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RoMo: A Robust Solver for Full-body Unlabeled Optical Motion Capture
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SUBMISSION ID: 497

(b)(a) (c) (d)

Outliers

Occlusions

Fig. 1. Given raw, unlabeled full-body motion capture point cloud (black balls) (a), RoMo generates tracklets to leverage temporal information for accurately
labeling markers (colored balls) (b) and utilizes a hybrid inverse kinematics-based method (c) to solve body motions (d). RoMo demonstrates robustness
against occlusion (cubes) and outliers (grey balls) and accurately solves large body motions and fine multi-fingered hand movements.

Optical motion capture (MoCap) is the "gold standard" for accurately cap-
turing full-body motions. To make use of raw MoCap point data, the system
labels the points with corresponding body part locations and solves the full-
body motions. However, MoCap data often contains mislabeling, occlusion
and positional errors, requiring extensive manual correction. To alleviate
this burden, we introduce RoMo, a learning-based framework for robustly
labeling and solving raw optical motion capture data. In the labeling stage,
RoMo employs a divide-and-conquer strategy to break down the complex
full-body labeling challenge into manageable subtasks: alignment, full-body
segmentation and part-specific labeling. To utilize the temporal continuity
of markers, RoMo generates marker tracklets using a K-partite graph-based
clustering algorithm, where markers serve as nodes, and edges are formed
based on positional and feature similarities. For motion solving, to prevent
error accumulation along the kinematic chain, we introduce a hybrid inverse
kinematic solver that utilizes joint positions as intermediate representations
and adjusts the template skeleton to match estimated joint positions. We
demonstrate that RoMo achieves high labeling and solving accuracy across
multiple metrics and various datasets. Extensive comparisons show that our
method outperforms state-of-the-art research methods. On a real dataset,
RoMo improves the F1 score of hand labeling from 0.94 to 0.98, and reduces
joint position error of body motion solving by 25%. Furthermore, RoMo can
be applied in scenarios where commercial systems are inadequate. The code
and data for RoMo are available at https://github.com/robustmocap/RoMo.

CCS Concepts: • Computing methodologies→Motion capture; Neural
networks.

Additional Key Words and Phrases: Character Animation, Motion Capture,
Machine Learning

1 INTRODUCTION
Human pose estimation is a crucial field in computer vision and
graphics. Despite the promising outcomes of marker-free, image-
based methods, marker-based motion capture (MoCap) systems
are preferred for their precision and versatility in game and film

industry [Taheri et al. 2020] to capture body and hand motions
with high coordination. MoCap system operates by first capturing
a series of 2D images from multiple perspectives of the subjects,
with markers at key locations on their bodies. The system then
determines the 3D positions of these markers and associates them
with specific locations of body parts through a process known as
marker labeling. Next, the system reconstructs underlying skeletal
structures and body movements, which is also known as solving.
Despite the use of sophisticated and expensive motion capture

equipment, motion capture data inevitably suffers from various
issues, includingmislabeling, occlusions, and positional inaccuracies.
These noises necessitate extensive manual corrections to achieve
high accuracy. Noises can be categorized into three main types:

• Mislabeling: These noises include label swaps, where mark-
ers are incorrectly labeled, and outliers, which occur when
invalid markers are not properly excluded. Hand markers
are susceptible to mislabeling due to the complexity of hand
motions and their proximity.

• Occlusion: This type of noise occurs when markers become
invisible to the MoCap system, typically due to actors’ self-
occlusion or markers entering cameras’ dead zones.

• Positional inaccuracy: These result from markers being
recorded at positions that do not accurately reflect their true
locations. Positional inaccuracies can occur when correcting
occlusions or due to tracking system errors.

A multitude of data-driven approaches have been developed to
address these noises, focusing on cleaning the raw marker data and
solving motions. Some works [Ghorbani and Black 2021; Ghorbani
et al. 2019] concentrate on the labeling stage, but are limited to
body markers alone. When these techniques are applied to whole-
body marker data, the body and hand markers are treated equally,
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resulting in lower accuracy for hand markers due to distinct data
distributions between body and hand markers, with the former
having larger mutual distances and lower occlusion or mislabeling
probabilities. Furthermore, these methods label the point cloud
using information of a single frame, neglecting valuable temporal
information. This omission reduces labeling accuracy, especially
in the presence of occlusions. Another branch of research [Chen
et al. 2021; Holden 2018; Pan et al. 2023] aims to clean the noises in
already labeled markers during the solving stage. These approaches
often rely on the presumed accuracy of initial labeling or employ
weak assumptions, such as acceleration thresholds [Pan et al. 2023]
and marker distances [Chen et al. 2021; Holden 2018], to address
mislabels. Consequently, they are susceptible to labeling errors.
Moreover, all three types of noises can lead to inaccuracies in solving.
These methods attempt to estimate the relative joint rotations of
the entire body simultaneously, ignoring error accumulation along
the kinematic chain of the body, where minor errors in parent joints
can significantly amplify inaccuracies in child joints’ positioning.

To develop aMoCap labeling and solving framework that is robust
against the aforementioned noises, particularly mislabeling and
positional inaccuracies, three key challenges must be addressed.
(1) The ability to deal with the distinct data distributions of body
and hand markers. Even with deeper or wider neural networks,
it is difficult for a single network to handle the full-body MoCap
data containing body and hand markers. (2) The exploitation of
temporal continuity in marker data. A simple approach is to use the
marker positions to create tracklets. Yet, this strategy overlooks the
inter-marker relationships within the frame, leading to inaccuracies
during rapid movements, such as rapid scrolling and fast hand
waving. (3) The prevention of error accumulation along kinematic
chain. Prior methods focus on the accuracy of joints’ local rotations
without considering the overall positional accuracy. It is crucial to
devise a strategy that maintains awareness of the global positions
of joints to prevent error accumulation.
To this end, we introduce RoMo, a data-driven approach for ro-

bustly labeling and solving full-body unlabeled optical MoCap data,
mainly addressing two types of noises: mislabeling and positional
inaccuracy. During the labeling stage, a divide-and-conquer strategy
is employed to decompose the complex full-body labeling challenge
into manageable subtasks: alignment, full-body marker segmenta-
tion and part-specific labeling. This approach mitigates training
difficulties and enhances network performance. To make full use of
temporal continuity of markers, tracklets are generated using deep
features extracted by the network. Tracklet construction is modelled
as a K-partite graph-based clustering algorithm, treating markers
as nodes and edges are determined by feature similarities and po-
sitional differences. Incorporating feature similarities extends the
receptive field of markers from nearest neighbors to all markers in
the point cloud, thereby improving labeling precision. In the motion
solving stage, RoMo uses joint positions as intermediate representa-
tions, with inverse kinematics adjusting the template skeleton to
match the estimated joint positions. The utilization of global joint
positions prevents error accumulation along the kinematic tree and
enables accurate reconstruction of motions corresponding to input
markers, especially the positions of ending joints.
Overall, our paper makes the following contributions:

• A robust full-body MoCap labeling framework that employs
divide-and-conquer strategy and integrates spatial-temporal
information to precisely label body and hand markers.

• An innovative method for generating marker tracklets by
solving a K-partite graph-based clustering algorithm that
utilizes both markers’ positions and deep features.

• A hybrid inverse kinematics MoCap solver that circumvents
error accumulation along the body kinematic chain.

2 RELATED WORK
Motion capture plays a crucial role in film and game industries,
imbuing characters with vitality and distinctive personalities. Ac-
curately capturing human motions is also essential across various
motion-related research domains, including action recognition [Hua
et al. 2023; Yan et al. 2018], action prediction [Cao et al. 2020; Cui
et al. 2021], motion synthesis [Chen et al. 2023; Tevet et al. 2023], and
image-based pose estimation [Munea et al. 2020; Varol et al. 2017].
However, optical motion capture data inevitably suffers from misla-
beling, occlusion, and positional inaccuracy, necessitating extensive
manual corrections. Both the industry and research community
have devoted significant efforts toward tackling these noises.

Within the industry, there are multiple mature commercial solu-
tions available for real-time labeling and motion solving, such as Vi-
con Shogun [Vicon 2023] and OptiTrack [OptiTrack 2024]. However,
these solutions are tailored to specific marker layouts and require
careful calibrations for each new actor to accommodate diverse body
shapes. Consequently, they do not offer a universally applicable so-
lution for diverse scenarios requiring customized marker layouts,
which are prevalent in numerous motion capture applications.

Numerous hand-crafted prior-based methods have been proposed
in the research community [Aristidou et al. 2018; Baumann et al.
2011; Liu and McMillan 2006; Tautges et al. 2011; Tits et al. 2018;
Wang et al. 2016; Xiao et al. 2015] to clean MoCap data. Although
these methods produce satisfying results on data with specific noise
patterns via careful hand-tuning, they suffer from poor generaliza-
tion ability on the real world data with more complex noises. Recent
advances in research community have spotlighted the utilization of
neural networks. Existing neural-based strategies primarily aim at
solving motions from motion capture data [Chen et al. 2021; Holden
2018; Pan et al. 2023; Pavllo et al. 2018; Perepichka et al. 2019], with a
strong reliance on pre-labeled datasets. These methods often resort
to some fragile heuristics to eliminate ghost points and struggle to
address mislabeling caused by label swaps. Moreover, prior tech-
niques attempt to solve the whole body joint’s local rotations in
a single pass, which frequently leads to cumulative errors along
the body kinematic chain. In contrast, RoMo innovates by adopting
global joint points as an intermediate representation and utilizing a
hybrid inverse kinematics-based approach. This novel strategy en-
sures highly accurate solving results, markedly improving position
accuracy for the terminal joints.
Few methods aim at labeling optical motion capture data using

neural networks [Ghorbani and Black 2021; Ghorbani et al. 2019].
Notably, Ghorbani et al. [Ghorbani et al. 2019] introduced a novel
approach using a simple feed-forward residual network that em-
ploys permutation learning for body marker labeling. However,
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3.1 Point Cloud Pre-processing

3.2 Tracklet Generation and Labeling 3.3 IK-based Solving

Feature ExtractionLeft Hand

Right Hand

Body

Tracklet and 
Labeled Markers

Estimated
Joint Position

Iterative
Inverse Kinematics

Step 1

Step 2

Sinkhorn Normalization

Fig. 2. RoMo’s pipeline consists of three modules. Top: In the pre-processing stage, RoMo accepts 3D sparse unordered MoCap point clouds with varying
point numbers. It then conducts point cloud alignment to eliminate the global transformations and segmentation to partition the point cloud into body and
hand point clouds. Subsequently, it employs a network consisting of alternating global self-attention and local aggregation layers to extract markers’ features.
Bottom Left: In the tracklet construction stage, RoMo addresses a K-partite graph-based clustering problem to create tracklets, and assigns markers within
the same tracklet to a same label. Bottom Right: RoMo utilizes a hybrid inverse kinematics-based method to solve the motion, which iteratively adjust the
joints of template skeleton along the kinematic tree to match the estimated joint positions.

their method exhibits limitation in handling outliers. The intro-
duction of SOMA [Ghorbani and Black 2021] marked a significant
leap forward by leveraging an attention-based network architec-
ture alongside an optimal transport layer, enhancing the accuracy of
bodymarker labelingwhile efficientlymanaging outliers. Unlike pre-
vious methods that strive for a one-fits-all solution, RoMo employs
a divide-and-conquer strategy, significantly enhancing labeling ac-
curacy on full-body MoCap data. Furthermore, RoMo innovates by
constructing tracklets through solving a K-partite problem based on
proximities in marker positions and similarities in markers’ deep
features, thus efficiently utilizing the temporal continuity. Addition-
ally, these methods primarily focus on global attention, overlooking
the critical local interactions among adjacent markers. To bridge
this gap, RoMo integrates stacked local aggregation [Wang et al.
2019] and global attention layers [Vaswani et al. 2017] to adeptly
capture both local and global point features.
Tracklet is extensively studied in the field of Multiple Object

Tracking (MOT) [Dai et al. 2019; Shen et al. 2018; Sheng et al. 2018;
Zhang et al. 2020], and RoMo generates tracklets to exploit temporal
continuity in motion. The tracklets are short trajectories with high
confidence, which reduces false positive detections. The key issue
is correctly identifying objects across multiple frames. Many algo-
rithms are proposed for determining the best association, including
min-cost flow [Shitrit et al. 2014], conditional random field [Choi
2015; Milan et al. 2013; Xiang et al. 2020], and multiple hypothesis
tracking [Kim et al. 2015]. RoMo is the first method to use k-partite
graph clustering in MoCap data processing, and it produces cutting-
edge quantitative and qualitative results. Unlike previous works

that process objects in videos, RoMo employs K-partite clustering
on point cloud sequences with varying cardinalities.

3 METHOD
RoMo takes as input a sequence of unlabeled motion capture point
clouds, denoted as {𝑃1, ..., 𝑃𝑇 }, where each 𝑃𝑖 represents a sparse
and unordered point cloud at time 𝑖 , containing 𝑛𝑖 points. The cardi-
nalities of these clouds𝑛𝑖 changes over time due to marker occlusion
or ghost points. Initially, RoMo assigns each point to a corresponding
marker label {𝐿1, ..., 𝐿𝑁 , 𝑛𝑢𝑙𝑙}, with 𝐿𝑖 signifying a valid label and
𝑛𝑢𝑙𝑙 indicating outliers. The labeled MoCap data is then structured
as 𝑀 ∈ R𝑇×𝑁×3, representing the ordered positions of markers,
alongside 𝑂 ∈ {0, 1}𝑇×𝑁 , which marks the visibility of markers.
Subsequently, RoMo solves the motions, 𝑅 ∈ R𝑇×(3+𝐾×9) , incorpo-
rating both the global translation of the body and the local rotations
of each joint, as well as the underlying template skeleton 𝑆 ∈ R𝐾×3,
representing the joints’ offsets relative to their parent joints. An
overview of RoMo’s pipeline is presented in Fig. 2. In the following
part of this section, we will first explain the labeling process, and
then describe the solving framework.
Initially, marker features are extracted using a neural network

comprised of alternating global self-attention [Vaswani et al. 2017]
and local aggregation [Wang et al. 2019] layers to capture both global
and local features 𝑓 (top of Fig. 2). To simplify training, before feature
extraction, RoMo removes the global orientation of markers and
segments the point cloud into three parts: body, left hand, and right
hand. The alignment and segmentation employ networks that share
a similar structure with the feature extraction network. After the
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feature extraction, RoMo performs Sinkhorn normalization [Adams
and Zemel 2011] to transform the features 𝑓 to labeling confidences
𝑐 which satisfies a relaxed one-to-one correspondence.

To harness the temporal information, tracklets are constructed
(bottom left of Fig. 2), and markers within the same tracklet are
assigned identical labels. A tracklet depicts the motion of a single
marker through 3D trajectories over a short period of time. The
construction of tracklets is formulated as a K-partite graph-based
clustering problem [Zhang et al. 2020]. Initially, a graph G is created,
treating markers as nodes and forming edges based on similarities
between markers, which include both positional and feature sim-
ilarities. Subsequently, a clustering for G is sought using greedy
algorithm. For the label association, RoMo calculates the tracklet’s
confidence using the L-q norm [Ghorbani et al. 2019] of markers’
confidence, and selects label with the highest confidence.

In the solving stage, motions are solved frame-by-frame (bottom
right of Fig. 2). The joint position, denoted as 𝐽 ∈ R𝑇×𝐾×3, serves as
an intermediate representation, with inverse kinematics applied to
estimate joint rotations. The rotations are decomposed into twist and
swing components, 𝑅 = 𝑅𝑠𝑤𝑅𝑡𝑤 , where the swing component’s axis
is perpendicular to the bone direction, and the twist component’s
axis is parallel with the bone direction. Utilizing the labeled mark-
ers 𝑀𝑖 at frame 𝑖 , RoMo estimates the joint positions 𝐽 𝑖 ∈ R𝐾×3.
This allows the calculation of a closed-form solution for the swing
rotation component 𝑅𝑖𝑠𝑤 by applying Rodrigues formula [Askey
2005] on the relative joint positions with child joints. Additionally,
RoMo estimates the twist angle 𝑅𝑖𝑡𝑤 , yielding the complete joint
rotations. This process is iteratively performed along the kinematic
chain to sequentially estimate joint rotations. The solving network
also estimates the joint offsets of each frame 𝑆𝑖 . To maintain bone
length consistency throughout the motion sequence, the overall
joint offset is determined by averaging estimated offsets across the
motion sequence: 𝑆𝑖 = mean(𝑆1

𝑖
, ..., 𝑆𝑇

𝑖
).

3.1 Point Cloud Pre-processing
Unlike previous methods [Ghorbani and Black 2021; Ghorbani et al.
2019] that preserve body orientations, RoMo begins by normalizing
the global body orientation, which aligns point clouds to accelerate
network convergence and enhance the accuracy. An orthogonal
transformation matrix is estimated through a smaller network and
then directly applied to the input point cloud. This auxiliary net-
work mirrors the architecture of the feature extraction network,
employing similar components. The network is trained based on
the rotation of the root joint, with regularization applied to ensure
the output matrix 𝐴 closely approximates an orthogonal matrix:

L𝑎𝑙𝑖𝑔𝑛 = | |𝐴𝑖 − 𝑅𝑖𝑟𝑜𝑜𝑡 | |2 + 𝜆𝑟𝑒𝑔 | |𝐼 −𝐴𝑖𝐴𝑖
𝑇 | |2 . (1)

Subsequently, the point cloud is segmented. Given that body
and hand markers exhibit distinct data distributions, employing
a unified network for feature extraction from the entire body’s
point cloud is overly complex. To simplify the learning process, a
divide-and-conquer strategy is implemented, wherein the whole-
body point cloud is first divided into body,left hand and right hand
parts, followed by feature extraction. This segmentation process

utilizes a neural network with a structure identical to that of the
alignment network, and it is trained using cross-entropy loss.
Following the transformer-based point cloud processing net-

works [Lu et al. 2022], RoMo’s network architecture incorporates
two types of layers: self-attention layers and local aggregation layers.
Self-attention layers initiate by projecting the input features into
key, query, and value vectors, and then employ the first two to calcu-
late marker attention. The resultant layer output is derived from the
product of attention weights and the value vector. Relying solely on
the self-attention layers [Ghorbani and Black 2021] overlooks local
spatial information, which is critical for point cloud processing. To
address this, RoMo integrates local aggregation layers [Wang et al.
2019] to capture the neighboring details. This process involves iden-
tifying the k-nearest neighbors within the feature space of points,
and utilizing feature differences to aggregate relative information
regarding neighboring markers. Such data are subsequently aggre-
gated and processed through a multi-layer perceptron (MLP) to
produce the local aggregation layer’s output.
The confidence of labels to markers is designed to satisfy a re-

laxed one-to-one correspondence: each point can be mapped to
at most one label and vise versa, with the exception of the 𝑛𝑢𝑙𝑙
label, which can be assigned to multiple points. To enforce this
constraint, RoMo employs log-domain optimal transport [Peyré
and Cuturi 2020; Sarlin et al. 2020], utilizing the Sinkhorn-Knopp
algorithm iteratively for optimization [Adams and Zemel 2011].
Following [Ghorbani and Black 2021], RoMo constructs the initial
confidence matrix 𝐶𝑖

𝑖𝑛𝑖𝑡
∈ [0, 1]𝑛𝑖×𝑁 , using the extracted marker

features 𝑓 , and modifies it by adding an extra row and column to
account for unmatched points and labels, resulting in the augmented
confidence matrix 𝐶𝑖𝑎𝑢𝑔 ∈ [0, 1] (𝑛𝑖+1)×(𝑁+1) . Sinkhorn normaliza-
tion is then iteratively applied to alternatively normalize the rows
and columns, ensuring they sum to 1. After 𝑘 iterations, we obtain
the final normalized confidence matrix 𝐶𝑖 .

The feature extraction network’s training incorporates a weighted
negative likelihood loss: L𝑙𝑎𝑏𝑒𝑙 = − 1∑

𝐶𝑖

∑
𝑊𝐶𝑖 log(𝐶𝑖 ), with 𝐶𝑖

as the ground truth confidence matrix and𝑊 serving as a weight
matrix to mitigate the impact of the 𝑛𝑢𝑙𝑙 label.

3.2 Tracklet Generation and Labeling
The previous section focused solely on information within a sin-
gle frame, overlooking the temporal continuity of marker motions.
To harness temporal information in sequential MoCap data, RoMo
generates tracklets by leveraging the marker positions and marker
features extracted by neural network. While some commercial soft-
ware, such as Vicon [Vicon 2023], automatically generates tracklets,
these are not universally available, notably in certain archival Mo-
Cap datasets like GRAB [Taheri et al. 2020] or limited hardware.
Additionally, these methods do not utilize deep features of markers,
limiting the precision of tracklet construction.

Drawing inspiration from [Zhang et al. 2020], RoMo treats tracklet
construction as a K-partite graph-based clustering algorithm. After
construction, RoMo assigns the markers in the same tracklet with
the same label, determined by the L-q norm of confidence of the
labels computed in the preceding subsection.
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Conceptually, each marker is considered a node within the graph,
and edges are established between nodes that exhibit high similar-
ity across different frames. Specifically, for a MoCap point cloud
sequence, the constructed graph G = {V, E,W} consists of the
following three components:

• Node setV represents the markers in the point cloud, where
𝑣𝑖𝑚 denotes the m-th marker in the point cloud 𝑃𝑖 .

• Edge set E comprises edges 𝑒𝑖 𝑗𝑚𝑛 indicates temporal connec-
tions, which connect any two nodes (𝑣𝑖𝑚, 𝑣

𝑗
𝑛) that represent

markers from different frame,
• Weight set W: the weight 𝑤𝑖 𝑗𝑚𝑛 associated with edge 𝑒𝑖 𝑗𝑚𝑛

quantifies the similarity between markers 𝑣𝑖𝑚 and 𝑣 𝑗𝑛 , incor-
porating both spatial proximity and feature resemblance to
measure marker similarity.

𝑤
𝑖 𝑗
𝑚𝑛 = 𝑤

𝑖 𝑗
𝑝𝑜𝑠,𝑚𝑛 + 𝜆𝑓 𝑒𝑡𝑤

𝑖 𝑗

𝑓 𝑒𝑡,𝑚𝑛
,

𝑤
𝑖 𝑗
𝑝𝑜𝑠,𝑚𝑛 = | |𝑝𝑖𝑚, 𝑝

𝑗
𝑛 | |2,

𝑤
𝑖 𝑗

𝑓 𝑒𝑡,𝑚𝑛
= 1 − cosine_similarity(𝑓 𝑖𝑚, 𝑓

𝑗
𝑛 ),

(2)

where𝑤𝑝𝑜𝑠,𝑚𝑛 represents the Euclidean distance between marker
positions, while𝑤 𝑓 𝑒𝑡,𝑚𝑛 quantifies the cosine distance between the
deep features of the corresponding nodes, with 𝜆𝑓 𝑒𝑡 serving as a
predefined weighting factor of feature similarity.

To identify a clustering solution for the graph G, RoMo seeks to
minimize the total sum of all weights, as outlined below:

argmin
𝑒
𝑖 𝑗
𝑚𝑛

∑︁
𝑚,𝑛

𝑒
𝑖 𝑗
𝑚𝑛𝑤

𝑖 𝑗
𝑚𝑛 ;

𝑠 .𝑡 .
∑︁

𝑣
𝑗
𝑛∈V𝑖 ,𝑖≠𝑗

𝑒
𝑖 𝑗
𝑚𝑛 ≤ 1;

∑︁
𝑣
𝑗
𝑛∈V𝑖 ,𝑖=𝑗

𝑒
𝑖 𝑗
𝑚𝑛 = 0;

𝑒
𝑖 𝑗
𝑚𝑛 = 0,𝑤𝑖 𝑗𝑝𝑜𝑠,𝑚𝑛 > 𝑡ℎ𝑝𝑜𝑠 ; 𝑒

𝑗𝑖
𝑚𝑛 = 0,𝑤𝑖 𝑗

𝑓 𝑒𝑡,𝑚𝑛
> 𝑡ℎ𝑓 𝑒𝑡 ;

𝑒
𝑖 𝑗
𝑚𝑛 ∈ {0, 1}; 𝑒

𝑖 𝑗
𝑚𝑛 = 𝑒

𝑗𝑖
𝑛𝑚 ;

(3)

whereV𝑖 refers to the node set of the i-th frame, while 𝑡ℎ𝑝𝑜𝑠 and
𝑡ℎ𝑓 𝑒𝑡 are thresholds for position and feature differences, respectively.
The first condition ensures that any given node 𝑣𝑖𝑚 connects to at
most one node in the node set of a different frame V 𝑗 . The edge
value 𝑒𝑖 𝑗𝑚𝑛 is restricted to either 0 or 1, resulting in integer solutions
for this optimization problem. To expedite computation, a greedy
algorithm is employed. In the resulting solution, a collection of
cliques is obtained, which are considered as tracklets.
For the association of tracklets with marker labels, a straight-

forward approach is to assign the most frequently occurring label
from single-frame labeling, yet this method overlooks scenarios
involving labels that are prevalent but have low confidence. To
circumvent this issue, RoMo’s tracklet labeling method calculates
tracklet confidence from markers’ confidence. Specifically, for a
tracklet 𝑇𝑟 = {𝑝𝑖

𝑙
, ..., 𝑝

𝑗
𝑚, ..., 𝑝

𝑘
𝑛 }, the confidence of it being assigned

to marker label 𝐿𝑖 is calculated as 𝐶𝐿𝑖 = (∑𝑝𝑖
𝑙
∈𝑇𝑟 |𝑐𝑝𝑖

𝑙
,𝐿𝑗

|𝑞)
1
𝑞 , rep-

resenting the 𝐿 − 𝑞 norm of the confidence for label 𝐿𝑖 of markers
within𝑇𝑟 . For 𝑞 = 0, this score mimics a voting mechanism, whereas
for 𝑞 = 1, it serves as the sum of confidence of label 𝐿𝑖 .

3.3 Hybrid Inverse Kinematics-based Solving

Template Skeleton

Estimated 
Joint Positions

Pose estimation without 
global joint positions

Pose estimation with
global joint positions

a) b)

Ji

T
ch(i)

Ti
Ji’

J
ch(i)

Twist

Swing

Fig. 3. a) An illustration of rotation decomposition. b) RoMo utilizes global
joint positions and avoids error accumulation along kinematic chain.

Directly estimating local joint rotations in one pass may cause
error accumulation along the kinematic chain, where minor rota-
tional inaccuracies in parent joints can lead to significant positional
discrepancies in child joints, as shown in the right of Fig. 3. This
process is further challenged by high non-linearity, as rotations
belong to the 3D rotation group 𝑅 ∈ SO(3) and marker positions
belong to the 3D position group 𝑀 ∈ 𝑅3, which complicates net-
work training due to its inherent difficulty [Kanazawa et al. 2018;
Kolotouros et al. 2019]. Inspired by [Li et al. 2021], RoMo leverages
3D keypoints as an intermediate representation and uses an inverse
kinematics-based solver. This approach simplifies network train-
ing and mitigates error accumulation. Compared to [Li et al. 2021],
RoMo employs a different feature extractor for the task of optical
motion capture solving. Next, we dive into details of the solver, the
times in notations are omitted for simplicity.
The key idea is to estimate 3D joint positions rather than the

complete rotations. With the estimated 3D joint positions 𝐽 , a so-
lution for the swing rotation 𝑅𝑠𝑤 , whose axis is perpendicular to
bone direction, is obtainable. The twist rotation 𝑅𝑡𝑤 , whose axis
is parallel to the direction, however, requires the assistance of a
neural network. An illustration of rotation decomposition is shown
in the left of Fig. 3. The full rotation is the combination of the swing
and twist rotation 𝑅 = 𝑅𝑠𝑤𝑅𝑡𝑤 . Although this method still relies on
the neural network for rotation estimation, it significantly reduces
learning complexity. Unlike the three degree of freedoms (DoF) as-
sociated with rotation, the twist angle is constrained to a single DoF.
Additionally, due to the physical constraints of the human body, the
twist angle exhibits a limited range of variation [Li et al. 2021]. Only
the joints on limbs exhibit a wide range of twist angles, constituting
a small proportion of all the joints. We present a detailed analysis
of joints’ twist angle’s distribution in the supplementary material.
The hybrid inverse kinematics process is performed iteratively

along the kinematic tree. In our experiments, we discovered that
using only the network on the point cloud to estimate the root
orientation can lead to an error of about 2 degrees. As a result, we
use Singular Value Decomposition (SVD) along with the estimated
joint positions to improve the root orientation solving accuracy.
For the estimation of rotations of subsequent children joints, we cal-
culate the swing rotation 𝑅𝑠𝑤 from the estimated joint positions. A
straightforward approach is to employ the relative positions derived
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from the estimated positions of child joints:

®𝑗𝑖 = 𝐽𝑐ℎ (𝑖 ) − 𝐽𝑖 , ®𝑡𝑖 = 𝑇𝑐ℎ (𝑖 ) −𝑇𝑖 ,

cos𝛼𝑖 =
®𝑗𝑖 · ®𝑡𝑖

| | ®𝑗𝑖 | | | |®𝑡𝑖 | |
, sin𝛼𝑖 =

| | ®𝑗𝑖 × ®𝑡𝑖 | |
| | ®𝑗𝑖 | | | |®𝑡𝑖 | |

,

®𝑛𝑖 =
®𝑗𝑖 × ®𝑡𝑖

| | ®𝑗𝑖 × ®𝑡𝑖 | |
,

𝑅𝑠𝑤,𝑖 = I + sin𝛼𝑖 [®𝑛𝑖 ]× + (1 − cos𝛼𝑖 ) [®𝑛𝑖 ]2×,

(4)

where ®𝑗𝑖 , ®𝑡𝑖 are the estimated and template relative joint positions,
respectively. The rest is the Rodrigues formula, where I is the
identity matrix and [®𝑛𝑖 ]× is the skew symmetric matrix of ®𝑛𝑖 .

However, this approach does not mitigate error accumulation as
it relies solely on the relative positions of child joints, disregarding
errors introduced by parent joints. To account for such discrepan-
cies, RoMo employs forward kinematics on the template skeleton
with the current estimated joint rotations to obtain the global joint
positions 𝐽 ′

𝑖
, which can also reflect the error introduced by estimated

parent joints’ offsets and rotations. The relative joint position is
then calculated as ®𝑗 ′

𝑖
= 𝐽𝑐ℎ (𝑖 ) − 𝐽 ′

𝑖
. We replace the first equation in

Equation 4 using ®𝑗 ′
𝑖
. This process is illustrated in the right of Fig. 3.

RoMo’s motion solver uses the heterogeneous graph network
outlined in [Pan et al. 2023] as its backbone. This network considers
markers and joints as distinct nodes in a heterogeneous graph and
conducts graph convolution operations to extract their local and
global features to solve motions. The motion solving network esti-
mates joint positions 𝑃 , twist rotations 𝑅𝑡𝑤 , and bone lengths 𝑆 . For
continuity, the twist rotation is represented by a two-dimensional
vector [cos(𝑅𝑡𝑤), sin(𝑅𝑡𝑤)], derived from the trigonometric func-
tions of the angle. Direct computation of bone lengths from joint
positions was explored but resulted in lower accuracy. The net-
work’s training is based on a set of loss functions specified below:

L𝑠𝑜𝑙𝑣𝑖𝑛𝑔 = 𝜆𝑝𝑜𝑠 | |𝐽 − 𝐽 | |2 + 𝜆𝑡𝑤 | |𝑅𝑡𝑤 − 𝑅𝑡𝑤 | |2 + 𝜆𝑠𝑘𝑒𝑙 | |𝑆 − 𝑆 | |2,
(5)

where 𝐽 , 𝑅𝑡𝑤 , 𝑆 are ground truth joint positions, twist rotations and
joint offsets, respectively. 𝜆𝑝𝑜𝑠 , 𝜆𝑡𝑤 , 𝜆𝑠𝑘𝑒𝑙 are weight factors.

4 EXPERIMENTS
Weevaluate RoMo quantitatively on several full-bodyMoCap datasets.
The Production and Front-waist dataset are captured from a game
studio and cleaned by hand, with different marker layouts. We take
the raw markers as input and clean markers as ground truth. The
quality of these datasets is exceptionally high, as they are captured
in a professional setting with a large number of cameras. The oc-
clusion probabilities for body and hand markers are 0.5% and 6%,
respectively. The GRAB dataset [Taheri et al. 2020] captures people
interacting with everyday objects. We simulate noises by adding
occlusions, where different markers on different body parts have di-
verse occlusion probabilities, which are propositional to the real data.
To emulate data captured under in limited conditions, we set the
overall occlusion rate at 15%. The supplementary material contains
additional information about our dataset, network architectures,
hyper-parameters and implementation details.

4.1 Point Cloud Labeling
For marker labeling, we compare RoMo with two neural-based ap-
proaches: [Ghorbani et al. 2019] and SOMA [Ghorbani and Black
2021]. We report two metrics: F1 score and accuracy in percentages.
F1 score is the harmonic-average of the precision and recall score,
and accuracy is the proportion of correctly predicted labels over
all labels. Since the body and hand markers have distinct data dis-
tributions, we separately display their metrics to clearly show the
methods’ performance on diverse body parts.

We present the quantitative result on the left of Table 1. Thanks
to the high data quality, the accuracy of body marker labeling in
the Production and Front-waist datasets exceeds 98%, with RoMo
marginally outperforming previous methods. However, the accuracy
for hand data in comparing methods drops dramatically to about
94%, which can be attributed to two main factors. Firstly, the distinct
data distributions between body and hand data make it challenging
for a single network to effectively address both types. Secondly,
hand data are have higher occlusion probabilities and closer marker
proximities. Frame-by-frame labeling failed to handle such com-
plex data. Our method maintains high labeling accuracy through a
divide-and-conquer strategy and the use of a tracklet-based labeling
schema. We further present a qualitative comparison in Fig. 4. RoMo
demonstrates robustness to occlusions and outliers and achieves
the highest accuracy compared to other methods, particularly un-
der complex occlusions. Additionally, the utilization of tracklets
significantly boosts labeling performance. We present additional
qualitative comparisons on Fig. 6.

Marker Status

[Ghorbani et al. 2019]

SOMA

RoMo (w/o tracklet)

Occluded Markers & Outliers
Other Markers 

Correct Labels
Wrong Labels

RoMo

Fig. 4. A qualitative comparison with other methods on hand labeling,
where each column represents a timestamp in a MoCap sequence. In cases
of outliers, we either randomly place them in positions corresponding to
occluded markers or discard them if there isn’t enough space.

Table 2 shows the effect of various components of RoMo on the
validation split of the Production dataset. The point cloud segmen-
tation and tracklet-based labeling play the most significant role
in the overall performance of marker labeling. Other components
marginally improves the performance of the model.
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[Ghorbani et
al. 2019] SOMA RoMo Vicon /

MoSh++
[Holden
2018] MoCap-Solver LocalMoCap RoMo

Production F1 ↑ 99.69 92.28 99.85 94.58 99.94 98.62 MPJRE ↓ 4.21 1.37 2.54 0.80 1.89 0.58 1.22 0.45 1.09 0.42
Acc. ↑ 99.59 93.02 99.87 96.21 99.96 98.87 MPJPE ↓ 1.75 0.49 1.02 0.27 0.89 0.20 0.61 0.15 0.43 0.14

Front Waist F1 ↑ 97.37 87.29 98.26 90.24 99.46 97.86 MPJRE ↓ 3.93 1.44 2.79 1.02 2.25 0.70 1.75 0.60 1.55 0.62
Acc. ↑ 98.59 92.18 99.28 93.87 99.68 98.23 MPJPE ↓ 1.66 0.30 1.11 0.32 0.99 0.25 0.82 0.21 0.69 0.21

GRAB F1 ↑ 99.65 94.48 99.70 96.92 99.65 98.47 MPJRE ↓ 3.32 6.37 2.69 2.21 2.15 1.72 1.83 1.59 1.70 1.61
Acc. ↑ 99.72 95.57 99.68 97.27 99.69 98.69 MPJPE ↓ 1.79 0.79 1.21 0.27 1.13 0.21 0.98 0.18 0.83 0.19

Table 1. Comparison with other methods on labeling (left) and solving (right). Cells with white background display metrics for body, those with gray
background represent metrics for hand. The F1 and accuracy are multiplied by 100. The units of MPJRE and MPJPE are in degree and centimeter, respectively.

F1 Accuracy
Base 98.62 98.87

- Local aggregation layers 98.59 -0.03 98.32 -0.55
- Point cloud segmentation 95.20 -4.74 95.31 -3.56

- Global transformation removal 98.10 -0.52 98.23 -0.64
- Tracklet-based labeling 96.21 -2.41 96.79 -2.08

- Feature similarity in edge weights 98.01 -0.61 98.38 -0.49
Table 2. Ablation study of RoMo’s components on the Production dataset’s
hand markers. We take the full model as the baseline and remove one
component at a time.

4.2 Motion Solving
For motion solving, we compare RoMo with three neural-based
approaches [Chen et al. 2021; Holden 2018; Pan et al. 2023]. Be-
fore solving, we apply the state-of-the-art occlusion fixing algo-
rithm [Pan et al. 2023] to fill the missing markers, which first uses
the Euclidean distance matrix optimization algorithm [Zhou et al.
2020] and then employ a bidirectional long short time memory net-
work (BiLSTM) [Schuster and Paliwal 1997] to optimize the occluded
markers’ potisions. To ensure a fair comparison, the body and hand
markers are aligned using the same strategy and trained using sep-
arate networks for neural approaches. Additionaly, we compare our
method with two optimization-based methods: Vicon [Vicon 2023]
for Production and Front-waist dataset, and Mosh++ [Loper et al.
2014] for the GRAB dataset. We use two quantitative metrics: mean
per joint rotation error (MPJRE) and mean per joint rotation error
(MPJPE). The former reflects the angle differences of the joints and
latter represents the global joint position difference.

The quantitative results are displayed on the right in Table 1. For
body motion, RoMo’s MPJRE and MPJPE are approximately 15% and
25% lower, respectively, than those achieved by the best comparison
methods. RoMo outperforms other neural-based methods for two
primary reasons. Firstly, it employs joint positions as intermediate
representations, simplifying the learning process for neural net-
works. Secondly, RoMo leverages the inverse kinematics process
to utilize the global joint positions, effectively avoiding the error
accumulation along the kinematic tree. Other methods [Chen et al.
2021; Holden 2018; Pan et al. 2023] directly estimates the relative
joint rotation of the whole body simultaneously. They are fragile to
error accumulation, resulting in large discrepancy on ending joints.
RoMo’s solving accuracy of hand motions are comparable with the
state-of-the-art methods, since the hand bone length of are relatively
limited, and does not amplify parental joints’ rotation errors.

We present the qualitative results of body motion solving in Fig. 5
and highlight RoMo’s improvements. RoMo demonstrates better
solving accuracy, especially on ending joints such as wrists and
ankles. We present additional qualitative comparison on Fig. 7.
To better demonstrate RoMo’s robustness against positional er-

rors, we introduce random jitters to the input marker positions and
record the resulting joint position errors. We compare RoMo with
a state-of-the-art solution method [Pan et al. 2023]. Additionally,
we validated the use of global joint positions 𝐽 ′, with the results
presented in Table 3. Methods that rely solely on joints’ relative
rotations [Pan et al. 2023] or relative positions tend to suffer from
errors accumulation along the kinematic chain, leading to increased
errors at higher jitter intensities. In contrast, RoMo, by using global
joint positions, exhibits greater robustness to such noise.

0 ±0.2cm ±0.5cm ±1.0cm
LocalMoCap [Pan et al. 2023] 0.61 0.72 0.98 1.62

RoMo (w/o global joint position) 0.47 0.68 0.83 1.49
RoMo 0.43 0.62 0.76 1.25

Table 3. The MPJPE under various jitter intensities on the body data of
Production dataset.

Ground TruthRoMoLocalMoCapMoCap-Solver[Holden 2018]

Fig. 5. Qualitative comparisons of solved motions. To compare with the
ground truth, we render the skeletons and overlay the ground truth’s skele-
ton onto those generated by solving methods. Positions with significant
differences are indicated with red boxes.

5 CONCLUSION, LIMITATIONS AND FUTURE WORK
We introduce RoMo, a framework designed for robust labeling and
solving of optical motion capture data of full-body, addressing two
primary types of noise: mislabeling and positional errors. RoMo
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utilizes innovative techniques such as a tracklet generation algo-
rithm based on positional and feature similarities, coupled with
an inverse kinematics-based motion capture solver to avoid error
accumulation. Our evaluations on diverse and complex benchmarks
demonstrate RoMo’s superior performance compared to previous
methods, providing precise labeling of body and hand markers and
robustly solving full-body motions. Notably, RoMo achieves accu-
racy comparable to commercial systems but offers the advantages
of being cost-free and highly flexible.

RoMo does have its limitations. Currently, it still splits the label-
ing and solving stages, since the input of labeling stage is unordered
markers while the solving relies on labeled marker. Merging the
two stages, that is, solving motions directly from unordered point
cloud data, could diminish the reliance on heuristic assumptions
and improve the labeling and solving network’s generalization ca-
pabilities. Furthermore, integrating motion information into the la-
beling stage could potentially enhance label accuracy. Additionally,
RoMo does not account for variations in marker layouts. Training
directly on a layout superset encompassing all markers of diverse
layouts [Ghorbani and Black 2021] substantially reduces labeling
accuracy. Exploring solutions to accommodate marker layout varia-
tions within a single network without compromising performance
presents a promising direction to augment RoMo’s flexibility.
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