
Real-time Controllable Motion Transition for Characters

XIANGJUN TANG, State Key Lab of CAD&CG, Zhejiang University; ZJU-Tencent Game and Intelligent Graphics Innovation
Technology Joint Lab, China
HE WANG, University of Leeds, United Kingdom
BO HU, Tencent Technology (Shenzhen) Co., Ltd., China
XU GONG, Tencent Technology (Shenzhen) Co., Ltd., China
RUIFAN YI, Tencent Technology (Shenzhen) Co., Ltd., China
QILONG KOU, Tencent Technology (Shenzhen) Co., Ltd., China
XIAOGANG JIN*, State Key Lab of CAD&CG, Zhejiang University; ZJU-Tencent Game and Intelligent Graphics Innovation
Technology Joint Lab, China

Fig. 1. In-between motion sequences (blue) between target frames (orange) generated by our method. Given a target frame and a desired transition duration,
the controlled character can dynamically adjust strategies, e.g., different step sizes, velocities, or motion types, to reach the target without visual artifacts.

Real-time in-between motion generation is universally required in games
and highly desirable in existing animation pipelines. Its core challenge lies in
the need to satisfy three critical conditions simultaneously: quality, control-
lability and speed, which renders any methods that need offline computation
(or post-processing) or cannot incorporate (often unpredictable) user control
undesirable. To this end, we propose a new real-time transition method to
address the aforementioned challenges. Our approach consists of two key

*Corresponding author.
Authors’ addresses: Xiangjun Tang, State Key Lab of CAD&CG, Zhejiang University;
ZJU-Tencent Game and Intelligent Graphics Innovation Technology Joint Lab, China,
fcsx1tf@163.com; He Wang, University of Leeds, United Kingdom, H.E.Wang@leeds.ac.
uk; Bo Hu, Tencent Technology (Shenzhen) Co., Ltd., China, corehu@tencent.com; Xu
Gong, Tencent Technology (Shenzhen) Co., Ltd., China, xugong@tencent.com; Ruifan
Yi, Tencent Technology (Shenzhen) Co., Ltd., China, ryanfyi@tencent.com; Qilong Kou,
Tencent Technology (Shenzhen) Co., Ltd., China, rambokou@tencent.com; Xiaogang
Jin*, State Key Lab of CAD&CG, Zhejiang University; ZJU-Tencent Game and Intelligent
Graphics Innovation Technology Joint Lab, China, jin@cad.zju.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
0730-0301/2022/7-ART137 $15.00
https://doi.org/10.1145/3528223.3530090

components: motion manifold and conditional transitioning. The former
learns the important low-level motion features and their dynamics; while the
latter synthesizes transitions conditioned on a target frame and the desired
transition duration. We first learn a motion manifold that explicitly models
the intrinsic transition stochasticity in human motions via a multi-modal
mapping mechanism. Then, during generation, we design a transition model
which is essentially a sampling strategy to sample from the learned manifold,
based on the target frame and the aimed transition duration. We validate our
method on different datasets in tasks where no post-processing or offline
computation is allowed. Through exhaustive evaluation and comparison, we
show that our method is able to generate high-quality motions measured un-
der multiple metrics. Our method is also robust under various target frames
(with extreme cases).

CCS Concepts: • Computing methodologies → Motion capture; Motion
transition; Neural networks; Motion manifold.

Additional Key Words and Phrases: Animation, real-time, locomotion, mo-
tion manifold, conditional transitioning, in-betweening, deep learning

ACM Reference Format:
Xiangjun Tang, He Wang, Bo Hu, Xu Gong, Ruifan Yi, Qilong Kou, and Xi-
aogang Jin*. 2022. Real-time Controllable Motion Transition for Charac-
ters. ACM Trans. Graph. 41, 4, Article 137 (July 2022), 10 pages. https:
//doi.org/10.1145/3528223.3530090

ACM Trans. Graph., Vol. 41, No. 4, Article 137. Publication date: July 2022.

https://doi.org/10.1145/3528223.3530090
https://doi.org/10.1145/3528223.3530090
https://doi.org/10.1145/3528223.3530090

137:2 • Tang et al.

1 INTRODUCTION
In-between motion generation has been a long-standing problem
in computer graphics/animation [Witkin and Kass 1988], and re-
cently revived [Harvey and Pal 2018; Kaufmann et al. 2020; Zhang
and van de Panne 2018] under the context of deep learning. It has
been heavily relied upon in both offline animation pipelines and on-
line motion synthesis in games. Speedy generation of high-quality
motions without post-processing or offline computation is highly
desirable in the former, and is often a must in the latter.
Early methods formulate in-between motions as motion plan-

ning problem [Wang et al. 2015, 2013; Ye and Liu 2010], which
requires solving complex optimizations and are prohibitively slow
for real-time applications. Data-driven methods have also been de-
veloped [Kovar et al. 2008; Min and Chai 2012; Shen et al. 2017].
However, to handle arbitrary in-between motions and target frames,
the size of needed data in memory grows exponentially [Harvey
et al. 2020]. In the era of deep learning, in-between motions can be
interpreted as a motion manifold learning problem [Chen et al. 2020;
Holden et al. 2016; Wang et al. 2021], or a control problem [Ling et al.
2020] if dense temporal control signs are available. Compared with
previous data-driven methods, deep neural networks can leverage
compressed data representations, but cannot be easily converted into
in-between motion generators [Harvey et al. 2020]. Very recently,
this classic problem has been revived [Duan et al. 2021; Kaufmann
et al. 2020], but there is still a lack of model generality when fac-
ing arbitrary target frames, which is often the case especially in
real-time games where the user input is unpredictable.
There are two major challenges in real-time in-between motion

generation. The foremost is the motion quality. Since motions need
to be generated fast, post-processing is highly undesirable. Also, of-
fline computation and any human intervention are strictly ruled out.
One possible solution is a motion model which can capture the fine-
grained dynamics of diverse actions and act as a source of motion
generation. Designing such a model needs to consider the intrinsic
transition ambiguity of human motions, i.e. multiple frames or ac-
tions could follow a given one. This leads to the second challenge:
controllability. While capturing and disambiguating the transitions
can achieved by relying on continuous control signals [Holden et al.
2017], our problem setting only involves sparse target frames. The
control sparcity differentiates our problem from those with simi-
lar key frames or dense control signals. In addition, the generated
motion needs to satisfy the target frame and the aimed transition
duration simultaneously. Failing in transition disambiguation will
lead to ‘averaged’ motions [Fragkiadaki et al. 2015], while failing in
controllability will break the constraints imposed by the user.
In this paper, we propose a novel method which can generate

high-quality in-between motions in real-time, given the starting
and end frame with the desired period of transition. Our method
consists of two components designed to address the aforementioned
challenges. We start by representing the natural motion manifold
and focus on modeling the multi-modality of motion transitions
under a Markov assumption. To incorporate the target frame and the
desired transition period, we further propose a new sampler which
samples from the learned motion manifold, under the constraints
imposed by the initial, target frame and the desired transition period.

The motion manifold employs a Conditional Variational Autoen-
coder (CVAE) architecture. Instead of learning a conditioned latent
distribution of original data as traditional CVAEs, our CVAE learns
a conditional distribution of transitions between frames [Ling et al.
2020]. Further, we explicitly model the transition ambiguity as a
multi-modal mapping between frames, by utilizing a Conditional
Mixture of Experts (CMoEs) in the latent space and the decoding
phase. As a result, our motion manifold can act as a high-quality
representation which provides a reliable source for online motion
synthesis. The other key component is a transition sampler which
samples one frame at a time. The sampler is realized as a deep neural
network which models the dynamics of the generated motion by a
Recurrent Neural Network (RNN). It conditions the next frame on
the current frame, the target frame, the desired transition period
and the remaining motion, through a multi-step residual network
architecture.
We test our method on two popular datasets, under a variety of

conditions, e.g. action types, generation lengths, the spatio-temporal
aspects of the target frame and transition period. We employ both
qualitative and quantitative evaluation, with multiple metrics includ-
ing reconstruction errors, foot skating, and Normalized Power Spec-
trum Similarity (NPSS). After exhaustive ablation studies among
different alternative architectures and representations, and compar-
isons with the state-of-the-art methods, we show that our method
can generate high-quality motions in real-time, is robust across
action types and dynamics, generalizes well to extreme user inputs,
and outperforms existing methods under multiple criteria.

Our main contributions can be summarized as follow:

• We present a novel online framework for high-quality real-
time in-between motion generation without post-processing.

• We propose a natural motion manifold model which is able to
condition motion transitions on control variables for transi-
tion disambiguation, simultaneously providing controllability
and ensuring motion quality.

2 RELATED WORK
Existing methods formulate in-between motions in various fashions.
In the early days, in-between motions were often formulated as a
motion planning problem [Arikan and Forsyth 2002; Beaudoin et al.
2008; Levine et al. 2012; Safonova and Hodgins 2007; Wang and
Komura 2011], where fairly sophisticated motions can be synthe-
sized. Complex optimization problems [Chai and Hodgins 2007] are
formed with respect to various constraints such as contact and con-
trol input, leading to slow computation which is impractical for the
animators and impossible for real-time applications. Alternatively,
data-driven methods can avoid slow optimizations by searching
in structured data, e.g. motion graphs [Kovar et al. 2008; Min and
Chai 2012; Shen et al. 2017]. However, since the control or con-
straints can be diverse, the size of needed data in memory to cover
all situations grows exponentially [Harvey et al. 2020], leading to
unaffordable space complexity. Recently, in-between motions have
been interpreted as a motion manifold learning problem [Chen et al.
2020; Holden et al. 2016; Li et al. 2021; Petrovich et al. 2021; Rempe
et al. 2021; Wang et al. 2021], or a control problem [Ling et al. 2020]
in deep learning. Compared with previous data-driven methods,

ACM Trans. Graph., Vol. 41, No. 4, Article 137. Publication date: July 2022.

Real-time Controllable Motion Transition for Characters • 137:3

deep neural networks can leverage compressed data representa-
tion [Holden et al. 2020]. However, they cannot be easily converted
into an in-between motion generator [Harvey et al. 2020].

One attempt to convert the deep neural network to an in-between
motion generator is to add constraints as regularization in the loss
function. Examples include RNN-based models [Chiu et al. 2019;
Martinez et al. 2017] which can generate motions with constraints
to reduce motion ambiguity [Harvey and Pal 2018]. However, simply
adding constraints cannot achieve high-quality results when differ-
ent transition duration is needed. Subsequently, a time-to-arrival
condition is proposed [Harvey et al. 2020] and a generative adver-
sarial network (GAN) is employed to safe-guard the quality of the
generated motion. However, without explicitly extracting different
hierarchies in human dynamics [Chiu et al. 2019] or utilizing the re-
lation of joints [Jain et al. 2016], the diversity of generated sequence
is limited, leading to poor generalizability to unseen constraints
such as extreme user control.
If real-time performance is not a requirement, offline methods

can be employed in motion completion such as in-between motion
generation or joints filling. Motion completion can be solved by
optimizing the sampling of the motion manifold [Li et al. 2021], or
considered as an analogy to the image infilling problem [Hernandez
et al. 2019; Kaufmann et al. 2020]. A convolutional network can be
employed to infill the missing parts of the sequence. The missing
parts do not have to be whole frames. They could be just the position
or orientation of a single joint. Besides, separating local motions
and global trajectories enables convolutional networks to focus on
generating realistic local poses [Zhou et al. 2020]. The infilling
problem can also be solved by Transformers [Duan et al. 2021].
Instead of padding the missing frames, Transformer-based motion
infiller [Yuan et al. 2021] can restrict its attention to visible frames
to achieve effective temporal modeling. Time efficiency is normally
not the primary goal of offline methods, so it is acceptable to utilize
post-processing to improve the motion quality. Nevertheless, we
aim for real-time generation.

3 METHODOLOGY
Our method consists of two main components: a natural motion
manifold model and a sampler for motion generation. We first in-
troduce the natural motion manifold that learns the low-level short-
horizon motion dynamics. We then introduce a sampling strategy
to generate motions from the learned manifold satisfying the target
frame and the aimed transition duration.

3.1 The Motion Manifold
To generate a motion 𝑀 = {𝑆1, . . . , 𝑆𝑛−1} with 𝑛 − 1 frames, each
frame is denoted by 𝑆𝑖 = {p𝑖

𝐿
, p𝑖

ℎ
, p𝑖

𝑈
, r𝑖
𝐿
, r𝑖
ℎ
, r𝑖
𝑈
, v𝑖

𝐿
, v𝑖

ℎ
, v𝑖

𝑈
} where p,

r and v are the joint position, rotation and velocity, and the subscript
𝐿,ℎ and𝑈 indicate the lower body, the hip and the upper body joints
respectively. Given a starting frame 𝑆0, a target frame 𝑆𝑡 , and the
aimed transition duration 𝑧𝑑𝑡 , the joint probability of 𝑀 can be
represented as:

𝑃 (𝑀) =
∫ ∫ ∫

𝑃 (𝑀 |𝑆0, 𝑆𝑡 , 𝑧𝑑𝑡)𝑃 (𝑆0, 𝑆𝑡 , 𝑧𝑑𝑡)𝑑𝑆0𝑑𝑆𝑡𝑑𝑧𝑑𝑡 , (1)

where we assume the independence among 𝑆0, 𝑆𝑡 , and 𝑧𝑑𝑡 and
omit them for later. Under a Markov assumption, 𝑃 (𝑀) can be
decomposed into:

𝑃 (𝑀) =
𝑛−2∏
𝑖=1

𝑃 (𝑆𝑖+1 |𝑆𝑖), (2)

where 𝑃 (𝑆𝑖+1 |𝑆𝑖) can be learned in many ways, e.g. through re-
current models [Wang et al. 2021] or co-embedding of consec-
utive frames [Ling et al. 2020]. Here, we choose to employ the
co-embedding strategy as it easily allows conditional variables to
be introduced. We introduce a latent variable 𝑧 to encode the co-
embedding of two consecutive frames and also use the next frame
hip velocity 𝑣𝑖+1

ℎ
as a conditional variable. While 𝑧 encodes the tran-

sition probability of two consecutive frames (a.k.a the dynamics),
𝑣𝑖+1
ℎ

can help disambiguate the next frame, for which we will give
details when introducing the transition sampling. Introducing 𝑧 and
𝑣𝑖+1
ℎ

into 𝑃 (𝑆𝑖+1 |𝑆𝑖) gives:

𝑃 (𝑆𝑖+1 |𝑆𝑖) =
∫

𝑃 (𝑆𝑖+1 |𝑆𝑡 , 𝑧, 𝑣𝑖+1
ℎ

)𝑃 (𝑧)𝑃 (𝑣𝑖+1
ℎ

), (3)

Note that we divide all joints into three groups: upper-body, hip,
and lower-body. This is because we empirically find they have dif-
ferent importance in the generation. The hip velocity gives a strong
indication of the next frame (e.g. distinguishing between motions
with high and low velocities). The lower-body joints significantly
influence the visual quality due to potential foot sliding. The upper-
body joints are less constrained comparatively. Therefore, we focus
on learning the lower-body and the hip in 𝑃 (𝑆𝑖+1 |𝑆𝑖):

𝑃 (𝑆𝑖+1 |𝑆𝑖) =
∫

𝑃 (𝑣𝑖+1𝐿 , ¤𝑟 𝑖+1𝐿 |𝑐ℎ,𝐿, 𝑣𝑖+1ℎ
, 𝑧)𝑃 (𝑧), (4)

where 𝑐𝑖
ℎ,𝐿

= {𝑣𝑖
ℎ
, 𝑣𝑖
𝐿
, 𝑟 𝑖
ℎ
, 𝑟 𝑖
𝐿
} consists of the lower-body and the hip

joints of the current frame. We assume that 𝑣𝑖+1
ℎ

is given during pre-
diction and hence its prior distribution can be removed. ¤𝑟 is the an-
gular velocity. Since 𝑧 should encode two consecutive frames, it can
be independently learned via 𝑃 (𝑧) = 𝑃 (𝑧 |𝑐𝑖

ℎ,𝐿
, 𝑐𝑖+1
ℎ,𝐿

) or expanding
it to 𝑃 (𝑧) = 𝑃 (𝑧 |𝑐𝑖

ℎ,𝐿
, 𝑣𝑖+1
ℎ

, 𝑣𝑖+1
𝐿

, 𝑟 𝑖+1
ℎ

, 𝑟 𝑖+1
𝐿

). If we assume 𝑧 ∼ 𝑁 (0, I),
where 𝑁 is a normal distribution, 𝑃 (𝑧) can then be considered as
the encoder of a Conditional VAE or CVAE where the condition is
{𝑐𝑖
ℎ,𝐿

, 𝑣𝑖+1
ℎ

} and the latent space distribution is constrained to be a
Normal, as shown in Figure 2.

Next, 𝑃 (𝑣𝑖+1
𝐿

, ¤𝑟 𝑖+1
𝐿

|𝑐𝑖
ℎ,𝐿

, 𝑣𝑖+1
ℎ

, 𝑧) can be considered as the decoder of
the CVAE. Instead of reconstructing 𝑟 𝑖+1

𝐿
directly, we compute it by

𝑟 𝑖+1
𝐿

= ¤𝑟 𝑖+1
𝐿

+ 𝑟 𝑖
𝐿
. The conditional variables of the decoder are specifi-

cally designed to capture the ambiguous transitions that are intrinsic
to human motions. It aims to learn discriminative transitions via
a multi-modal mapping. Specifically, given a non-discriminative
embedding 𝑧, the decoding is conditioned on the current frame
(𝑣𝑖
ℎ
, 𝑣𝑖
𝐿
, 𝑟 𝑖
ℎ
, 𝑟 𝑖
𝐿
) and the future hip velocity (𝑣𝑖+1

ℎ
). Such a decoding

process requires the decoder to learn a multi-modal mapping that
is similar to incorporating different dense control signals [Zhang
et al. 2018] [Holden et al. 2017]. Therefore, we employ a Condi-
tioned Mixture of Experts (CMoEs) model in the decoder, as shown
in Figure 2. During learning, the CMoEs can learn discriminative
mappings where each expert network tends to focus on learning

ACM Trans. Graph., Vol. 41, No. 4, Article 137. Publication date: July 2022.

137:4 • Tang et al.

𝒗𝒗𝒉𝒉𝒊𝒊

𝒗𝒗L𝒊𝒊

𝒓𝒓𝑳𝑳𝐢𝐢
𝒓𝒓𝒉𝒉𝒊𝒊

𝝁𝝁

𝝈𝝈

Sample

𝒗𝒗𝒉𝒉𝒊𝒊+𝟏𝟏

𝒗𝒗L𝒊𝒊+𝟏𝟏

𝒓𝒓𝑳𝑳𝐢𝐢+𝟏𝟏

𝒓𝒓𝒉𝒉𝒊𝒊+𝟏𝟏

Encoder of CVAE
Input

… …

… … 𝒗𝒗L𝒊𝒊+𝟏𝟏
�̇�𝒓𝑳𝑳𝐢𝐢+𝟏𝟏

Input

Gate
Multiple Experts

… …

target encoder

offset encoder

state encoder

𝒑𝒑𝒉𝒉𝒕𝒕 ,𝒑𝒑L𝒕𝒕 , 𝒓𝒓𝐔𝐔𝒕𝒕

𝒓𝒓𝐔𝐔𝒕𝒕 ,𝒑𝒑L𝒕𝒕 ,𝒑𝒑𝒉𝒉𝒕𝒕 𝒓𝒓𝐔𝐔𝒊𝒊 ,𝒑𝒑L𝒊𝒊 ,𝒑𝒑𝒉𝒉𝒊𝒊-

𝒛𝒛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

LSTM

Parse decoder
�̇�𝒓𝐔𝐔𝒊𝒊+𝟏𝟏

𝒗𝒗𝒉𝒉𝒊𝒊 ,𝒗𝒗L𝒊𝒊 , 𝒓𝒓𝐔𝐔𝐢𝐢

𝒛𝒛𝑑𝑑𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝒛𝒛

𝒗𝒗𝒉𝒉𝒊𝒊+𝟏𝟏

𝒗𝒗𝒉𝒉𝒊𝒊

𝒗𝒗L𝒊𝒊

𝒓𝒓𝑳𝑳𝐢𝐢
𝒓𝒓𝒉𝒉𝒊𝒊

𝒛𝒛

𝒗𝒗𝒉𝒉𝒊𝒊+𝟏𝟏

𝒛𝒛

Decoder of CVAE

Sampler

�̇�𝒓𝐔𝐔𝒊𝒊+𝟏𝟏 𝒗𝒗𝒉𝒉𝒊𝒊+𝟏𝟏 𝒗𝒗L𝒊𝒊+𝟏𝟏, �̇�𝒓𝑳𝑳𝐢𝐢+𝟏𝟏

Next frame

�̇�𝒓𝒉𝒉𝒊𝒊+𝟏𝟏

�̇�𝒓𝒉𝒉𝒊𝒊+𝟏𝟏

Fig. 2. When training the CVAE, the encoder takes frames 𝑖 and 𝑖 + 1 as input and generates the mean value 𝜇 and log variance 𝜎 of the normal distribution.
The motion manifold model (the decoder of CVAE) takes the current frame (𝑣𝑖

ℎ
, v𝑖

𝐿
, r𝑖

𝐿
, 𝑟 𝑖

ℎ
) , the character movement 𝑣𝑖+1

ℎ
at the next frame, and a latent vector

𝑧 to generate the rotation and velocity of the lower-body joints. When training the transition sampler, we first remove the encoder of the CVAE, then fix the
decoder and connect the transition sampler to the fixed decoder to train the sampler. The target frame, current frame, and offset are encoded by the target,
state, and offset encoders, respectively. Subsequently, the embeddings 𝑧𝑑𝑡 and 𝑧𝑡𝑎𝑟𝑔𝑒𝑡 are added to the encoded vectors, and an LSTM network takes the
encoded vectors to produce the next state. Finally, the parse decoder takes the state and outputs the upper joints ¤𝑟 𝑖+1

𝑈
and the sample (𝑧, 𝑣𝑖+1

ℎ
) .

one phase of motions. We also add a gating network which learns
a weighting scheme for experts given a specific input. The final
output is a weighted sum of all expert outputs.

3.1.1 Losses. To train the CVAE, we minimize a loss function:

𝐿 = 𝐿𝑓 𝑜𝑜𝑡 + 𝐿𝑏𝑜𝑛𝑒 + 𝐿𝑟𝑒𝑐 + 𝐿𝑘𝑙 , (5)

where several loss terms are proposed. 𝐿𝑓 𝑜𝑜𝑡 is a foot skating loss
in the joint position space:

𝐿𝑓 𝑜𝑜𝑡 = 𝑣𝑒𝑛𝑑 + 𝑣ℎ, (6)

where 𝑣𝑒𝑛𝑑 is the predicted relative velocity of the contacting foot
with respect to the ground. When the velocity is less than 0.2𝑐𝑚/𝑠 ,
we assume a foot contact with the ground. Although a joint angle
representation is also theoretically possible with forward kinematics,
the relation to be learned would become unnecessarily non-linear.

Besides, we add a bone length loss. For each joint 𝑗 and its neigh-
bor joints in 𝑛(𝑗), the loss is:

𝐿𝑏𝑜𝑛𝑒 = | |𝑝 𝑗 − 𝑝𝑘 | |2 − ||𝑝 𝑗 − 𝑝𝑘 | |2,∀𝑘 = 𝑛(𝑗), 𝑗 ∈ L, (7)

where 𝑝 𝑗 is the predicted position of joint 𝑗 .
The reconstruction loss is defined as the mean squared error

(MSE) between the predicted pose and the ground-truth:

𝐿𝑟𝑒𝑐 = | |p̂𝐿 − p𝐿 | |22 + ||r̂𝐿 − r𝐿 | |22 . (8)

Finally, a KL-divergence loss is employed to constrain the distribu-
tion of the latent vector to be a standard Gaussian distribution:

𝐿𝑘𝑙 = −0.5 · (1 + 𝜎 − 𝜇2 − 𝑒𝜎), (9)

where 𝜇 and 𝜎 are the mean and log variances.

3.2 Transition Sampling
Although the CVAE can learn a natural manifold, it can only perform
uncontrolled generation. This is because 𝑆0 can be easily used to
start the generation in Equation 4, but the distributions are not
conditioned on 𝑆𝑡 and 𝑧𝑑𝑡 . Explicitly learning 𝑃 (𝑀) conditioned on
𝑆𝑡 and 𝑧𝑑𝑡 requires learning the reverse Markov chain across all
possible duration, which is not trivial. Therefore, we use a neural
network to learn them implicitly. To be able to generate motions
continuously, we need to sample 𝑧 and 𝑣𝑖+1

ℎ
to generate 𝑆𝑖+1 given

𝑆𝑖 , under the constraints of 𝑆𝑡 and 𝑧𝑑𝑡 . So the network is essentially
a sampler for sampling frames from the learned manifold.
The architecture of the network is shown in Figure 2. The sam-

pler considers the constraints by the target encoder and the offset
encoder, which encode the target frame and the offset between the
current and the target frame, respectively. The key output is the
next-frame condition 𝑧 and 𝑣𝑖+1

ℎ
. In addition, when used for decod-

ing the next frame, 𝑧 and 𝑣𝑖+1
ℎ

will be pulled through the decoder
of our CVAE, where essentially a manifold projection is conducted
to refine the pose. We also add a time-varying noise 𝑧𝑡𝑎𝑟𝑔𝑒𝑡 to the
encoded vector, sampled from a zero-centered Gaussian distribution
with variance equal to 0.5. Its amplitude 𝜆 decreases as it approaches
the target frame so that the sampler’s attention only focuses on the
target when close to it. It also helps to improve the robustness to
new conditioning information [Harvey et al. 2020]. The amplitude

ACM Trans. Graph., Vol. 41, No. 4, Article 137. Publication date: July 2022.

Real-time Controllable Motion Transition for Characters • 137:5

of the noise decreases by the function:

𝜆 = 𝑐𝑙𝑎𝑚𝑝

(
𝑑𝑡 − 𝑡𝑧𝑒𝑟𝑜

𝑡𝑝𝑒𝑟𝑖𝑜𝑑 − 𝑡𝑧𝑒𝑟𝑜
, 0, 1

)
, (10)

where 𝑑𝑡 is the frame difference between the current time and the
target, 𝑡𝑧𝑒𝑟𝑜 is the frame duration without noise, and 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 is the
period of linear decrease of the noise. We empirically set 𝑡𝑧𝑒𝑟𝑜 = 5
and 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 = 30 in our experiments.
The sampler takes the current state of the pose via the state

encoder. The constraint of 𝑧𝑑𝑡 is represented by the time embedding
z𝑑𝑡 [Harvey et al. 2020], added to the latent vector of all encoders.
The time embedding vector is similar to the positional encoding in
[Vaswani et al. 2017]:

z𝑑𝑡,2𝑖 = 𝑠𝑖𝑛

(
𝑑𝑡

100002𝑖/𝑑

)
, z𝑑𝑡,2𝑖+1 = 𝑐𝑜𝑠

(
𝑑𝑡

100002𝑖/𝑑

)
, (11)

where 𝑑 represents the dimension of z𝑑𝑡 and 𝑖 ∈ [0, ..., 𝑑/2] repre-
sents the dimension index.
Next, the recurrent neural network takes all latent vectors to

predict the next state. A decoder parses the state to generate the
sample (𝑧, 𝑣𝑖+1

ℎ
) and the upper joints ¤𝑟 𝑖+1

𝑈
.

When passing the frame into encoders, we represent 𝑆 by the hip
velocity, the lower joints’ velocity, and the upper joints’ rotation to
reduce dimensionality (𝑣ℎ, 𝑣𝐿, 𝑟𝑈) compared to the full state, and
calculate the offset using the lower joints’ position 𝑝𝐿 . To balance
the attention on the lower joints and upper joints, we apply z-score
normalization on 𝑝𝐿 before passing it into the offset encoder.

All three encoders are two-layer feed-forward networks with 512
units in the first hidden layer and 256 units in the second layer. Each
layer is followed by PLU activation. The parse decoder has three
layers with 512 units in the first hidden layer and 256 units in the
second layer, followed by ELU activation. To compute 𝑧, which is a
key input to our CVAE to sample the next frame, we apply a tanh
function and scale the output by 4.5 to ensure a good coverage of
the normal distribution.

3.2.1 Losses. To train the sampler, we propose the following loss
function:

𝐿 = 𝐿𝑟𝑜𝑡 + 𝐿𝑙𝑒𝑔 + 𝐿𝑝𝑜𝑠,𝑟𝑜𝑡 , (12)

where 𝐿𝑟𝑜𝑡 is a L1 norm rotation loss for all joints and 𝐿𝑙𝑒𝑔 is a
position loss for lower-body joints:

𝐿𝑟𝑜𝑡 = | |r̂𝐿 − r𝐿 | |1 + ||r̂𝑈 − r𝑈 | |1,
𝐿𝑙𝑒𝑔 = | |p̂𝐿 − p𝐿 | |1 .

(13)

Besides, similar to Harvey et al. [2020], we employ Forward Kinemat-
ics (FK) to obtain the position p̂𝑟𝑜𝑡 of all joints from their predicted
rotation. The loss between p̂𝑟𝑜𝑡 and the ground truth position p
helps to implicitly weigh the rotation of the bone’s hierarchy for
better results [2020]:

𝐿𝑝𝑜𝑠,𝑟𝑜𝑡 = | |p̂𝑟𝑜𝑡 − p| |1 . (14)

In addition, the foot skating loss (see Eq. 6) and the bone length loss
(see Eq. 7) are also used for training the sampler.

01

2

3

4

5

6

7

8

9
10

11

12
14 21151617 18 19 20

13

0
1

2

3

4

5

6

7

8

9

10

11
12

13
14

15
16 17 18 19

20

Fig. 3. The left character has 21 joints from the Human3.6M. The right
character from the Lafan1 dataset has 22 joints. In our setup, the lower
joints set is 𝐿 = {1, 2, 3, 4, 5, 6, 7, 8} , the joint 0 is hip joint, and the other
joints are the upper joints.

4 IMPLEMENTATION

4.1 Data formatting
We use the LaFAN1 dataset [Harvey et al. 2020] and the Human3.6M
dataset [Ionescu et al. 2011] [Ionescu et al. 2014]. We remove the
wrist and thumb joints from the Human3.6M dataset, which leaves
us with 21 joints. The character from the Lafan1 dataset has 22
joints. We employ different representations for different joints. As
shown in Fig. 3, we use the position-based representation for 8 lower
joints and the rotation-based representation for upper joints. All
lower joints connect less than two other joints to determine their
orientation.

Zhang et al. [2018] proposed to represent joint rotation by a 2-axis
rotation matrix 𝑟 ∈ R6, containing a 3D vector for the up direction
and a 3D vector for the forward direction. The joint position 𝑗

contains a 3D vector 𝑣 𝑗 ∈ R3 to represent the velocity of the joint
and a 3D vector to represent the up direction. We replace the 3D
up direction with the 2-axis rotation matrix for uniformity. So the
lower joints 𝑋 𝑖

𝐿
of frame 𝑖 can be represented by eight lower joints’

rotation r𝑖
𝐿
∈ R8×6 and six lower joints’ position p𝑖

𝐿
∈ R6×3 with

the velocity v𝑖
𝐿
∈ R6×3. Notice that we discard the velocity of joints

1 and 5 because they are determined by joint 0’s rotation.
Both datasets contain multiple subjects. The subjects in the test

set are different from the training set in our experiments, which
ensures that our motion model can generalize to different subjects
after training. The Lafan1 dataset contains 496,672 motion frames
performed by 5 motion subjects. Similar to [Duan et al. 2021; Harvey
et al. 2020], we use subject 5 as the test set. For the Human3.6M
dataset, we choose to use a subset containing the walk-related ac-
tions (walking, walkingdog, walkingtogether), the same as [Harvey
et al. 2020] did. We work with a 25HZ sampling rate and take Subject
5 as the test subject.

For both datasets, we split the training set into multiple 50-frames
windows. Similar to [Harvey et al. 2020] [Duan et al. 2021], two
consecutive windows have 25 overlapped frames.
When training, the input of the current step is the output from

the last step so that the error accumulates as the generated sequence

ACM Trans. Graph., Vol. 41, No. 4, Article 137. Publication date: July 2022.

137:6 • Tang et al.

grows. This effect increases the robustness because the network
learns a pose not only from the dataset.

4.2 Training of Motion Manifold
The 50-frames sequence is still too long for learningmotionmanifold
to convergence efficiency. We equally split the 50-frames sequence
into two 25-frames sequences before training the architecture.

The bone length loss constrains the joints’ velocity to zero, gener-
ating a weird motion sequence. To avoid this, we train the architec-
ture twice. We first use the reconstruction loss and KL-divergence
loss, teaching the network to predict an approximate pose. Secondly,
we add foot skating loss and bone length loss.

Inspired by Ling et al. [2020], we pass the latent variable 𝑧 and the
future hip velocity 𝑣𝑖+1

ℎ
to every layer of the expert network to avoid

posterior collapse. The encoder of the CVAE has two hidden layers
with 256 units followed by ELU activation. The gating network
has two hidden feed-forward layers followed by ELU activation.
The output layer of the gating network uses Softmax activation.
Each of expert network is a three-layer feed-forward network with
256 units in the hidden layers followed by ELU. In our preliminary
experiments, six expert networks achieve good results and fewer
than six lead to worse accuracy. We therefore empirically set the
expert number to six in our implementation.

The scheduled sampling strategy is employed the first time. The
network takes the predicted pose the last timestep as input with
probability 𝑝 . Otherwise, it takes the ground truth from the dataset
as input. The probability starts at 0 for the first 𝑘 epochs and then
increases to 1 linearly for another 𝑘 epochs. We set 𝑘 = 5 for the
Lafan1 dataset and 𝑘 = 20 for the Human3.6M dataset.
We use AMSgrad optimizer with adjusted parameters (𝛽1 =

0.5, 𝛽2 = 0.9). At the first training time, the learning rate is ini-
tialized to 1e-4 and linear decreases to 1e-5 by 50,000 iterations. The
learning rate starts at 0 for the second time and increases to 1e-4 for
ten epochs so that the added losses do not significantly change the
network’s parameters. After ten epochs, the learning rate decreases
with the same decreasing rate as the first time. We scale all losses
to be approximately equal to 1 for an untrained network without
employing extra weights.
For the transition sampler, the target frame, current frame, and

offset are encoded by the target, state and offset encoder, respec-
tively. Subsequently, the embeddings 𝑧𝑑𝑡 and 𝑧𝑡𝑎𝑟𝑔𝑒𝑡 are added to
the encoded vectors. Then an LSTM takes the encoded vectors to
produce the next state. Finally, the parse decoder takes the state and
outputs the upper joints ¤𝑟 𝑖+1

𝑈
and the sample (𝑧, 𝑣𝑖+1

ℎ
).

4.3 Training of Transition Sampler.
After training the CVAE, we remove its encoder, fix its decoder,
and connect the transition sampler to the fixed decoder to train the
sampler.
All encoders are feed-forward networks with a hidden layer of

512 units and an output layer of 256 units. All layers use PLU as
the activation. The LSTM has 1024 units in the hidden layer. The
parse decoder has two hidden feed-forward layers with 512 units
in the first layer and 256 units in the second layer. Both layers are
followed by ELU.

During training, we sample a transition length from 5 to 30 frames
from a window in each learning step so that the network can learn
from different transition lengths and the target frames.
The AMSgrad optimizer is also employed for training the tran-

sition architecture. The learning rate equals 1e-3, the weights for
𝐿𝑟𝑜𝑡 , 𝐿𝑙𝑒𝑔 are 1 and the weights for 𝐿𝑝𝑜𝑠,𝑟𝑜𝑡 , 𝐿𝑏𝑜𝑛𝑒 , 𝐿𝑓 𝑜𝑜𝑡 equals 0.5.
We train the transition architecture for 300,000 iterations costing
approximately one day.

5 EXPERIMENTS AND RESULTS
We conduct our experiments on a PC with an Nvidia RTX 2080
graphics card, with an AMD 3950x CPU and 32G memory. Our
method takes on average 2.1 ms to synthesize one frame, which is
sufficient for real-time applications. As in similar research, real-time
in-between motion generation requires high-quality data. Therefore,
we mainly use the Lafan1 dataset [Harvey et al. 2020] for its good
quality and diversity in motion styles. To further test the gener-
alizability of our method, we also validate it on the Human3.6M
dataset [Ionescu et al. 2011] [Ionescu et al. 2014] and compare it
with previous methods. Unless specified otherwise, the following
experiments are conducted on the Lafan1 dataset and all models are
trained with transition lengths of 5 to 30 frames (see supplemental
material for details).
Our data split for training/testing is similar to [Harvey et al.

2020]. Each test window contains 65 frames, sampled from Subject
5 of both datasets. Two consecutive windows have 25 overlapped
frames. Our evaluation focuses on the motion quality, transition
quality and model generalizability under unseen control signals. We
employ both qualitative visual evaluation and quantitative metrics.
The quantitative metrics include reconstruction accuracy given a
seen target frame and transition duration, evaluated by Normalized
Power Spectrum Similarity (NPSS) in the joint angle space and the
average L2 distance of global joint position between the predicted
results and the ground truth. These metrics are good indicators
of transition quality, i.e., testing whether multi-modal transitions
are captured in detail. Note that although we add a bone-length
loss term during training, it cannot keep the lengths of the bones
constant. For a 30-frames transition motion, the average bone length
error is 0.64 cm. For a fair comparison with RTN, we first transform
the joint positions to joint rotations, and then obtain their joint
positions by FK before we compare their joint position accuracy. In
addition, we also employ a foot skatingmetric to evaluate themotion
quality [Zhang et al. 2018]. This metric checks whether the motion
manifold learns a reasonable pose under a given velocity. The foot
skating metric averages the foot velocity 𝑣 𝑓 over the ground if the
foot height ℎ is within a threshold 𝐻 . Since there is foot skating
in the ground-truth, we empirically set 𝐻 to 2.5 cm. The metric is
defined as:

𝐿𝑓 = 𝑣 𝑓 · clamp(2 − 2ℎ/𝐻 , 0, 1). (15)

5.1 Ablation study
Pose Representation Previous research uses joint positions, joint
angles or both [Holden et al. 2020, 2017]. To test which representa-
tion works the best for our manifold model, we conduct an ablation
study and focus on the foot skating, shown in Table 1. The results

ACM Trans. Graph., Vol. 41, No. 4, Article 137. Publication date: July 2022.

Real-time Controllable Motion Transition for Characters • 137:7

Table 1. Comparisons of foot skating between position-based representation
and rotation-based representation.

Foot skate
Frames 5 15 30
Rotation-based 0.934 1.035 1.161
Position-based 0.356 0.373 0.401

Table 2. Comparisons between the Full-body network and our method.
Both models are trained with 300,000 iterations.

L2 norm of global position
Frames 5 15 30
Full-body 0.259 0.612 1.143
Our method 0.196 0.562 1.124

NPSS
Full-body 0.00671 0.07471 0.35385
Our method 0.00554 0.07026 0.34549

are similar to existing research [Wang et al. 2021] in that joint posi-
tion representation can effectively mitigate the foot skating. Note
that our model still explicitly models joint angles, which is normally
required for animation purposes. Using joint positions here acts as
a regularization term to facilitate learning.

Motion manifold focus on the lower-body joints. Our focus
on the lower-body and the hip in natural motion modeling is a
different design choice compared with recent deep learning research.
This is because the lower-body motions are relatively simple in
locomotion but highly important for motion quality due to foot
skating. Therefore, we prioritize these joints in learning themanifold
and leave the correlation learning between the upper-body and the
lower-body to the transition sampler. Alternatively, we can also
model the whole body directly but the relatively unconstrained
upper-body motion can introduce ambiguity in learning.
To prove this, we add the upper-body joints to the CVAE and

remove the upper joints’ rotation difference ¤r𝑈 from the output of
the transition sampler. We refer to this network as the Full-body
network. A comparison is shown in Table 2. Smaller reconstruction
errors in both the joint angle and position space indicate that better
transitions are learned. Note that in both networks, our method still
predicts the full body. The larger errors in Full-body are likely to be
caused by its predictions being closer to the ‘averaged’ motion. By
separating the modeling of the lower-body and upper-body joints,
our method manages to improve the learning.

5.2 Evaluation and Comparison
5.2.1 Motion quality. Foot sliding is an important metric for motion
quality. Earlier research suffers from such problems due to ‘averaged’
motions and drifting issues [Fragkiadaki et al. 2015]. A common
strategy is to have a post-processing stage [Wang et al. 2021]. More
recent work tends to mitigate this problem e.g. by inducing contact
patterns [Starke et al. 2020] when dense temporal control signal is
available, or constraining the distribution of the generated motions
to be similar to that of the data [Harvey et al. 2020]. However, while

Table 3. Comparisons of reconstruction accuracy and foot skating of differ-
ent methods. All models are trained with 300,000 iterations.

L2 norm of global position
Frames 5 15 30
Interpolation 0.37 1.24 2.31
RTN 0.22 0.59 1.16
+skating loss 0.28 0.68 1.27
Auto-Encoder 0.28 0.63 1.16
VAE 0.20 0.56 1.11
Our method 0.20 0.56 1.12

NPSS
Interpolation 0.0073 0.1135 0.5229
RTN 0.0056 0.0719 0.3495
+skating loss 0.0071 0.0799 0.3715
Auto-Encoder 0.0078 0.0835 0.3721
VAE 0.0055 0.0701 0.3420
Our method 0.0055 0.0702 0.3455

Foot skate
Ground Truth 0.162 0.141 0.143
Interpolation 1.708 2.081 2.144
RTN 0.483 0.698 0.930
+skating loss 0.249 0.349 0.455
Auto-Encoder 0.294 0.485 0.649
VAE 0.255 0.353 0.502
Our method 0.244 0.343 0.469

post-processing is highly undesirable in our application, predicting
contact patterns is also not straightforward with arbitrary target
frames. Constraining the distribution seems effective, but it is still
not easy to mitigate the foot skating. To show this, we compare
RTN [Harvey et al. 2020] and its variant with a foot skating loss
(+skating loss). As a naive baseline, we also experiment with linear
interpolation (Interpolation). Results are shown in Table 3. First,
adding an additional foot skating loss to RTN mitigates foot skating
to some extent (Table 3 Bottom). However, it also leads to worse
reconstruction accuracy. During learning, the predicted contact
step might be different from the step from the ground truth, so
their loss induces an incorrect backward gradient and make the
pose unnatural. The results in the video show that adding the foot
skating loss also sometimes causes unsmoothed transitions near
the start and the end frame. Although our method predicts the foot
contact step, the inconsistent backward gradient doesn’t affect the
pose unnaturally but helps to adjust the hip velocity because the
pose is sampled from the manifold.
Further, to also show the importance of controlling the latent

distribution of the motion dynamics, we replace our CVAE with a
plain autoencoder (Auto-Encoder) so that the distribution of 𝑧 is not
constrained (i.e., without the KL-divergence loss). Besides, to show
the importance of using the hip velocity as a condition, we replace

ACM Trans. Graph., Vol. 41, No. 4, Article 137. Publication date: July 2022.

137:8 • Tang et al.

our CVAE with a VAE so that the latent distribution is uncondi-
tional. Autoencoder and VAE are widely used for learning motion
manifolds [Harvey et al. 2020; Holden et al. 2020; Ling et al. 2020;
Wang et al. 2021]. The results are shown in Table 3. By explicitly
controlling 𝑧 with conditioned decoding on the hip velocity, our
method performs similarly to the VAE in reconstruction accuracy
(i.e., L2 error and NPSS), significantly better than the Auto-encoder.
Further, our method outperforms VAE in foot skating by large mar-
gins especially from the 30th frame, greatly improving the motion
quality.
We compare our method with RTN on the Human3.6M dataset,

shown in Table 4. While RTN achieves slightly better results in NPSS
by as large as 7.6%, ourmethod outperforms RTN in both the𝐿2 norm
and the foot skate by 10.3% and 69.2%, respectively. When looking
at the difference between the Human3.6M and the Lafan1, the most
significant difference is the skeleton variation between subjects. The
Human3.6M has a larger variation. We speculate this might be the
reason for the slightly worse results in NPSS and also why at frame
5, Interpolation even outperforms both methods. However, since
neither methods explicitly aim to generalize to different skeletons,
we leave the analysis to future work.

Table 4. [Human3.6M]Comparisons of different frames between RTN and
our method. Both models are trained with 300,000 iterations.

L2 norm of global position
Frames 5 15 30
Interpolation 0.78 1.85 2.59
RTN 0.53 0.98 1.50
Our method 0.47 0.93 1.44

NPSS
Interpolation 0.0044 0.0651 0.3132
RTN 0.0049 0.0549 0.2298
Our method 0.0054 0.0554 0.2386

Foot skate
Ground Truth 0.070 0.089 0.089
Interpolation 0.824 1.525 0.929
RTN 0.325 0.363 0.456
Our method 0.100 0.198 0.317

In addition, we also compare our method with the state-of-the-
art offline motion completion method, which is based on a trans-
former [Duan et al. 2021]. The results reported in Table 5 shows
that our method can generate comparable results.

Table 5. Comparisons between our method and the transformer.

L2 norm of global position
Frames 5 15 30
Transformer 0.22 0.56 1.10
Our method 0.20 0.56 1.12

Table 6. Comparisons of different kinds of actions. The number of frames
of the generated sequences is 30. Both models are trained with 300,000
iterations.

L2 norm of global position
Actions Walk Dance Jump Obstacle
Interpolation 2.76 2.40 1.89 2.23
RTN 0.99 1.51 1.21 1.21
Our method 0.95 1.48 1.18 1.15

NPSS
Interpolation 0.6430 0.6405 0.4000 0.4513
RTN 0.3380 0.5197 0.3123 0.3158
Our method 0.3306 0.5141 0.3205 0.3085

Foot skate
Ground Truth 0.160 0.230 0.155 0.121
Interpolation 2.743 1.844 1.381 2.024
RTN 1.187 1.103 0.640 0.657
Our method 0.589 0.571 0.326 0.293

5.2.2 Generalization. Since the target frame and aimed transition
duration can be used as control signals, evaluating models under
unseen and extreme user control is crucial. We validate our method
via multiple aspects: motion style, aimed transition duration and
the distance between the start and end frame.

Different motion styles. We split the Lafan1 dataset into multi-
ple subsets by motion styles. All the walking and running sequences
are categorized into a ’walk’ set. The ’dance’ set includes dance
sequences, fight sequences and sports sequences. A ’jump’ set col-
lects all the jump sequences, and an ’obstacles’ set contains all the
character’s motions across the obstacles. The results are shown
in Table 6. Since the ground truth data also contains foot skating,
we use it as a baseline too. The results show that our method can
universally improve the results. While being able to achieve better
reconstruction, our method provides far better foot skates. This is
demonstrated across different motion styles.

Different transition duration. To test our method can handle
long and short duration as the aimed transition time, we discard
1 second (30 frames) from each sample, and require the network
to generate the sequences at speed scaled to 2x (15 frames), 4x (8
frames) and 0.5x (60 frames) respectively. Besides, we have made
experiments with an extreme case, in which we slow down the speed
100 times (0.01x). The results are shown in Table 7. Interpolation
performs best in this situation because the drifting is divided by
100 times. However, there is no valid pose change in interpolation
results.

Slowing down motions is theoretically easier as foot contact can
still be generated. Our method outperforms RTN in keeping foot
contact. Comparatively, speeding up is more difficult because it
might be impossible for a character to reach the target during such
a short time. This is why the foot skating in 4x and 2x are in general
worse. However, our method still provides the best results. Visually,
we find that if the start and the end frame are within the same phase
of a walking cycle, for example, when the left leg is behind the right
leg, RTN motion tends to drift to the target without changing pose,

ACM Trans. Graph., Vol. 41, No. 4, Article 137. Publication date: July 2022.

Real-time Controllable Motion Transition for Characters • 137:9

Table 7. Comparisons of foot skating of changing transition duration be-
tween RTN and our method. Bothmodels are trained with 300,000 iterations.

Foot skate
Speed 4x 2x 0.5x 0.01x
Ground Truth 0.161 0.148 0.156 0.149
Interpolation 7.302 3.917 1.075 0.004
RTN 4.050 2.087 0.814 0.522
Our method 3.363 1.350 0.438 0.110

while our results make fast footsteps. These results can be seen in
the accompanying video.
Different target locations. Another dimension is to vary the

location of the target frame. We conduct two experiments. The first
one has the target frame set further away, along the direction from
the start to the target frame (Forwarding). In addition, we also move
the target frame in the opposite direction (i.e., from the original
target frame to the starting frame), to a location that is twice further
away from the starting frame compared with the original target
frame (Backwarding).

In Forwarding, our method generates fewer bigger steps or more
small steps to fill the gap without visible artifacts. RTN usually
performs at the same pace as the ground truth but fills the distance
gap by drifting. Backwarding is an extreme testing case and is chal-
lenging for both methods. Since the poses of the start frame and the
target frame have similar orientations and there is not enough time
for turning twice, both methods try to achieve the target frame by
walking backward. However, RTN always generates visible artifacts
while our method does not.We speculate that this is because the data
does not contain enough clips for the character to move backwards.
However, the motion manifold captured the motions with backward
velocity in the training set, which helps to synthesize the natural
action successfully. Results of both Forwarding and Backwarding
can be found in the video. Here, we show an extreme Forwarding
case where the target frame is 10 meters away from the starting
frame, where the longest distance in the training set is merely 5.79
meters. To generate a 60-frames motion, the character must have a
speed exceeding 5𝑚/𝑠 (7.9𝑚/𝑠 for the farthest distances) to reach
the target.
Figure 4 shows a visual comparison among RTN, VAE and our

method. RTN (the first row) generates motions that drift towards
the goal because the target frame is too far (i.e., floating in the air
in the middle of the motion). In addition, without the condition of
the hip velocity, the poses synthesized by VAE do not conform to
the movements, leading to unnatural motions (i.e., the poses are
similar to the blending of crawling and running). Comparatively,
our method generates the most natural motions under this extreme
case.

6 LIMITATIONS
Similar to other data-driven methods, one major limitation of our
method is that our generation results are limited by the training
data. It cannot generate motions that are too different from the
training data. One example is that motion generation will become

Fig. 4. We sample the pose every 5 frames. The first row shows the RTN’s
results, the second row shows the VAE’s results, and the last row shows
our results. For a clearer observation, we sample one frame from each
sequence and put it at the rightmost row. The results indicate that our
method generates the most natural running motion.

Fig. 5. The figure shows the midway in a 30-frames transition re-sampled 5
times. The upper body shows the diversity.

quite challenging when we place the target frame behind the start-
ing frame. The reason is that there is no quick turning or enough
backward walking motion in the training data. Another example is
that we cannot guarantee the target frame is 100% achieved if the
target frame is too different from data, spatially, temporally, or both.
However, we argue that our framework itself is still effective and
the aforementioned problems can be easily overcome when more
diverse data are introduced.

Lacking of motion diversity is another limitation of our method.
As a CVAE-based network, our model can indeed generate different
motions for the same control, but the differences of the generated
motions are small, especially for the lower body (as shown in Fig-
ure 5). To generate high-quality motion under unseen control, we
assume that the contact position with the ground of each step cannot
change too much.

7 FUTURE WORK
Although specifying the motion duration is widely used in the
animation/game pipelines to control the timing of motions and tran-
sitions, we will provide automated computation for desired motion

ACM Trans. Graph., Vol. 41, No. 4, Article 137. Publication date: July 2022.

137:10 • Tang et al.

duration in future. Given the robustness of our model under differ-
ent timing requirements, we will compute a reasonable duration
by modeling the distribution of possible timing requirements auto-
matically. In addition, we will take more factors into considerations,
such as motion styles, interactions with environments, and various
skeletal topologies (e.g. quadrupeds).

8 CONCLUSIONS
We proposed a novel learning framework consisting of a new natural
motion manifold model and a new transition sampler for real-time
in-between motion generation. The motion manifold model treats
different body parts separately and focuses on controllability and
motion quality, while the transition sampler ensures natural motions
are generatedwith respect to user control. Ourmodel generates high-
quality motions in mitigating foot skating and motion transitions so
that it can be used for both offline animation and online games. Our
method is also general under unseen control signals. It outperforms
alternative solutions and the state-of-the-art methods.

ACKNOWLEDGMENTS
Xiaogang Jin was supported by the National Natural Science Foun-
dation of China (Grant Nos. 62036010, 61972344), the Ningbo Major
Special Projects of the “Science and Technology Innovation 2025”
(Grant No. 2020Z007), and the Key Research and Development Pro-
gram of Zhejiang Province (Grant No. 2020C03096).

REFERENCES
Okan Arikan and D. A. Forsyth. 2002. Interactive motion generation from examples.

ACM Transactions on Graphics 21, 3 (2002), 483–490.
Philippe Beaudoin, Stelian Coros, Michiel van de Panne, and Pierre Poulin. 2008. Motion-

motif graphs. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation. 117–126.

Jinxiang Chai and Jessica K. Hodgins. 2007. Constraint-based motion optimization
using a statistical dynamic model. ACM Transactions on Graphics 26, 3 (2007), 8–es.

Wenheng Chen, He Wang, Yi Yuan, Tianjia Shao, and Kun Zhou. 2020. Dynamic
future net: diversified human motion generation. In Proceedings of the 28th ACM
International Conference on Multimedia. 2131–2139.

Hsu-kuang Chiu, Ehsan Adeli, Borui Wang, De-An Huang, and Juan Carlos Niebles.
2019. Action-agnostic human pose forecasting. In 2019 IEEE Winter Conference on
Applications of Computer Vision (WACV). 1423–1432.

Yinglin Duan, Tianyang Shi, Zhengxia Zou, Yenan Lin, Zhehui Qian, Bohan Zhang, and
Yi Yuan. 2021. Single-Shot Motion Completion with Transformer. arXiv:2103.00776
[cs] (March 2021).

Katerina Fragkiadaki, Sergey Levine, Panna Felsen, and Jitendra Malik. 2015. Recur-
rent network models for human dynamics. In Proceedings of the IEEE International
Conference on Computer Vision. 4346–4354.

Félix G. Harvey and Christopher Pal. 2018. Recurrent transition networks for charac-
ter locomotion. In SIGGRAPH Asia 2018 Technical Briefs (SA ’18). Association for
Computing Machinery, 1–4.

Félix G. Harvey, Mike Yurick, Derek Nowrouzezahrai, and Christopher Pal. 2020. Robust
motion in-betweening. ACM Transactions on Graphics 39, 4, Article 60 (2020).

Alejandro Hernandez, Jurgen Gall, and Francesc Moreno-Noguer. 2019. Human motion
prediction via spatio-temporal inpainting. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision. 7134–7143.

Daniel Holden, Oussama Kanoun, Maksym Perepichka, and Tiberiu Popa. 2020. Learned
motion matching. ACM Transactions on Graphics 39, 4, Article 53 (2020).

Daniel Holden, Taku Komura, and Jun Saito. 2017. Phase-functioned neural networks
for character control. ACM Transactions on Graphics 36, 4 (2017), 1–13.

Daniel Holden, Jun Saito, and Taku Komura. 2016. A deep learning framework for
character motion synthesis and editing. ACM Transactions on Graphics 35, 4 (2016),
1–11.

Catalin Ionescu, Fuxin Li, and Cristian Sminchisescu. 2011. Latent structured models
for human pose estimation. In 2011 International Conference on Computer Vision.
2220–2227.

Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Sminchisescu. 2014. Hu-
man3.6M: large scale datasets and predictive methods for 3D human sensing in

natural environments. IEEE Transactions on Pattern Analysis and Machine Intelligence
36, 7 (2014), 1325–1339.

Ashesh Jain, Amir R. Zamir, Silvio Savarese, and Ashutosh Saxena. 2016. Structural-
RNN: deep learning on spatio-temporal graphs. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition. 5308–5317.

Manuel Kaufmann, Emre Aksan, Jie Song, Fabrizio Pece, Remo Ziegler, and Otmar
Hilliges. 2020. Convolutional autoencoders for human motion infilling. In 2020
International Conference on 3D Vision. 918–927.

Lucas Kovar, Michael Gleicher, and Frédéric Pighin. 2008. Motion graphs. In ACM
SIGGRAPH 2008 Classes (SIGGRAPH ’08).

Sergey Levine, Jack M Wang, Alexis Haraux, Zoran Popović, and Vladlen Koltun. 2012.
Continuous character control with low-dimensional embeddings. ACM Transactions
on Graphics (TOG) 31, 4 (2012), 1–10.

Jiaman Li, Ruben Villegas, Duygu Ceylan, Jimei Yang, Zhengfei Kuang, Hao Li, and
Yajie Zhao. 2021. Task-generic hierarchical human motion prior using vaes. In 2021
International Conference on 3D Vision. IEEE, 771–781.

Hung Yu Ling, Fabio Zinno, George Cheng, and Michiel van de Panne. 2020. Character
controllers using motion VAEs. ACM Transactions on Graphics 39, 4, Article 40
(2020).

Julieta Martinez, Michael J Black, and Javier Romero. 2017. On humanmotion prediction
using recurrent neural networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2891–2900.

Jianyuan Min and Jinxiang Chai. 2012. Motion graphs++: a compact generative model
for semantic motion analysis and synthesis. ACM Transactions on Graphics 31, 6,
Article 153 (2012), 12 pages.

Dario Pavllo, Christoph Feichtenhofer, Michael Auli, and David Grangier. 2020. Model-
ing human motion with quaternion-based neural networks. International Journal of
Computer Vision 128 (2020), 855–872.

Mathis Petrovich, Michael J. Black, and Gül Varol. 2021. Action-Conditioned 3D Human
Motion Synthesis with Transformer VAE. arXiv:2104.05670 [cs] (2021).

Davis Rempe, Tolga Birdal, Aaron Hertzmann, Jimei Yang, Srinath Sridhar, and
Leonidas J Guibas. 2021. Humor: 3d human motion model for robust pose esti-
mation. In Proceedings of the IEEE/CVF International Conference on Computer Vision.
11488–11499.

Alla Safonova and Jessica K. Hodgins. 2007. Construction and optimal search of
interpolated motion graphs. ACM Transactions on Graphics 26 (2007).

Yijun Shen, He Wang, Edmond S. L. Ho, Longzhi Yang, and Hubert P. H. Shum. 2017.
Posture-based and action-based graphs for boxing skill visualization. Computers
and Graphics 69, Supplement C (2017), 104–115.

Sebastian Starke, Yiwei Zhao, Taku Komura, and Kazi Zaman. 2020. Local motion phases
for learning multi-contact character movements. ACM Transactions on Graphics 39,
4, Article 54 (July 2020).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In
Advances in Neural Information Processing Systems. 5998–6008.

He Wang, Edmond SL Ho, and Taku Komura. 2015. An energy-driven motion planning
method for two distant postures. IEEE Transactions on Visualization and Computer
Graphics 21, 1 (2015), 18–30.

He Wang, Edmond S. L. Ho, Hubert P. H. Shum, and Zhanxing Zhu. 2021. Spatio-
temporal manifold learning for human motions via long-Horizon modeling. IEEE
Transactions on Visualization and Computer Graphics 27, 1 (2021), 216–227.

He Wang and Taku Komura. 2011. Energy-based pose unfolding and interpolation for
3D articulated characters. In Motion in Games. 110–119.

He Wang, Kirill A Sidorov, Peter Sandilands, and Taku Komura. 2013. Harmonic
parameterization by electrostatics. ACM Transactions on Graphics 32, 5 (2013), 155.

AndrewWitkin andMichael Kass. 1988. Spacetime constraints. ACM Siggraph Computer
Graphics 22, 4 (1988), 159–168.

Yuting Ye and C. Karen Liu. 2010. Synthesis of responsive motion using a dynamic
model. Computer Graphic Forum 29, 2 (2010), 555–562.

Ye Yuan, Umar Iqbal, Pavlo Molchanov, Kris Kitani, and Jan Kautz. 2021. GLAMR:
Global Occlusion-Aware Human Mesh Recovery with Dynamic Cameras. arXiv
preprint arXiv:2112.01524 (2021).

He Zhang, Sebastian Starke, Taku Komura, and Jun Saito. 2018. Mode-adaptive neural
networks for quadruped motion control. ACM Transactions on Graphics 37, 4 (2018),
1–11.

Xinyi Zhang and Michiel van de Panne. 2018. Data-driven autocompletion for keyframe
animation. In Proceedings of the 11th Annual International Conference on Motion,
Interaction, and Games. 1–11.

Yi Zhou, Jingwan Lu, Connelly Barnes, Jimei Yang, Sitao Xiang, et al. 2020. Gener-
ative tweening: Long-term inbetweening of 3d human motions. arXiv preprint
arXiv:2005.08891 (2020).

ACM Trans. Graph., Vol. 41, No. 4, Article 137. Publication date: July 2022.

	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	3.1 The Motion Manifold
	3.2 Transition Sampling

	4 Implementation
	4.1 Data formatting
	4.2 Training of Motion Manifold
	4.3 Training of Transition Sampler.

	5 Experiments and Results
	5.1 Ablation study
	5.2 Evaluation and Comparison

	6 Limitations
	7 Future work
	8 Conclusions
	Acknowledgments
	References

