approximation

● Interpolation

■ Hermite, Bezier, Catmull-Rom, …

● Approximation

■ Bezier, B-spline, NURBS(Non-Uniform Rational B-Spline), …

Interpolation functions

● Complexity => computational efficiency

■ Polynomials

○ Lower than cubic(三次）

 No inflection point (拐点), may not fit smoothly to some data points

○ Higher than cubic

 Doesn’t provide any significant advantages, costly to evaluate

○ Piecewise(分段) cubic

 Provides sufficient smoothness

 Allows enough flexibility to satisfy constraints such as end-point position and tangents

Interpolation functions

● Continuity within a curve

■ Zero-order (位置连续)

■ First order (tangential) (切向连续)
○ Suffices for most animation applications

■ Second order (曲率连续)
○ Important when dealing with time-distance curve

● Continuity between curve segments

■ Hermite, Catmull-Rom, cubic Bezier provide first order continuity

between segments

Interpolation functions

Continuity

none

position
(0th order)

tangent
(1st order)

curvature
(2nd order)

At junction of
two circular arcs

Interpolation functions

● Global vs. local control

Global vs. local control

Global control Local control

Types of Curve Representation

● Explicit y = f (x)

■ Good for generating points

■ For each input, there is a unique output

● Implicit f (x,y) = 0

■ Good for testing if a point is on a curve

■ Bad for generating a sequence of points

● Parametric x = f (u), y = g(u)

■ Good for generating a sequence of points

■ Can be used for multi-valued function of x

multi-valued function

Example: Representing Unit Circle

● Explicit: Cannot be represented explicitly as a function of x

● Implicit form:

f (x,y)=x2+y2-1=0

● Parametric form:

x=cos(u), y=sin(u), 0<u<2π

u

f<0

f>0
f=0

More on 3-D Parametric Curves

● Parametric form: P(u) = (Px(u), Py(u), Pz(u))

■ x = Px(u), y = Py(u), z = Pz(u)

Space-curve P = P(u) 0.0 <=u<=1.0

u=1/3

u=2/3

u=0.0

u=1.0

Polynomial Interpolation

● An n-th degree polynomial fits a curve to n+1 points

■ Example: fit a second degree curve to three points

○ y(x)= a x2 + b x + c

○ points to be interpolated

(x1, y1), (x2, y2), (x3, y3)

○ solve for coefficients (a, b, c):

3 linear equations, 3 unknowns

● called Lagrange Interpolation

Polynomial Interpolation (cont.)

● Result is a curve that is too wiggly (波动的,即样条中常提到的

振荡), change to any control point affects entire curve

(nonlocal) – this method is poor

● We usually want the curve to be as smooth as possible

■ minimize the wiggles

■ high-degree polynomials are bad

○ Higher degree, higher the wiggles!

Composite Segments

● Divide a curve into multiple segments

● Represent each in a parametric form

● Maintain continuity between segments

■ position

■ Tangent (C1-continuity vs. G1-continuity)

■ curvature

P1(u) P2(u) P3(u) Pn(u)

Splines: Piecewise Polynomials

● A spline is a piecewise polynomial - many low degree

polynomials are used to interpolate (pass through) the control

points

● Cubic polynomials are the most common

■ lowest order polynomials that interpolate two points and allow the

gradient at each point to be defined - C1 continuity is possible

■ Higher or lower degrees are possible, of course

A Linear Piecewise Polynomial

The simple form for interpolating two points.

p1

p2

Each segment is of the form: (this is a vector equation)

u
0 1

1

Two basis (blending) functions

u

21)1()(puupup 

 Hermite Curves—cubic polynomial for two points

 Hermite interpolation requires

 Endpoint positions

 derivatives at endpoints

 To create a composite curve, use the end of one as the beginning of the

other and share the tangent vector

)1(P

Hermite Interpolation

)0('P

control points/knots

dcubuauuP  23)(

)0(P

)1('P

))(),(),(()(uPuPuPuP zyx

Hermite Curve Formation

● Cubic polynomial and its derivative

● Given Px(0), Px(1), P’x(0), P’x(1), solve for a, b, c, d

■ 4 equations are given for 4 unknowns

xxxxx ducubuauP  23)(

xxxx cubuauP  23)(2'

xx dP )0(

xxxxx dcbaP )1(

xx cP )0('

xxxx cbaP  23)1('

Hermite Curve Formation (cont.)

● Problem: solve for a, b, c, d

● Solution:

)0(

)0(

)1()0(2))0()1((3

)1()0())1()0((2

'

''

''

xx

xx

xxxxx

xxxxx

Pd

Pc

PPPPb

PPPPa









xx dP )0(

xxxxx dcbaP )1(

xx cP )0('

xxxx cbaP  23)1('

Hermite Curves in Matrix Form

ith segment in

composite curves

dcubuauuP  23)(

MBUuP T)(

parameter theis]1 , , ,[23 uuuU T 

























0001

0100

1233

1122

M





















)1(

)0(

)1(

)0(

B

'

'

x

x

x

x

P

P

P

P

























'

1

'

1
B

i

i

i

i

P

P

P

P

M is the coefficient matrix

B is the geometric information

Blending Functions of Hermite Splines

● Each cubic Hermite spline is a linear combination of 4 blending functions

















































2

1

2

1

23

23

23

23

'

'2

32

132

)(

p

p

p

p

uu

uuu

uu

uu

up

BMUuP T)(

Hermite Curves demo

Composite Hermite Curve

● Continuity between connected segments is ensured by using

ending tangent vector of one segment as the beginning

tangent vector of the next.

Bezier Curves

Bezier Curves

● Similar to Hermite Curve

● Instead of endpoints and tangents, four control points are given

■ points P1 and P4 are on the curve

■ points P2 and P3 are used to control the shape

■ p1 = P1, p2 = P4,

■ p1' = 3(P2-P1), p2' = 3(P4 - P3)

1

23 2

3

4

1 3 3 1

3 6 3 0
() 1

3 3 0 0

1 0 0 0

P

P
p u u u u

P

P

    
  


        
  

   

Bezier Curves

● Another representation
■ Blend the control point position using Bernstein polynomials

,

0

,

,

() ()

where () are Bernstein polynomials

() (,) (1)

!
(,)

!()!

n

k n k

k

k n

k n k

k n

p u B u P

B u

B u C n k u u

n
C n k

k n k







 






Bezier Curves

Composite Bezier Curves

● How to control the continuity between adjacent Bezier segment?

■ by using ending tangent vector of one segment as the beginning tangent

vector of the next.

De Casteljau Construction of Bezier Curves

（德卡斯特里奥算法 ）

● How to derive a point on a Bezier curve?

计算P(1/3)的割角法

De Casteljau Construction of Bezier Curves

（德卡斯特里奥算法 ）演示

Bezier Curves (cont.)

● Variant of the Hermite spline

■ basis matrix derived from the Hermite basis (or from scratch)

● Gives more uniform control knobs (拉手) (series of points)

than Hermite

Catmull-Rom Splines

● With Hermite splines, the designer must arrange for consecutive

tangents to be collinear, to get C1 continuity. Similar for Bezier.

This gets tedious.

● Catmull-Rom: an interpolating cubic spline with built-in C1

continuity.

● Compared to Hermite/Bezier: fewer control points required, but less

freedom.

Catmull-Rom Splines (cont.)

● Given n control points in 3-D: p1, p2, …, pn,

■ Tangent at pi given by s(pi+1 – pi-1) for i=2, ..., n-1, for some s.

■ Curve between pi and pi+1 is determined by pi-1, pi, pi+1, pi+2.

+1 1

1
P ()

2
i i iP P
  

1iP
+1iP

iP
iP

+1 -1-i iP P

Catmull-Rom Splines (cont.)

● Given n control points in 3-D: p1, p2, …, pn,

■ Tangent at pi given by s(pi+1 – pi-1) for i=2, …, n-1, for some s

■ Curve between pi and pi+1 is determined by pi-1, pi, pi+1, pi+2

■ What about endpoint tangents? (several good answers: extrapolate, or

use extra control points p0, pn+1)

■ Now we have positions and tangents at each knot – a Hermite

specification.

Catmull-Rom Spline Matrix

● Derived similarly to Hermite and Bezier

● s is the tension parameter; typically s=1/2





















































2

1

1

0020

0101

1452

1331

)(

,2/1When

i

i

i

i

T

P

P

P

P

Uup

s

Catmull-Rom Spline

● What about endpoint tangents?

■ Provided by users

■ Several good answers: extrapolate, or use extra control points p0, pn+1

'

0 1 2 1 0

1 2 00 1 2

1
((()))

2

1
(2)

2

1
()

2

P P P

P P P

P P

P P P

   

     

extra control point

Catmull-Rom Spline

● Example

Catmull-Rom Spline

● Drawback

■ An internal tangent is not dependent on the position of the internal point

relative to its two neighbors

(Qi, Pi, Ri)具有相同的切向量

Splines and Other Interpolation Forms

● See Computer Graphics textbooks

● Review

■ Appendix B.4 in Parent

Now What?

● We have key frames or points

● We have a way to specify the space curve

● Now we need to specify velocity to traverse the curve

Speed Curves

Speed Curve in Maya

Edit the Speed Curve in the Graph Editor. The Speed Curve displays in purple.

https://help.autodesk.com/view/MAYACRE/ENU/?guid=GUID-BEE97073-A8AD-4EB6-

8035-67C8F3C5492B

https://help.autodesk.com/view/MAYACRE/ENU/?guid=GUID-BEE97073-A8AD-4EB6-8035-67C8F3C5492B

Speed Control

● The speed of tracing a curve needs to be under the direct control of the

animator

● Varying u at a constant rate will not necessarily generate P(u) at a

constant speed.

● Generally, equally spaced samples in parameter space

are not equally spaced along the curve

Non-uniformity in Parametrization

A

B

C

D

Time = 0

Time = 10

Time = 35

Time = 60

)()(1212 ususuu 

  duuPuPuPus zyx

222)()()()(

Arc Length Reparameterization

● To ensure a constant speed for the interpolated value, the curve

has to be parameterized by arc length (for most applications)

● Computing arc length

■ Analytic method (many curves do not have, e.g., B-splines)

■ Numeric methods

○ Table and differencing

○ Gaussian quadrature (Gauss型求积公式)

Why Arc Length Reparameterization？Demo

Arc Length Reparameterization

● Space curve vs. time-distance function

■ Relates time to the distance traveled along the curve, i.e., relates time

to the arc length along the curve

Arc Length Reparameterization

● Given a space curve with arc length parameterization

■ Allow movement along the curve at a constant speed by stepping at equal arc length

intervals

■ Allows acceleration and deceleration along the curve by controlling the distance

traveled in a given time interval

● Problems

■ Given a parametric curve and two parameter values u1 and u2, find arclength(u1,u2)

■ Given an arc length s, and parameter value u1, find u2 such that arclength(u1,u2) = s

Arc Length Reparameterization

● Converting a space curve P(u) to a curve with arc-length

parameterization

■ Find s=S(u), and u=S-1(s)=U(s)

■ P*(s)=P(U(s))

● Analytic arc-length parameterization is difficult or impossible for

most curves, e.g., B-spline curve cannot be parameterized with arc

length.

■ Approximate arc-length parameterization

Forward Differencing(向前差分)

● Sample the curve at small intervals of the parameter

● Compute the distance between samples

● Build a table of arc length for the curve

u Arc Length

0.0 0.00

0.1 0.08

0.2 0.19

0.3 0.32

0.4 0.45

… …

Arc Length Reparameterization Using

Forward Differencing

● Given a parameter u, find the arc length

■ Find the entry in the table closest to this u

■ Or take the u before and after it and interpolate arc length

linearly
u Arc Length

0.0 0.00

0.1 0.08

0.2 0.19

0.3 0.32

0.4 0.45

… …

● Given an arc length s and a parameter u1, find the

parametric value u2 such that arclength(u1, u2)=s

■ Find the entry in the table

closest to this u using

binary search

■ Or take the u before and after

it and interpolate linearly

u Arc Length

0.0 0.00

0.1 0.08

0.2 0.19

0.3 0.32

0.4 0.45

… …

Arc Length Reparameterization Using

Forward Differencing

● Easy to implement, intuitive, and fast

● Introduce errors

■ Super-sampling in forming table

○ 1000 equally spaced parameter values + 1000 entries in each interval

○ Better interpolation

○ Adaptive forward differencing

Arc Length Reparameterization Using

Forward Differencing

Arc Length Reparameterization Using

Adaptive Forward Differencing

Given an arc-length parameterized space curve, now what’s the next step?

A

C

D

Time = 0

Time = 10

Time = 35

Time = 60

速度控制曲线(以Blender为例)

速度控制曲线(Speed Control)

Most common speed curves

速度控制曲线(Speed Control)

● Given an arc-length parameterized space curve, how to control the

speed at which the curve is traced?

■ By a speed-control function that relates an equally spaced time interval

to arc length

○ Input time t, output arc length: s = S(t)

○ Linear function: constant speed control

○ Most common: ease-in/ease-out

 Smooth motion from stopped position, accelerate, reach a max velocity, and then decelerate

to a stop position

Speed Control Function

● Relates an equally spaced time interval to arc length

■ Input time t, output arc length: s = S(t)

■ Normalized arc length parameter

s=ease(t)

Start at 0,
slowly increase
in value and gain
speed until the
middle value and
then decelerate as
it approaches to 1.

Constant Velocity Speed Curve

● Moving at 1 m/s if meters and seconds are the units

● Too simple to be what we want

Distance Time Function and Speed Control

● We have a space curve p=P(u) and a speed control function s=S(t).

For a given t, s=S(t)

■ Find the corresponding value u=U(s) by looking up an arc length table for a

given s

■ A point on the space curve with parameter u: p=P(U(S(t)))

Speed Control

u Arc Length

0.0 0.00

0.1 0.08

0.2 0.19

0.3 0.32

0.4 0.45

… …

t*

s*u*
*()P u

Speed Control Curve

Arc Length Table

Distance Time Function

● Assumptions on distance time function

■ The entire arc length of the curve is to be traversed during the given

total time

■ Additional optional assumptions

○ The function should be monotonic (单调的) in t （如果不是单调的，会出现

倒退效果）

○ The function should be continuous

Ease-in/Ease-out

● Most useful and most common ways to control motion

along a curve

(distance)

Time

Arc length

Equally spaced samples in time specify arc length required for that frame

Gentleman’s Duel — Slow In and Slow Out

Ease-in/Ease-out

The End

