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1 ADDITIONAL EXPERIMENTS

1.1 Robustness on Different Noise Levels
We compare RoMo to other labeling methods on datasets with dif-
ferent levels of noise. We synthesize data by introducing random
occlusions into the Production dataset. Figure 1 shows the quantita-
tive results. RoMo consistently outperforms other methods, showing
robustness even in the presence of significant noise, such as a 25%
occlusion rate. This can be attributed to two key factors: whole-body
point cloud segmentation and tracklet-based labeling.
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Fig. 1. Labeling accuracy on datasets with different noise scales.

1.2 Convergence Speed of Labeling Network
We present the training loss curves on the training split of Produc-
tion dataset for body marker feature extraction with and without
point cloud alignment on Fig. 2, noting a faster convergence speed
when global transformation removal is applied.
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Fig. 2. Training loss curves with or without point cloud alignment.

1.3 Visualization of Attention and Feature Distance
We visualize the different layers’ attentions and feature distances
of different markers on the body in Fig. 4. In the first layer, the
attention concentrate on one marker. In contrast, in deeper layers
of the network, the attention span is wider.

1.4 Hyper-parameter Search
Hyper-parameters play an important role in the the hand marker
tracklet generation pipeline, and further impacts their labeling per-
formance. To evaluate their impact, we conduct tests on the Pro-
duction dataset using various parameter values and analyzed their
effects on the results. The numerical outcomes of these tests are
depicted in Fig. 3. The accuracy of body marker labeling is high
enough and changing the hyper-parameters only has marginal ef-
fect, thus we only set the position threshold 𝑡ℎ𝑝𝑜𝑠 to 0.3 and keep
the rest hyper-parameters the same.

We also test different values of 𝑞 in the confidence function𝐶𝐿𝑖 =

(∑𝑝𝑖
𝑙
∈𝑇𝑟 |𝑐𝑝𝑖

𝑙
,𝐿𝑗

|𝑞)
1
𝑞 . For 𝑞 = 0, this score mimics a simple voting

mechanism, whereas for 𝑞 = 1, it serves as the sum of the confidence
towards label 𝐿𝑖 . The quantitative results are illustrated on Table 1.
We select 𝑞 = 2 as an optimal hyper-parameter.
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Fig. 3. Ablation study for tracklet generation. The accuracy of hand labeling
of Production dataset under different tracklet generation hyper-parameters.
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Fig. 4. The first (top row) and last (bottom row) layer’s attention and feature distance of different markers on the body.

F1 Acc.
𝑞 = 2 99.94 98.62 99.96 98.87
𝑞 = 1 99.90 98.40 99.95 98.52
𝑞 = 0 99.92 97.90 99.96 98.15

No tracklet labeling 99.88 96.21 99.86 96.79
Table 1. The performance of tracklet labeling with different values of 𝑞 in
the confidence function of tracklet.
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Fig. 5. Distribution of the twist angle in the Production dataset. Due to
the physical limitation, only joints on limbs (8 in 27) have a wide range of
variations, while other joints have a limited twist angle range.

1.5 Ablation Study of Labeling
Table 2 shows how the various RoMo components affect the Pro-
duction dataset’s validation split. We present quantitative results
for body and hand markers separately. The most important factors
influencing marker labeling performance are point cloud segmen-
tation and tracklet-based labeling. Other components marginally
improve the model’s performance.

1.6 Analysis of Twist Angle
To showcase the effectiveness of the twist-and-swing decomposition,
we present the distribution of joints’ twist angles in Fig. 5. Only a
few joints on the limbs exhibit a wide range of variations, while
others have a more limited range of twist angles. This observation
suggests that the decomposition approach canmitigate the challenge
of network training by simplifying the estimation task. Instead
of endeavoring to predict full rotation angles, the network can
concentrate on estimating joint positions and twist angles, which
represents a comparatively simpler problem.

1.7 Physical Accuracy
In addition to motion-based metrics, we evaluate physics-based
metrics such as penetration and foot sliding. For penetration, we
compute the height of the foot joints using the formula 𝑀𝑓 𝑜𝑜𝑡,𝑧 ·
[𝑀𝑓 𝑜𝑜𝑡,𝑧 < 0], where the latter term is a mask. To calculate foot
sliding, we use the formula ¤𝑀𝑓 𝑜𝑜𝑡,𝑥𝑦 · [𝑀𝑓 𝑜𝑜𝑡,𝑧 < 𝑡ℎℎ𝑒𝑖𝑔ℎ𝑡 ]. The
combined metric is the average of the two foot joints. Table 3 shows
the quantitative results. RoMo’s global joint position significantly
reduces foot-sliding and ground penetration artifacts.

1.8 Ablation of Inverse Kinematics Method
We compare the effectiveness of the inverse kinematics used in
RoMo to the method proposed in [Holden 2018]. The network’s
output is set to the local rotation matrix, global position of the

2
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F1 Accuracy
Base 99.94 98.62 99.96 98.87

- Local aggregation layers 99.87 -0.07 98.59 -0.03 99.93 -0.03 98.32 -0.55
- Point cloud segmentation 99.86 -0.08 95.20 -4.74 99.89 -0.07 95.31 -3.56

- Global transformation removal 99.93 -0.01 98.10 -0.52 99.94 -0.02 98.23 -0.64
- Tracklet-based labeling 99.88 -0.06 96.21 -2.41 99.86 -0.10 96.79 -2.08

- Feature similarity in edge weights 99.95 +0.01 98.01 -0.61 99.95 -0.01 98.38 -0.49
Table 2. Ablation study of RoMo’s components on the Production dataset. We take the full model as the baseline and remove one component at a time. Cells
with white background display metrics for body, those with gray background represent metrics for hand.

Method Foot Sliding Penetration
Ground Truth 0.0659 0.00469

RoMo 0.0714 0.00642
RoMo (w/o global joint position) 0.1452 0.01649

LocalMoCap 0.1393 0.01752
Table 3. Physics-based metrics for motion solving on the Production dataset.

Method MJMRE MJMPE
RoMo 1.09 0.43

RoMo (with IK of [Holden 2018]) 1.24 0.46
LocalMoCap 1.22 0.61

Table 4. Ablation of inverse kinematics method on the Production dataset.

joints, and bone lengths. We use Maya [Autodesk 2020] to imple-
ment inverse kinematics. Specifically, we designate the limbs’ end
joints as the IK handles and assign the resulting global positions
to the handles. Table 4 displays quantitative results. Compared to
LocalMoCap, the alternative inverse kinematics method improves
global joint position accuracy but not rotation accuracy.

1.9 Performance
We evaluate the time consumption of different methods during the
labeling and solving stages. The quantitative results are presented
in Table 5. RoMo is marginally slower than previous neural-based
methods in both stages. The additional time required for labeling
is due to tracklet generation, and for solving, it stems from the hy-
brid inverse kinematics process. Nevertheless, the execution time
complies with real-time requirements, as the tasks of labeling and
solving are performed in a pipeline fashion, where RoMo simulta-
neous labels current frame and solves previously labeled frame.

Models Marker Labeling Motion Solving
[Ghorbani et al. 2019] 16 ms -

SOMA [Mahmood et al. 2019] 19 ms 105 ms
[Holden 2018] - 19 ms

MoCap-Solver [Chen et al. 2021] - 26 ms
LocalMoCap [Pan et al. 2023] - 29 ms

RoMo 25 ms 33 ms
Table 5. Time for labeling and solving of different methods.

1.10 Failure Cases
RoMomay produce significant errors when joints exhibit large twist
angles, as illustrated in Fig. 6. This can be attributed to an imbalanced
distribution of twist angles, with only a few training data points
possessing large twist angles. Consequently, this imbalance limits
network’s capacity to generalize to extreme motions.

RoMo Ground TruthLocalMoCap

Fig. 6. RoMo may produce significant errors when joints exhibit large twist
angles, such as shoulder and wrist joints.

2 IMPLEMENTATION DETAILS

2.1 Neural Network
We train two neural networks in RoMo: the marker labeling net-
work and the motion solving network. We implement networks
with PyTorch [Paszke et al. 2019] and PyTorch Lightning [Falcon
et al. 2024]. We optimize their parameters with the RMSProp op-
timizer [Tieleman and Hinton 2012]. All the networks are trained
using an NVIDIA GeForce RTX 2080Ti GPU.

For the marker labeling network, we employ both local aggrega-
tion and global attention layers. The local aggregation layer operates
similar with EdgeConv [Wang et al. 2019], utilizing 4 closest neigh-
bor points. Meanwhile, the global attention layer [Vaswani et al.
2017] adopts a self-attention scheme with 5 multi-heads. The di-
mensions of preceding layers are fixed at 125, with linear layers
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applied before and after the input/output to adjust the feature dimen-
sions. Following these layers, a linear layer with ReLU activation
is applied. RoMo’s alignment and segmentation network consist
of alternatively stacked 2 layers of local aggregation and global
attention layers. As for the feature extraction network, it comprises
4 layers. During training, we utilize batches of size 512 and set the
learning rate to 1e-3, which decays by 70% every 30 epochs. We set
the number of Sinkhorn normalization iterations to 20.
For the motion solving network, we follow the settings in [Pan

et al. 2023]. The code also benefit from the hybrid inverse kinemat-
ics network implementation from [Li et al. 2021]. We set the loss
weights 𝜆𝑝𝑜𝑠 , 𝜆𝑡𝑤 , 𝜆𝑠𝑘𝑒𝑙 to 1, 2 and 100, respectively. In the Produc-
tion and Front-waist datasets, we observe that some joints, such as
the leg and end joints of the feet, have no twist angle. Therefore, we
consistently set them to zero in the network output.

2.2 Dataset
Our experiments are carried out on three different real datasets:
Production, Front-waist and GRAB, whose statistics are shown in
Table 6. The three datasets contain three characters with distinct
marker configurations and skeleton structures. For the Production
and Front-waist dataset, they are captured from the real world in a
game studio, clean up by artists and solved by Vicon [Vicon 2023].

# Body
Marker

# Hand
Marker # Joint # Anim # Frame

Production 57 10 73 1,862 531,2743
Front-waist 53 20 73 640 234,3248

GRAB 49 36 52 1,334 162,2459
Table 6. Detailed statistics for datasets, with numbers representing the
quantities of the corresponding column headers.

2.3 Comparing Methods
During the experiments, we found that some of the baseline meth-
ods’ hyper-parameters and settings did not match our dataset, re-
sulting in lower quality results on specific poses when compared to
the original paper’s results. We tune the baseline methods’ hyper-
parameters to achieve the best results for a fair comparison. We
made the following changes:

• For [Ghorbani et al. 2019], we set the dimensions of net-
work’s dense layers to 125.

• For SOMA [Ghorbani and Black 2021], we set the number of
self-attention layers to 6 and number of Sinkhorn normal-
ization steps to 50.

For baseline methods of motion solving, i.e. [Chen et al. 2021;
Loper et al. 2014; Pan et al. 2023], we follow the settings in the
supplementary of [Pan et al. 2023].
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Symbol Size Practical Value Meaning
𝑃𝑖 R𝑛

𝑖×3 - The input sparse and unordered point cloud at time 𝑖 .
𝐿𝑖 - - A valid label representing a special position on the body.
𝑛𝑢𝑙𝑙 - - A special label representing noise or outliers.
𝑀 R𝑇×𝑁×3 - The ordered positions of markers span a length of 𝑇 with 𝑁 valid markers.
𝑂 {0, 1}𝑇×𝑁 - The visibility of markers.
𝑅 R𝑇×(3+𝐾×9) - The solved motion, which spans a length of 𝑇 with 𝐾 joints.
𝑆 R3×𝐾 - The solved template skeleton with 𝐾 joints.
𝐽 R𝑇×𝐾×3 - The estimated joint positions.
𝐴𝑖 R4×4 - The estimated point cloud alignment matrix of 𝑃𝑖 .
𝜆𝑟𝑒𝑔 R1 0.001 The regularization weight in the loss of alignment network training.
𝐶𝑖
𝑖𝑛𝑖𝑡

[0, 1]𝑛𝑖×𝑁 - The initial confidence matrix at time 𝑖 .
𝐶𝑖𝑎𝑢𝑔 [0, 1] (𝑛𝑖+1)×(𝑁+1) - The augmented confidence matrix at time 𝑖 .
𝐶𝑖 [0, 1] (𝑛𝑖+1)×(𝑁+1) - The augmented confidence matrix at time 𝑖 after 𝑘 Sinkhorn normalization iterations.
𝑘 N1 20 The number of Sinkhorn normalization iterations.
G - - The graph for tracklet construction, consisting of V , E andW.
V - - The node set, where each node represents a point in point cloud.
E {0, 1}𝑒𝑑𝑔𝑒_𝑛𝑢𝑚 - The edge set, linking the nodes.
W R𝑒𝑑𝑔𝑒_𝑛𝑢𝑚 - The weight set, where each weight is associated with an edge.
𝑒
𝑖 𝑗
𝑚𝑛 {0, 1}1 - The edge between the two nodes.
𝑤
𝑖 𝑗
𝑚𝑛 R1 - The weight associated with edge 𝑒𝑚𝑛 , quantifying the similarity between the two nodes.

𝑤
𝑖 𝑗
𝑝𝑜𝑠,𝑚𝑛 R1 - The position similarity between the two nodes.

𝑤
𝑖 𝑗

𝑓 𝑒𝑡,𝑚𝑛
R1 - The feature similarity between the two nodes.

𝜆𝑓 𝑒𝑡 R1 0.05 The weight of feature similarity.
𝑡ℎ𝑝𝑜𝑠 R1 0.01 The threshold of position similarity.
𝑡ℎ𝑓 𝑒𝑡 R1 0.05 The threshold of feature similarity.
𝑇𝑟 - - The set of markers belonging to a tracklet.
𝑅𝑠𝑤 R3×3 - The swing rotation, whose axis is perpendicular to the bone direction.
𝑅𝑡𝑤 R1 - The twist rotation, whose axis is parallel to the bone direction.
®𝑗𝑖 R3 - The relative position of i-th joint and its child in the estimated joint positions.
®𝑡𝑖 R3 - The relative position of i-th joint and its child in the template skeleton.
®𝑗 ′
𝑖

R3 - The refined relative position of i-th joint and its child.
𝐽 ′ R𝑇×𝐾×3 - The joint positions of the template skeleton rotated with estimated joint rotations.
𝛼𝑖 R1 - The intermediate variable of Rodrigues formula, indicating the rotation angle of i-th joint.
®𝑛𝑖 R3×3 - The intermediate variable of Rodrigues formula, indicating the rotation axis of i-th joint.
𝜆𝑝𝑜𝑠 R1 1.0 The joint position weight in the loss of solving network training.
𝜆𝑡𝑤 R1 100.0 The twist angle weight in the loss of solving network training.
𝜆𝑠𝑘𝑒𝑙 R1 2.0 The skeleton weight in the loss of solving network training.

Table 7. Table of Notations.

5


	1 Additional Experiments
	1.1 Robustness on Different Noise Levels
	1.2 Convergence Speed of Labeling Network
	1.3 Visualization of Attention and Feature Distance
	1.4 Hyper-parameter Search
	1.5 Ablation Study of Labeling
	1.6 Analysis of Twist Angle
	1.7 Physical Accuracy
	1.8 Ablation of Inverse Kinematics Method
	1.9 Performance
	1.10 Failure Cases

	2 Implementation Details
	2.1 Neural Network
	2.2 Dataset
	2.3 Comparing Methods

	References

