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Fig. 1. StyleTex is capable of generating visually compelling and harmonious stylized textures for a given scene. For each mesh in the 3D scene, StyleTex
utilizes the untextured mesh, a single reference image, and a text prompt describing the mesh and desired style as inputs to generate a stylized texture. The
generated textures preserve the style of the reference image while ensuring consistency with both the text prompts and the intrinsic details of the given 3D
mesh. At the bottom, we present the rendered output for the provided 3D scene with the generated texture.

Style-guided texture generation aims to generate a texture that is harmo-
nious with both the style of the reference image and the geometry of the
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input mesh, given a reference style image and a 3D mesh with its text de-
scription. Although diffusion-based 3D texture generation methods, such
as distillation sampling, have numerous promising applications in stylized
games and films, it requires addressing two challenges: 1) decouple style
and content completely from the reference image for 3D models, and 2)
align the generated texture with the color tone, style of the reference image,
and the given text prompt. To this end, we introduce StyleTex, an innova-
tive diffusion-model-based framework for creating stylized textures for 3D
models. Our key insight is to decouple style information from the reference
image while disregarding content in diffusion-based distillation sampling.
Specifically, given a reference image, we first decompose its style feature
from the image CLIP embedding by subtracting the embedding’s orthogonal
projection in the direction of the content feature, which is represented by a
text CLIP embedding. Our novel approach to disentangling the reference
image’s style and content information allows us to generate distinct style
and content features. We then inject the style feature into the cross-attention
mechanism to incorporate it into the generation process, while utilizing the
content feature as a negative prompt to further dissociate content informa-
tion. Finally, we incorporate these strategies into StyleTex to obtain stylized
textures. We utilize Interval Score Matching to address over-smoothness
and over-saturation, in combination with a geometry-aware ControlNet
that ensures consistent geometry throughout the generative process. The

ACM Trans. Graph., Vol. 43, No. 6, Article 212. Publication date: December 2024.

https://doi.org/10.1145/3687931


212:2 • Zhiyu Xie, Yuqing Zhang, Xiangjun Tang, Yiqian Wu, Dehan Chen, Gongsheng Li, and Xiaogang Jin

resulting textures generated by StyleTex retain the style of the reference
image, while also aligning with the text prompts and intrinsic details of
the given 3D mesh. Quantitative and qualitative experiments show that our
method outperforms existing baseline methods by a significant margin.

CCS Concepts: • Computing methodologies → Rendering.
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1 INTRODUCTION
We investigate an under-explored generation problem: style image-
guided texture synthesis, which is crucial in computer vision and
graphics, facilitating the creation of visually compelling and im-
mersive digital environments in games and films. The generated
texture needs to be harmonious with both the 3D shape and style
of the reference image, which requires the texture to align with the
geometry while conveying a consistent style from different views.

Existing research mostly investigates the above two requirements
separately. In 2D style-image generation methods, the style is con-
veyed by separating it from the reference image and incorporating
it into the final output, which usually involves fine-tuning [Gal
et al. 2023; Hu et al. 2022; Ruiz et al. 2023] the diffusion model to
be a stylized image generator or adjusting the hidden layers of the
diffusion model with the extracted style features [He et al. 2024;
Hertz et al. 2024; Jeong et al. 2024; Voynov et al. 2023; Wang et al.
2024]. In parallel, 3D texture can be generated by iteratively inpaint-
ing [Chen et al. 2023c; Richardson et al. 2023] or image synthesis
with multi-view consistency [Cao et al. 2023; Gao et al. 2024; Liu
et al. 2023a; Wu et al. 2024]. More recently, distillation methods
such as score distillation sampling [Chen et al. 2023a; Metzer et al.
2023; Youwang et al. 2023] have also proven their superior effective-
ness in synthesizing 3D consistent textures. Compared to the direct
generation of textures, distillation methods are capable of achieving
better view and global style consistency while avoiding local seam
problems.
Despite the progress in these two distinct areas, incorporating

the desired style into texture generation is not straightforward.
One possible solution is to combine the distillation method with
a diffusion distribution aligned with the reference image’s style.
However, this leads to two challenges: 1) decoupling the style and
content from the reference image entirely, and 2) preserving the
color tone. Firstly, the ambiguity between style and content from
different views complicates the decoupling process. In 2D domains,
separating style and content within a single viewpoint may succeed
in most situations. However, in 3D domains, failure to effectively
decouple style from any single viewpoint can result in inaccurate
style and unintended content leakage in the final texture. Thus,
the generation of stylized textures in 3D domains requires a robust
method for disentangling style and content. Secondly, distillation
methods may result in over-saturation and over-smoothing within
the generated textures, leading to color shifts and a lack of details,
hindering the accurate reflection of the intended style.

To overcome these challenges, we propose StyleTex, a diffusion-
model-based pipeline to generate style textures under the guidance
of a single image. Our key insight is to extract the style information
from the reference image while disregarding the content informa-
tion. Inspired by the multi-modal applications of the CLIP space, we
propose to represent the content of the reference image as the CLIP
embedding of its corresponding text prompt. A naive method to
discard the content from the reference image in InstantStyle [Wang
et al. 2024] is to drive the reference image embedding in the same
CLIP space toward the opposite direction of the content embedding.
However, the slight misalignment between the content embedding
and the real content information of the image may cause undesirable
image embedding alerting, which results in unclean content informa-
tion remaining or color tone changing. To address this, we remove
the content information from the reference image embedding by
decomposing its CLIP embedding into two separate orthogonal fea-
tures. One of these features aligns with the content embedding and
encodes most of the content information of the reference image. We
retain only the remaining feature, which predominantly relates to
the style, to refine our diffusion model. To this end, we explicitly
incorporate the style-relevant feature through the cross-attention
mechanism, which also serves as a color tone guidance that can
prevent unintentional color tone changing during the distillation
process. Furthermore, we incorporate the content embedding as
a negative prompt to further dissociate content information. We
integrate the aforementioned strategies into StyleTex to generate
stylized textures and utilize Interval Score Matching (ISM) [Liang
et al. 2024] to further tackle the issue of over-smoothness. More-
over, we utilize a geometry-aware ControlNet to ensure geometric
consistency throughout the generative process.

In summary, our work makes the following major contributions:

• A diffusion-model-based pipeline to generate style textures
under the guidance of a single image, enabling the automatic
creation of diverse stylized virtual environments.

• A novel style decoupling and injection strategy that effec-
tively guides stylization while addressing issues of content
leakage and style deviation in texture generation.

2 RELATED WORK

2.1 Image guided stylization
Given a reference image, image-guided stylization aims to synthe-
size a new image that shares the same style as the reference image
while demonstrating the intended content. Early methods [Chen
and Schmidt 2016; Gatys et al. 2016; Gu et al. 2018] alter the style of
an image while preserving its content by solving a slow optimiza-
tion. The following methods propose to represent the style by a
neural network [An et al. 2021; Chen et al. 2017; Dumoulin et al.
2017; Johnson et al. 2016; Ulyanov et al. 2016; Zhang and Dana 2019],
or by the statistics of the hidden features of a network [Huang and
Belongie 2017; Kolkin et al. 2022; Kotovenko et al. 2019; Li et al. 2017;
Park and Lee 2019], enabling stylization by a single-step inference
of the network. With the development of the text-to-image diffusion
model [Rombach et al. 2022], fine-tuning the diffusion model [Chen
et al. 2023b; Frenkel et al. 2024; Gal et al. 2023; Hu et al. 2022; Ruiz
et al. 2023; Shah et al. 2023; Sohn et al. 2024] yields a stylized image
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generator but requires time-consuming training. Based on the exist-
ing style representations, modifying the structure of the diffusion
model [Hertz et al. 2024; Jeong et al. 2024; Zhang et al. 2023a] and
utilizing other adapter-based methods [Qi et al. 2024; Wang et al.
2024, 2023; Ye et al. 2023] allows for the incorporation of desired
styles without training.

Image-guided 3D stylization can be analogous to the 2D methods
but replaces the 2D image with the 3D representations, such as point
clouds [Huang et al. 2021; Mu et al. 2022], mesh [Höllein et al. 2022;
Kato et al. 2018; Yin et al. 2021], NeRF [Huang et al. 2022; Kolkin
et al. 2022; Liu et al. 2023b; Nguyen-Phuoc et al. 2022; Zhang et al.
2022] or 3D Gaussian [Zhang et al. 2024a]. However, establishing
style consistency over multiple views in 3D space has not been fully
explored, leading to artifacts such as content leakage.

2.2 Text/Image-guided Texture Generation
Automatically generating textures over 3D surfaces has garnered
widespread attention and important applications. While training
the texture generation network on a small dataset [Chen et al. 2022;
Siddiqui et al. 2022] aids in learning a stylized distribution, it also
restricts the network to a particular texture category. Text-to-image
diffusion [Rombach et al. 2022] incorporates a strong 2D image prior
that represents a real image distribution, offering robust guidance for
text-driven texture generation. For instance, TEXTure [Richardson
et al. 2023] and Text2Tex [Chen et al. 2023c] employ the diffusion
model to iteratively inpaint the geometry from different viewpoints.
However, the 2D diffusionmodel lacks an understanding of 3D shape
and multi-view color consistency, leading to blurry and low-quality
texture results. To maintain 3D consistency, a possible way is to
employ a 3D consistent prior [Chen et al. 2023a; Guo et al. 2023; Le
et al. 2023; Metzer et al. 2023], such as applying the score distillation
sampling using a geometry-conditioned diffusion model. In addition,
methods such as SyncMVD [Liu et al. 2023a], TexRO [Wu et al. 2024]
and GensisTex [Gao et al. 2024] are also able to maintain the 3D
consistency by explicitly projecting the intermediate results of each
denoising step into a consistent texture space.

Instead of employing diffusion models designed for a real-image
distribution, another viable alternative could be to fine-tune a dif-
fusion model to learn a UV space texture distribution [Cheskidova
et al. 2023; Liu et al. 2024; Zeng et al. 2023a]. This approach can
significantly accelerate the generation process, but the results may
be heavily impacted by the quality of the UV mapping.

Unlike text-driven texture generation, image-guided approaches
require interpreting the style of an image and hence cannot simply
rely on the pretrained text-to-image model. In addition to text-
guided texture generation, there have also been attempts in image-
guided texture generation. TEXTure [Richardson et al. 2023] em-
ploys textual inversion [Gal et al. 2023] to capture the style and
structural features of reference images, while Texturedreamer [Yeh
et al. 2024] uses Dreambooth [Ruiz et al. 2023] to fine-tune the Stable
Diffusion and then applies the personalized model in the geometry-
aware score distillation. However, these methods often require a
fine-tuning process and cannot exclude the content information of
the reference images. In contrast, our method is dedicated to de-
coupling the style and content information and generating textures

consistent with the style of the reference images. As a result, the
content and details of the textures are consistent with the textual
prompts and the model’s geometry, all without the need for an
additional training process.

3 METHOD
Given an untextured mesh, a textual prompt, and a reference image,
our goal is to generate textures consistent with the image style while
aligning the content of the textures with both the textual prompt
and the geometry of the model. In Sec. 3.1, we introduce the prior
knowledge relevant to our method, including the diffusion denois-
ing process and interval score matching (ISM) loss. In Sec. 3.2, we
present our pipeline for generating stylized textures. In Sec. 3.3, we
present our approach to style infusion, which includes transformer
layer style injection and content and style disentanglement.

3.1 Preliminary
When it comes to text-to-3D, numerous approaches have been devel-
oped to optimize 3D representations by distilling 2D diffusion mod-
els, using techniques like score distillation sampling (SDS) [Poole
et al. 2022]. The optimization goal of SDS is tomake the renderings of
3D representations align with the image distribution in a pre-trained
text-to-image diffusion model. At each iteration, the differentiable
rendering function 𝑔 renders the trainable paramaters 𝜃 from cam-
era 𝑐 , getting the rendered image 𝑥0. After that, 𝑥0 undergoes a noise
addition process, resulting in 𝑥𝑡 ∼ N

(
𝑥𝑡 ;

√
𝛼𝑡𝑥0, (1 − 𝛼𝑡 ) 𝑰

)
. With a

text prompt 𝑦, a pre-trained 2D diffusion model is utilized to predict
the corresponding noise. The gradient of the SDS loss with respect
to the 3D representation is determined as follows:

∇𝜃LSDS (𝜃 ) ≈ E𝑡,𝜖,𝑐
[
𝜔 (𝑡)

(
𝜖𝜙 (𝑥𝑡 , 𝑡, 𝑦) − 𝜖

) 𝜕𝑔(𝜃, 𝑐)
𝜕𝜃

]
, (1)

where 𝜖 ∼ N(0, 𝑰 ) is the ground truth denoising direction of 𝑥𝑡 at
timestep 𝑡 , 𝜖𝜙 (𝑥𝑡 , 𝑡, 𝑦) is the predicted denoising direction [Liang
et al. 2024] under the given condition 𝑦, and 𝜔 (𝑡) denotes a weight-
ing function that absorbs the constant 𝛼𝑡 I = 𝜕𝑥𝑡/𝜕𝑥0. This equation
can be rewritten as:

∇𝜃LSDS (𝜃 ) = E𝑡,𝜖,𝑐
[
𝜔 (𝑡)
𝛾 (𝑡)

(
𝑥0 − 𝑥𝑡0

) 𝜕𝑔(𝜃, 𝑐)
𝜕𝜃

]
, (2)

where 𝛾 (𝑡) =

√
1−𝛼𝑡√
𝛼𝑡

, and 𝑥𝑡0 =
𝑥𝑡−

√
1−𝛼𝑡𝜖𝜙 (𝑥𝑡 ,𝑡,𝑦)√

𝛼𝑡
is the pseudo-

GT [Liang et al. 2024] estimated by the single-step Diffusion Proba-
bilistic Model (DDPM) [Ho et al. 2020] .
Based on SDS, Interval Score Matching (ISM) [Liang et al. 2024]

generates a reversible diffusion trajectory by adding noise to 𝑥0
through Denoising Diffusion Implicit Models (DDIM) [Song et al.
2020] inversion, and employing multi-step DDIM denoising pro-
cess. This helps to achieve a more consistent and higher-quality 𝑥𝑡0.
This process of noise addition and subsequent denoising facilitates
the neutralization of a series of neighboring interval scores with
opposing scales, resulting in the formulation of the ISM loss:

∇𝜃LISM (𝜃 ) = E𝑡,𝑐
[
𝜔 (𝑡)𝛿 (𝑥𝑡 , 𝑥𝑡−1, 𝑡, 𝑡 − 1) 𝜕𝑔(𝜃, 𝑐)

𝜕𝜃

]
, (3)

𝛿 (𝑥𝑡 , 𝑥𝑡−1, 𝑡, 𝑡 − 1) = 𝜖𝜙 (𝑥𝑡 , 𝑡, 𝑦) − 𝜖𝜙 (𝑥𝑡−1, 𝑡 − 1) . (4)
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Fig. 2. Overview of our pipeline. StyleTex’s inputs include a reference style image 𝐼𝑟𝑒𝑓 , a text prompt 𝑦, and an untextured 3D mesh M. During training,

we utilize our innovative ODCR method (described in Sec. 3.3) to extract a content-unrelated style feature, 𝑓 𝑟𝑒𝑓𝑠 , from the reference image. The style feature
and text embeddings are fed into the Unet to guide the optimization of the texture field. During inference, texture maps can be sampled from the texture field
and directly employed in downstream game or film production, enabling the creation of stylized digital environments.

Compared to the SDS loss, ISM enhances the generation of 3D
results by replacing the single-stepDDPMwith themulti-stepDDIM,
resulting in outputs with richer details. This approach effectively
mitigates the issues of over-smoothness and blurriness in the results
and notably accelerates the convergence rate. In this paper, we adopt
ISM as the basis of our method to achieve more robust results.

Classifier-free guidance (CFG) [Ho and Salimans 2021] is also em-
ployed in diffusion models with a guidance weight 𝜆𝑐 𝑓 𝑔 to direct the
unconditional score distribution to the conditional one. Specifically,
𝛿 (𝑥𝑡 , 𝑥𝑡−1, 𝑡, 𝑡 − 1) with CFG is expressed as:

𝛿 (𝑥𝑡 , 𝑥𝑡−1; 𝑡, 𝑡 − 1) = 𝜖𝜙 (𝑥𝑡 ; 𝑡) − 𝜖𝜙 (𝑥𝑡−1; 𝑡 − 1)

+ 𝜆𝑐 𝑓 𝑔

(
𝜖𝜙 (𝑥𝑡 ; 𝑡, 𝑦) − 𝜖𝜙 (𝑥𝑡 ; 𝑡)

)
.

(5)

Inspired by CFG, we employ a similar formulation in our proposed
method to direct the unstylized score distribution to a stylized one,
thereby achieving stylization.

3.2 Style-guided Texture Generation Pipeline
Our stylized texture generation pipeline is depicted in Fig. 2. The in-
put encompasses an untextured 3D mesh denoted asM, a reference
image 𝐼𝑟𝑒 𝑓 providing the style. We utilize GPT-4 to extract a text
prompt 𝑦 from the reference image 𝐼𝑟𝑒 𝑓 , which characterizes the
desired style and content, and a text prompt 𝑦𝑟𝑒 𝑓 that describes the
content of the reference image. Instead of directly optimizing the
texture map in 2D space, we optimize a neural color field Γ𝜃 (𝑝) = 𝑐 ,
where 𝑝 ∈ R3 is the surface position of the 3D mesh and 𝑐 ∈ R3

denotes the color. We represent the neural field by the hash-grid
proposed by [Müller et al. 2022]. After optimization, the texture
map can be sampled from the neural field, which is detailed in the
supplement material.

At each iteration, in addition to rendering the image 𝑥0, we render
the depth and normal maps indicating the geometric information,
which are incorporated into the optimization by a geometry-aware
ControlNet [Zhang et al. 2023b] to achieve geometry consistency.

Besides, inspired by ISM [Liang et al. 2024], we incorporate a high-
quality noise estimation method of ControlNet. Instead of simply
sampling from a Gaussian distribution, we generate the noised 𝑥𝑡
by utilizing DDIM inversion to achieve superior noise estimation.

Specifically, the parameters 𝜃 of the neural field Γ𝜃 are optimized
by our novel style-guided loss. The gradient of our loss is:

∇𝜃L
style
ISM (𝜃 ) = E𝑡,𝑐

[
𝜔 (𝑡)𝛿 (𝑥𝑡 , 𝑥𝑡−1;𝑦, 𝐼𝑟𝑒 𝑓 , 𝑦𝑟𝑒 𝑓 , 𝑡, 𝑡 − 1) 𝜕𝑔(𝜃, 𝑐)

𝜕𝜃

]
.

(6)
The gradient updating direction 𝛿 (𝑥𝑡 , 𝑥𝑡−1;𝑦, 𝐼𝑟𝑒 𝑓 , 𝑦𝑟𝑒 𝑓 , 𝑡, 𝑡 − 1) in-
corporates the style and content from the reference image 𝐼𝑟𝑒 𝑓 as
well as two text prompts 𝑦 and 𝑦𝑟𝑒 𝑓 . It is formulated as:

𝛿 (𝑥𝑡 , 𝑥𝑡−1;𝑦, 𝐼𝑟𝑒 𝑓 , 𝑦𝑟𝑒 𝑓 , 𝑡, 𝑡 − 1)
= 𝜖𝜙 (𝑥𝑡 ; 𝑡) − 𝜖𝜙 (𝑥𝑡−1; 𝑡 − 1)
+ 𝜆𝑐 𝑓 𝑔 (𝜖𝜙 (𝑥𝑡 ; 𝑡, 𝑦) − 𝜖𝜙 (𝑥𝑡 ; 𝑡, 𝑦𝑟𝑒 𝑓 ))
+ 𝛿𝑠𝑡𝑦𝑙𝑒 (𝑥𝑡 ;𝑦, 𝐼𝑟𝑒 𝑓 , 𝑦𝑟𝑒 𝑓 , 𝑡),

(7)

where 𝑦𝑟𝑒 𝑓 indicates the unintended content information. We in-
tegrate 𝑦𝑟𝑒 𝑓 into the CFG term 𝜖𝜙 (𝑥𝑡 ; 𝑡, 𝑦) − 𝜖𝜙 (𝑥𝑡 ; 𝑡, 𝑦𝑟𝑒 𝑓 ) as a
negative prompt to reduce the content leakage artifacts. Besides, we
explicitly employ a novel style guidance 𝛿𝑠𝑡𝑦𝑙𝑒 (𝑥𝑡 ;𝑦, 𝐼𝑟𝑒 𝑓 , 𝑦𝑟𝑒 𝑓 , 𝑡) to
direct the style of the rendered image to the desired one. The style
guidance aims to reduce the score distribution divergence between
the rendered images and the images with the desired style. Inspired
by the classifier guidance, our style guidance can be formulated as:

𝛿𝑠𝑡𝑦𝑙𝑒 (𝑥𝑡 ;𝑦, 𝐼𝑟𝑒 𝑓 , 𝑦𝑟𝑒 𝑓 , 𝑡)
= 𝜆𝑠𝑡𝑦𝑙𝑒 (𝜖𝑠𝑡𝑦𝑙𝑒 (𝑥𝑡 ; 𝑡, 𝑦, 𝐼𝑟𝑒 𝑓 , 𝑦𝑟𝑒 𝑓 ) − 𝜖𝜙 (𝑥𝑡 ; 𝑡)), (8)

where 𝜆𝑠𝑡𝑦𝑙𝑒 is a weight factor, and 𝜖𝑠𝑡𝑦𝑙𝑒 (𝑥𝑡 ; 𝑡, 𝑦, 𝐼𝑟𝑒 𝑓 , 𝑦𝑟𝑒 𝑓 ) predicts
the distribution of the required style images.

3.3 Style Score Distribution
To achieve the style distribution for 𝜖𝑠𝑡𝑦𝑙𝑒 , a possible way is to train a
style-conditioned diffusion model, but it is time-consuming. Instead,
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(b) w/ Style text prompt (e) w/ Style guidance
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with ControlNetRef. styleGeometry

watercolor and ink style

sparkling crystal style

colorful painting style

A barrel

A chest

A red apple

(d) w/o Style guidance
w/ Neg. content prompt

Fig. 3. Ablation study on style guidance. (a) Baseline for text-to-texture. (b) Use “in xxx style” text prompts for style guidance. (c) Add the whole image
prompt as guidance. (d) Add our style guidance strategy. (e) Add content embedding of the reference image as a negative prompt. (f) Full model with the style
guidance strategy and content embedding of the reference image as a negative prompt.

inspired by [Wang et al. 2024; Ye et al. 2023], we shift the original
non-style distribution of a pre-trained diffusion model to the desired
one by injecting information from the reference image into the
diffusion model. Therefore, the core requirement is to extract style
information from the reference image while disregarding content
information.

Existing 2D style image generation studies [Wang et al. 2024; Ye
et al. 2023] have explored that the cross-attention mechanism in
different transformer layers of a diffusion model exerts different
effects on the content and style. Therefore, the stylized result can
be achieved by injecting the features of the reference image into the
layers that are responsible for style effects. However, a transformer
layer can be in charge of both style and content because of the
ambiguity in them. Leveraging such a layer to inject the reference
image feature may introduce unintended content, while ignoring
it may result in inaccuracies in style expressiveness, such as color
tone shifting. To address this, we aim to incorporate as many layers
that are responsible for style effects as possible to maintain style
expressiveness. The appendix contains detailed information about
our leveraged transformer layers. Simultaneously, to mitigate the
influence of content from adding these layers, we propose explicitly
disentangling the style and content from the image feature to extract
a cleaner style.

To disentangle the content and style, we leverage the text content
prompt 𝑦𝑟𝑒 𝑓 as the content guidance. Specifically, based on the
multi-modal applications of the CLIP space, we encode the reference
image and the text content prompt into the same space using a
CLIP image encoder and a CLIP text encoder, respectively, resulting
in image embedding and content embedding. While the content
embedding encodes the majority of the content information of the
image, text-based descriptions cannot align accurately with the
abundant image information. Therefore, simply driving the image
embedding towards the opposite of the content embedding direction
cannot eliminate the content correctly. Driving too little does not
influence the image content, while driving too much may alter the
reference image’s color tone. To this end, we propose to decompose

the image embedding into two components, with one component
aligning with the content embedding explicitly. Specifically, we
employ an orthogonal decomposition for content removal (ODCR):

𝑓
𝑟𝑒 𝑓
𝑔 = 𝐸

𝑖𝑚𝑔

𝐶𝐿𝐼𝑃
(𝐼𝑟𝑒 𝑓 ), 𝑓

𝑟𝑒 𝑓
𝑐 = 𝐸𝑡𝑒𝑥𝑡𝐶𝐿𝐼𝑃 (𝑦𝑟𝑒 𝑓 ),

𝑓
𝑟𝑒 𝑓
𝑠 = 𝑓

𝑟𝑒 𝑓
𝑔 −

𝑓
𝑟𝑒 𝑓
𝑐 (𝑓 𝑟𝑒 𝑓𝑔 )𝑇 𝑓 𝑟𝑒 𝑓𝑐

| |𝑓 𝑟𝑒 𝑓𝑐 | |22
,

(9)

where 𝑓
𝑟𝑒 𝑓
𝑔 is the reference image embedding extracted by the

CLIP’s image encoder 𝐸𝑖𝑚𝑔

𝐶𝐿𝐼𝑃
, and 𝑓

𝑟𝑒 𝑓
𝑐 is the content embedding

extracted by the CLIP’s text encoder 𝐸𝑡𝑒𝑥𝑡
𝐶𝐿𝐼𝑃

. After ODCR, we remain
only the 𝑓

𝑟𝑒 𝑓
𝑠 to guide the diffusion model. The experiments in

Sec. 4.1.1 demonstrate the superiority of our decomposition.

4 EXPERIMENTS AND RESULTS

4.1 Ablation Study
We first conduct an ablation study to show the style effectiveness of
each component of our method, including using𝑦𝑟𝑒 𝑓 as the negative
prompt and using our style guidance 𝛿𝑠𝑡𝑦𝑙𝑒 for disentangling and
injecting the style. Then we dive into our style guidance to validate
the effectiveness of our chosen transformer layers and the image em-
bedding decomposition. Next, we validate that the geometry-aware
ControlNet is beneficial to 3D consistency. Lastly, we conduct an
experiment to show that using ISM achieves higher-quality results.

4.1.1 Style effectiveness for each component. As a baseline, we use
a non-style text-to-texture generation that uses an ISM-based frame-
work with a geometry-aware ControlNet to produce three outcomes,
with “a red apple”, “a chest”, and “a barrel” as the textual conditions,
respectively. The results shown in Fig. 3 (a) present multi-view con-
sistency while not presenting any specific style. Then in Fig. 3 (b),
we add textual descriptions of the desired style in the prompt and
hence these prompts become “a barrel in watercolor and ink style”,
“a chest in sparkling crystal style”, and “a red apple in a colorful
painting style”. Although the results in Fig. 3 (b) demonstrate some

ACM Trans. Graph., Vol. 43, No. 6, Article 212. Publication date: December 2024.



212:6 • Zhiyu Xie, Yuqing Zhang, Xiangjun Tang, Yiqian Wu, Dehan Chen, Gongsheng Li, and Xiaogang Jin

(a) Style blocks in Instant Style (b) OursRef. style

Fig. 4. Stylized texture results obtained using various transformer layer
style injection strategies. The Prompts are “a cupcake in ice and snow
covered style” and “a wooden treasure chest with metal accents and locks
in colorful drawing style”.

(a) Use SDS Loss (b) Use ISM LossRef. style

Fig. 5. Results using our style-content decoupling method with SDS loss (a)
and ISM loss (b) for the prompts “a strawberry/teapot in colorful graffiti
style” and “a strawberry/teapot in Chinese ink paint style”.

color changes compared to the baseline, they fail to convey the style
effectively. Image-based texture generation methods, such as [Ye
et al. 2023], take the reference image as the input and can achieve
vivid style. However, as shown in Fig. 3 (c), without disentangling
the content and style, the content information of the reference im-
age is incorrectly retained in the results. We then showcase two
variants of our method, one removes our style guidance (Fig. 3 (d))
and another removes the negative prompt of the CFG term (Fig. 3
(e)). Both methods achieve a vivid style and alleviate the content
leakage artifacts. Lastly, our method shown in Fig. 3 (f) exhibits
high-quality results with vivid style while not presenting artifacts.

4.1.2 Style guidance. Our style guidance 𝛿𝑠𝑡𝑦𝑙𝑒 is carefully de-
signed to preserve style expressiveness while not leading to content
leakage by two aspects. Firstly, in terms of style injection in trans-
former layers, unlike existing 2D style image generation methods
that do not consider transformer layers that are more responsible
for content than style, we use all transformer layers that impact
style to achieve style consistency in multiple views. As shown in
Fig. 4, incorporating only the transformer layers used by 2D style
image generation methods can result in a color tone that deviates
from that of the reference image. Secondly, we explicitly decompose
the reference image embedding within the CLIP space to disentan-
gle the style and content. As shown in Fig. 6 (a), incorporating the
complete image embedding into the diffusion model leads to severe

(b) w/ Vanilla Content 
Subtraction (scale=1.0)

(d) OursRef. style (c) w/ Vanilla Content 
Subtraction (scale=0.2)

(a) w/o Content Subtraction

Fig. 6. Stylized texture results achieved using different content removal
strategies in CLIP space. The prompts are “a hand bag in watercolor sketch
style” and “a pot in a colorful painting style”.

(b) w/o ControlNet(a) GeometryRef. style (c) w/ ControlNet

Fig. 7. Ablation study on geometric ControlNet. The prompts are “a
dog in graffiti style” and “a hamburger in sketch style”.

content leakage artifacts. Besides, without disentangling the style
and content, driving the image embedding by the content embed-
ding easily results in artifacts. For instance, greatly altering the
image embedding can lead to inaccurate color expressiveness (Fig.
6 (b)), while slight modifications cause content leakage (Fig. 6 (c)).
In Fig. 6 (d), our method presents a superior performance in both
style expressiveness and content removal.

4.1.3 ISM vs SDS. To achieve superior quality, we utilize an ISM-
based optimization framework instead of SDS [Poole et al. 2022]. As
illustrated in Fig. 5, replacing our ISM loss with the SDS loss exhibits
over-saturation and over-smoothness and severely undermines the
style expressiveness.

4.1.4 Geometry-aware ControlNet. Our method uses a geometry-
aware ControlNet that receives the rendered depth and normal map
as inputs. To validate its effectiveness in preserving 3D consistency
and geometrical details, we conduct an experiment using a vanilla
diffusion model. As shown in Fig. 7, the geometry-aware ControlNet
greatly enhances the detail of textures, particularly in models with
complex geometries (e.g., the hamburger). Furthermore, it also aids
in eliminating the Janus problem as shown in the first row of Fig. 7.

4.2 Comparison
We compare our method to several state-of-the-art methods for
image-guided 3D generation, namely TEXTure [Richardson et al.
2023], TextureDreamer [Yeh et al. 2024], IPDreamer [Zeng et al.
2023b], and a text-based texture generation method SyncMVD [Liu
et al. 2023a]. Since IPDreamer [Zeng et al. 2023b] synthesizes 3D
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TEXTure TextureDreamer IPDreamer SyncMVD+InstantStyle OursRef. Style

Fig. 8. Qualitative comparison to TEXTure [Richardson et al. 2023], TextureDreamer [Yeh et al. 2024], IPDreamer [Zeng et al. 2023b], and SyncMVD [Liu et al.
2023a].

Table 1. User study results. Participants are asked to evaluate the overall
quality, style fidelity, and content removal of the generated results by giving
scores (∈ [1, 5]) to the rendering videos. This table shows the average scores
given by 37 participants.

Method Overall Quality↑ Style Fidelity↑ Content Removal↑
TEXTure 2.62 2.01 2.83
TextureDreamer 2.29 1.93 2.68
IPDreamer 3.02 3.45 3.01
SyncMVD 3.07 2.67 3.23
Ours 4.60 4.61 4.36

geometry in addition to texture, we fix the geometry and concentrate
solely on texture synthesis. Besides, SyncMVD [Liu et al. 2023a]
synthesizes 2D images across multiple views rather than using
score distillation sampling and hence cannot incorporate our style
guidance. For a fair comparison, we incorporate a 2D image-guided
generation method [Wang et al. 2024] into SyncMVD.

4.2.1 Qualitative Comparison. Fig. 8 and Fig. 10 provide qualitative
comparisons between the baseline methods and our proposed ap-
proach. Both TEXTure and TextureDreamer utilize reference images
to fine-tune the diffusion model, with the generated texture heavily
relying on the performance of fine-tuning. However, given only a
single reference image, the fine-tuned diffusion model either overfits
or fails to accurately extract the image style, leading to incorrect
results when applied to a mesh whose subject does not match the
reference image. IPDreamer does not separate the style and content
of the reference image during generation, resulting in a significant
content leakage issue. Additionally, the usage of the SDS leads to
over-saturation. While SyncMVD can synthesize multi-view im-
ages that exhibit some extent of the style, it suffers from balancing
between the multi-view consistency, the image guidance and the

Table 2. Quantitative comparison results.We utilize the Gram Matrix
Distance to measure style fidelity, and use the CLIP score to measure the
semantic alignment between the prompts and the results.

Method Gram Matrix Distance↓ CLIP Score↑
TEXTure 0.830 68.01
TextureDreamer 0.947 68.57
IPDreamer 0.910 61.81
SyncMVD 0.920 69.60
Ours 0.723 73.66

classifier term, leading to overly smooth, detail-lacking, and style
drifting results. In contrast, our results demonstrate superior perfor-
mance in terms of detail representation and style fidelity compared
to all other methods.

4.2.2 Quantitative Comparison. We first conduct user study using
12 styles and 24 meshes to evaluate the results of all methods re-
garding quality, style fidelity, and content removal. For each style,
we use each method to generate textures for 2 meshes, respectively.
We ask 37 participants to assign a score range from 1 to 5 to the
synthesized results of all methods. The higher score indicates the
better performance. The results are shown in Tab. 1. Among all
methods, our method achieves the superior performance in terms
of all metrics.
In addition to the user study, we use the common metrics for

image generation methods to evaluate all methods in terms of style
fidelity and semantic alignment. For 25 randomly chosen styles, we
use each style to generate stylized textures for 4 unique, randomly
selected meshes from Objaverse [Deitke et al. 2023], totaling 100
different results. We then render four views per result to compute
the metrics. The style’s fidelity is measured by the Gram metrics
difference [Johnson et al. 2016] between the rendered images and
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the reference images. Besides, the semantic alignment between the
prompts and the rendered image is measured by the CLIP Score [Hes-
sel et al. 2021]. As shown in Tab. 2, our method outperforms all other
methods in achieving the best style fidelity and text alignment. The
details of these metrics are outlined in the supplement material.

4.3 Results
An NVIDIA RTX 4090 GPU is used for the optimization process,
which takes about 15 minutes to synthesize a texture map for each
mesh. We demonstrate the robustness of our method using a diverse
range of reference images, including various artistic styles such
as “sketching” and “ink wash painting”, different materials like
“gold” and “wool”, as well as various patterns and brush strokes. The
generated results shown in Fig. 11 maintain multi-view consistency,
align with the geometric details of the models, and adhere to the
style of the reference image.
In addition, we demonstrate that our method can be practically

used for games or films, which requires generating consistent style
for all meshes. As shown in Fig. 1, we create textures for various
objects that share the same style given a reference image, resulting
in scenes that are harmonious and aesthetically pleasing.

5 LIMITATIONS AND CONCLUSIONS

5.1 Limitations
Despite the successful generation of high-quality textures that align
with the style of the reference image, our method presents sev-
eral limitations. To begin, unlike PBR materials generation meth-
ods [Zhang et al. 2024c,b], the influence of style prevents us from
identifying a universally applicable rendering model, making it dif-
ficult to define and decouple the highlights and shadows contained
in textures. This issue may result in baked-in highlights or shadows
in the generated textures, as shown in Fig. 9. Second, our method’s
distillation time is relatively long, which limits its use in an inter-
active environment. Future work could potentially accelerate our
method by integrating recent advancements in diffusion models
and representations. Finally, as style is the result of a combination
of various elements (including material, brush strokes, tone, and
painting style), our method is unable to extract or adjust any of
these elements individually.

5.2 Conclusions
This paper presents StyleTex, a novel stylized texture generation
approach for the given mesh, guided by a single reference image and
text prompts. StyleTex leverages an ISM-based generative frame-
work, incorporating both style guidance and geometric control. The
key advantage of our method is a novel strategy for disentangling
style and content information, which effectively addresses the preva-
lent issues of content leakage and style drift in 3D stylized textures.
By utilizing a single stylized image as the reference, StyleTex can
generate textures that exhibit similar styles, thereby enabling the
automatic creation of visually compelling and immersive virtual
environments for games or films.

(b) Texture mapRef. style (a) Textured mesh

Fig. 9. Artifacts caused by baked-in highlights or shadows in generated
textures (b). The red boxes represent unintended baked-in shadows (a,b)
(upper) and highlights (a,b) (bottom).
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TEXTure TextureDreamer IPDreamer SyncMVD+InstantStyle OursRef. Style

Fig. 10. More qualitative comparison with TEXTure [Richardson et al. 2023], TextureDreamer [Yeh et al. 2024], IPDreamer [Zeng et al. 2023b], and SyncMVD [Liu
et al. 2023a].
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Ref. 
Style1

Ref. Style Geometry Generated texture Geometry Generated texture

Fig. 11. Results of StyleTex. For each style, we generate textures for two meshes and showcase four different rendered views.
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Ref. Style Geometry Generated texture Geometry Generated texture

Fig. 12. Results of StyleTex. For each style, we generate textures for two meshes and showcase four different rendered views.
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A APPENDIX

A.1 Detailed Difference with InstantStyle

(c) Style-only blocks 
in Instant Style

Ref. style (b) Style blocks with layout 
in Instant Style

(a) Full layers

“an apple in boho art style”

“an apple in graffiti style”

Fig. 13. Results using different types of layers in InstantStyle.

InstantStyle [Wang et al. 2024] categorizes attention layers that
influence style into two types: style-only and spatial layout. In 2D
image generation, using full layers can introduce both the reference
image’s content and style information (see Fig. 13 (a)). Employing
both the style-only and layout layers may introduce stylistic infor-
mation as well as spatial structural information (see Fig. 13 (b)),
whereas only using the style-only layer may result in minor tonal
discrepancies (see Fig. 13 (c)). In 3D contexts, excessive structural
information from layout layers may result in content leakage, and
the absence of tonal information from style-only layers can cause
severe tonal shifts. Furthermore, InstantStyle uses a simple feature
subtraction technique to separate style and content. The style fea-
ture is obtained by subtracting the text embedding from the image
embedding, resulting in partial content information leakage.

Unlike their approach, we use InstantStyle’s style-only and layout
layers, as well as additional layers [Agarwal et al. 2023; Voynov et al.
2023], to preserve complete style information and avoid tonal shifts.
To remove as much structural and content information from the
reference image as possible, we use ODCR to extract style features.
Furthermore, the content description of the reference image serves
as a negative prompt during the distillation process.

A.2 Additional Transformer Layers
The cross-attention layers Instant Style uses for style injection in-
cluding:

• down_blocks.2
• mid_block.attention.0
• up_block.1

In StyleTex, we expand the number of cross-attention layers used
for style injection, including:

• down_blocks.1.attentions.0
• All layers in up_block

(d) InstantStyle layers+
Full ‘up_blocks’

Ref. style

(b) InstantStyle 
layers

(a) Full layers (e) Ours(c) InstantStyle layers+ 
‘down_blocks.1’

“an apple in boho art style”

“an apple in colorful drawing style”

Ref. style Geometry

Geometry

+

+

+

+

Fig. 14. The impact of the additional transformer layers leveraged in our
method.

To evaluate the impact of the additional transformer layers used,
we conducted an experiment in which we modified the transformer
layers in our full model. The results are presented in Fig. 14. Fig. 14
(a) demonstrates that injecting style information into all layers re-
sults in content leakage issues. Fig. 14 (b) shows that using only the
original injection layer of Instant Style leads to style drift and black
areas due to the removal of too many layers in the style injection.
By solely adding “down_blocks.1.attentions.0” or “up_blocks”, as
depicted in Fig. 14 (c) and (d), respectively, the black area is effec-
tively removed; however, a slight color shift still occurs. In contrast,
using the additional layers as we did in our proposed approach
produces results that more closely align with the reference image
while avoiding content leakage.
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