
Predicting Loose-Fitting Garment Deformations Using Bone Driven
Motion Networks
——— Supplementary Document ———

1 DATASET
We create a garment animation dataset consisting of three different
types of garments, which are driven by the same avatar. To drive the
character, we collect 40,000 frames from the dance motions of Miku
Miku Dance (MMD) videos [Wikipedia 2021], which are downloaded
from YouTube [YouTube 2021] and BiliBili [bil 2021]. Compared
to mocap data, e.g., AMASS [Mahmood et al. 2019], the motions
from MMD dancing videos are manually edited to be quicker and
have wider ranges, which produce more aesthetically pleasing and
dynamic simulation results. We split the dancing motions into 500-
frame-length segments and obtain 80 segments. We use 75 segments
for training and 5 segments for testing.

We use the Houdini Vellum simulation framework [SideFX 2021]
to generate ground truth simulation data for loose-fitting garments.
Vellum is a simulation framework that uses an extended position-
based dynamics approach. To generate a dataset with different sim-
ulation parameters, we choose three simulation parameters [SideFX
2021] that may largely affect the simulation results: the cloth’s bend-
ing stiffness (ranging from 1𝑒 − 4 to 1𝑒 − 9), density (ranging from
0.1 to 0.004), and the timescale of the simulator (ranging from 0.5
to 1.5). We randomly sample 10 sets of parameters, where 8 sets are
used for training and 2 sets for testing. The other simulation param-
eters are set as constant among all sets of simulation parameters,
where stretching stiffness is set to 1𝑒10, normal drag is set to 60,
edge length scale is set to 0.25, and the number of substeps in the
simulator is set to 3.
After we get the simulation results, we remove the garments’

global transformations and then smooth the meshes and perform
skin decomposition. We use Laplacian smoothing to decompose
garment deformations to low- and high-frequency parts. We empiri-
cally set the smoothing strength to 0.1 and the number of iterations
to 10. For skin decomposition, we adopt Smooth Skinning Decom-
position with Rigid Bones (SSDR [Le and Deng 2012]). In our work,
we mainly change the number of bones and keep the rest of the
hyper-parameters fixed, where we set the number of maximum
global iterations to 100, the number of clustering update iterations
in initialization to 10, the number of weights update iterations per
global iteration to 3, and the number of non-zero weights per vertex
to 8.
We have also tested our method on the datasets of Santesteban

et al. [Santesteban et al. 2019] and TailorNet [Patel et al. 2020]. For
the dataset of Santesteban et al. [Santesteban et al. 2019], we use
the simulation result of a T-shirt and a skirt of medium body shape
(𝜷 = 0). For the T-shirt/skirt, we split 52/49 clips for training and
4/4 clips for testing. Since the garments closely follow the body,
we found the optimal numbers of virtual bones are less than those
for garments used in our dataset, and we use 20 bones for T-shirt
and skirt. For the dataset of TailorNet [Patel et al. 2020], we use
the simulation result for female pants of a medium body shape and

medium style (𝜷 = 0,𝜸 = 0), and use 16 clips for training and 2 clips
for testing. We use 10 virtual bones for the pants. The quantitative
results are not comparable, as we only use one shape-style pair and
split training/testing sets by clips rather than by frames to fit with
the training of GRU. We note that the comparison on the dataset
of TailorNet is not really fair, as the dataset is simulated without
dynamic effects, while our method is designed for garments with
dynamics.

2 NEURAL NETWORKS
We use PyTorch [Paszke et al. 2019] and PyTorch Geometric [Fey and
Lenssen 2019] for network implementation, and train the networks
on an NVIDIA GeForce RTX 2080Ti GPU. All the networks are
optimized using RMSProp optimizer [Tieleman and Hinton 2012].
For the low-frequency module in our motion network, we use a

single GRU layer of size 600 followed by a linear layer with ReLU
activation and 0.5 dropout. To reduce the memory consumption and
speed up the training process, we adopt Truncated Back Propagation
Through Time (TBPTT [Williams and Peng 1990]) with 50 time steps.
We train the network with batches of size 8 and learning rate of
1𝑒 − 3, which decays by 70% every 30 epochs. The laplacian weight
in the loss is set to 1.
The high-frequency module consists of a global stream and a

local stream. The global stream is implemented by a single GRU
layer of size 600 followed by a linear layer of size 10, and the local
stream is implemented by three stacked EdgeConv layers, where
the dimensions of features of a vertex are 3, 8 and 16, respectively.
The local and global features of each vertex are concatenated and
processed by a shared weight MLP. The network is trained with
batches of size 5 and learning rate of 3𝑒 − 4, which decays by 70%
every 10 epochs. We also adopt TBPTT in training this module with
10 time steps. The weight of the collision term in the loss is set to
0.1.
For the RBF kernel, we use an MLP to project the simulation

parameters to the latent space, which has 3 fully connected layers
with feature dimensions of [3, 6, 10]. We train the network using
learning rate 1𝑒 − 2 and batches of size 4. The bandwidth of the RBF
kernel 2𝜎2 is 1.0 in our work.

3 IMPLEMENTATIONS OF COMPARISON METHODS
In order to compare with prior methods, we use the available source
code and adjust them to fit our data: TailorNet [Patel et al. 2020]
and DNG [Zhang et al. 2021]. For Santesteban et al. [Santesteban
et al. 2019], which only released the code of inference, we referred
to their code and implemented the training part. For the method
described in [Chen et al. 2021], there is no public source code, so
we re-implemented it using the hyper-parameters provided in that
paper.

1



SIGGRPAH ’22, August 07–11, 2022, Vancover

During experiments, we found that some of the hyper-parameters
provided by the comparison methods did not match our dataset,
causing the results to be much lower quality on specific poses com-
pared with results in the original paper. For a fair comparison, we
optimized some of the comparison methods’ hyper-parameters in
the experiments of our dataset. The changes include:

• For Santesteban et al. [Santesteban et al. 2019], we use the
learning rate 1e-3 which decays by 70% every 30 epochs, and
add a Laplacian term to the loss function to avoid jittering
on meshes when avatars have large or swift motions. The
network trained with new parameters generates results with
better visual quality on specific poses and slightly higher
quantitative results, compared with the network trained with
hyper-params in the paper.

• For DNG [Zhang et al. 2021], we use the learning rate 1e-
3, which decays by 70% every 30 epochs when training the
Joint2Coarse network. The quantitative result is similar to
results generated by the network trained with parameters in
the original paper, and the meshes have higher quality on
specific poses.

4 ADDITIONAL EVALUATIONS

4.1 Additional Results
In Fig. 1, we present a side-by-side comparison of our result and
the ground truth, along with RMSE maps, where the garments
have complex deformations. The largest errors are mainly on the
bottoms of the garments, as they are the most loose-fitting parts,
and it is difficult for the networks to learn their deformations. Even
with these errors, our estimated deformations are visually plausible,
which demonstrates that our approach can predict high-quality
loose garment animations. Please refer to supplementary videos for
qualitative comparisons of our method with competitive methods
[Patel et al. 2020; Santesteban et al. 2019; Zhang et al. 2021], where
our results are significantly closer to the ground truth than other
methods.

4.2 Additional Comparisons
In Table 1, we provide a quantitative comparison of the overall
performance of our motion network with other methods. The errors
follow a similar trend as those in the low-frequency module, where
the RMSE of our method is about 20% lower and the Hausdorff
distance and STED are about 10% lower than the best of them.
In Fig. 2, we depict RMSE curves of a motion sequence of the

low- and high-frequency modules in the motion network and other
competitive methods. On the top row, the sequence contains large
motions on frames from 80 to 220, which causes the garments to
have large-scale deformations, where our method has the lowest
RMSE because the low-frequency module uses rigid transformation
of bones as deformation representations. On the bottom row, our
method tends to have the lowest RMSE as the high-frequency mod-
ule leverages both the global information of virtual bones’ motions
and local information on low-frequency meshes.
In Table 2. we provide a quantitative comparison on garments

from public datasets. These garments are relatively tighter than
garments in our dataset, which means they deform closely following

the body and do not have complex garment dynamics. Our method
generates comparable results. Specifically, for the T-shirt and pants,
TailorNet [Patel et al. 2020] has the best performance; for the skirt,
our method has better results. The deformations of these garments
closely follows the body, which can be more efficiently captured by
body bones than virtual bones.

Table 1. Comparison to other methods on the overall performance of the
motion network.

Ta
ilo

rN
et

[P
at
el
et
al
. 2
02
0]

D
N
G

[Z
ha
ng

et
al
. 2
02
1]

[S
an
te
st
eb
an

et
al
. ]

O
ur
s

Dress1
RMSE ↓ 33.73 24.94 22.67 17.38

Hausdorff ↓ 92.16 81.99 80.29 69.07
STED ↓ 0.09892 0.09678 0.08929 0.07863

Dress2
RMSE ↓ 41.59 37.13 31.92 27.10

Hausdorff ↓ 133.26 120.57 111.36 98.93
STED ↓ 0.09296 0.11071 0.07860 0.07328

Dress3
RMSE ↓ 36.71 25.65 27.05 21.93

Hausdorff ↓ 91.87 75.24 80.53 62.30
STED ↓ 0.10629 0.09770 0.09393 0.08073

Table 2. Comparison to other methods on the overall performance of the
motion network on the dataset of Santesteban et al. [Santesteban et al.
2019] and TailorNet [Patel et al. 2020]

TailorNet
[Patel et al. 2020]

[Santesteban
et al. ] Ours

T-shirt
RMSE ↓ 9.90 10.25 10.52

Hausdorff ↓ 27.02 29.56 31.51
STED ↓ 0.04183 0.04490 0.04528

Skirt
RMSE ↓ 22.95 20.96 19.91

Hausdorff ↓ 76.80 87.01 83.39
STED ↓ 0.07578 0.07452 0.07221

Pants
RMSE ↓ 4.84 4.91 5.08

Hausdorff ↓ 14.46 14.87 18.75
STED ↓ 0.01279 0.01294 0.01665

4.3 Performance
We list the mesh statistics and run time performances in Table 3.
A single motion network takes about 2.5 ms to infer a garment
consisting of about 10K vertices and 20K faces, reaching 400 fps. For
simulation parameter variation, we use 8 motion networks; thus
the overall time is eight times the time of the motion network with
the inference time of the RBF kernel. Our approach can obtain an
interactive frame rate (about 40 fps on a computer with two NVIDIA
GeForce RTX 2080Ti GPUs).

2



Predicting Loose-Fitting Garment Deformations Using Bone Driven Motion Networks
——— Supplementary Document ——— SIGGRPAH ’22, August 07–11, 2022, Vancover

Ours

Ground Truth

Error Map
8 cm

0 cm

Fig. 1. Additional results and corresponding RMSE maps, where the garments have complex deformations. Ours are close to the ground truth with RMSEs on
most vertices lower than 8cm.

0 100 200 300 400
Frame

0

40

80

120

RM
SE

 

Garment: Dress01
Animation Sequence: Black Manba Part 2 Ours

Santesteban
TailorNet
DNG

0 100 200 300 400
Frame

0.2

0.4

0.6

0.8

RM
SE

Garment: Dress02
Animation Sequence: The Baddest PART 4

Ours
Chen et al.
TailorNet
ours using body poses
ours w/o local info

Fig. 2. Quantitative comparison of low- and high-frequency modules to
different methods (top and bottom). Our method achieves lower errors than
competitive methods.

Table 3. Performance breakdown for running time (ms).

Vert Face Motion Network Overall
Dress1 10822 21183 2.59 23.72
Dress2 12273 24140 2.83 25.64
Dress3 8744 17236 2.47 22.76
T-shirt 4424 8710 2.36 -
Skirt 12146 23949 2.84 -
Pant 4718 9283 2.43 -

4.4 Failure Cases
Ourmethodmay fail when the avatar has some extreme poses where
severe penetrations may arise, as shown in Fig. 3. It is an interesting
direction to avoid collisions on such poses.

Fig. 3. Our method may fail on some extreme poses where severe penetra-
tions may arise.

REFERENCES
2021. bilibili. https://www.bilibili.com/
Lan Chen, Lin Gao, Jie Yang, Shibiao Xu, Juntao Ye, Xiaopeng Zhang, and Yu-Kun Lai.

2021. DeepDeformationDetail Synthesis for Thin ShellModels. CoRR abs/2102.11541
(2021).

Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with
PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and
Manifolds.

Binh Le and Zhigang Deng. 2012. Smooth Skinning Decomposition with Rigid Bones.
ACM Transactions on Graphics (TOG) 31, 6 (2012).

Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Gerard Pons-Moll, and Michael J.
Black. 2019. AMASS: Archive of Motion Capture as Surface Shapes. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV). 5442–5451.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan

3

https://www.bilibili.com/


SIGGRPAH ’22, August 07–11, 2022, Vancover

Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library.
In Advances in Neural Information Processing Systems 32. Curran Associates, Inc.,
8024–8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-
performance-deep-learning-library.pdf

Chaitanya Patel, Zhouyingcheng Liao, and Gerard Pons-Moll. 2020. TailorNet: Pre-
dicting Clothing in 3D as a Function of Human Pose, Shape and Garment Style. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 7363–7373.

Igor Santesteban, Miguel A. Otaduy, and Dan Casas. 2019. Learning-Based Animation of
Clothing for Virtual Try-On. Computer Graphics Forum (CGF) 38, 2 (2019), 355–366.

SideFX. 2021. Houdini Vellum.

T. Tieleman and G. Hinton. 2012. Lecture 6.5—RmsProp: Divide the Gradient by a
Running Average of its Recent Magnitude. COURSERA: Neural Networks for
Machine Learning.

Wikipedia. 2021. MikuMikuDance, Wikipedia. https://en.wikipedia.org/wiki/
MikuMikuDance [Online; accessed 2021-12-13].

Ronald J. Williams and Jing Peng. 1990. An Efficient Gradient-Based Algorithm for
On-Line Training of Recurrent Network Trajectories. Neural Computation 2, 4 (1990),
490–501.

YouTube. 2021. YouTube. https://www.youtube.com/ [Online; accessed 2021-12-13].
Meng Zhang, Tuanfeng Y. Wang, Duygu Ceylan, and Niloy J. Mitra. 2021. Dynamic

Neural Garments. ACM Transactions on Graphics (TOG) 40, 6, Article 235 (2021),
15 pages.

4

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://en.wikipedia.org/wiki/MikuMikuDance
https://en.wikipedia.org/wiki/MikuMikuDance
https://www.youtube.com/

	1 Dataset
	2 Neural Networks
	3 Implementations of Comparison methods
	4 Additional Evaluations
	4.1 Additional Results
	4.2 Additional Comparisons
	4.3 Performance
	4.4 Failure Cases

	References

