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Figure 1: A corner of a bedroom full of complex 3D models with the original texture shown in (a). We use our method to
compress the texture of each model and then arrange them together (b). We use three zoom-in views to highlight the marginal
visual modification due to our method. Compared with the input, we achieve a texture compression ratio of 83.50% while
preserving the visual appearance with the score of 43.19/0.987 as measured by PSNR/MS-SSIM.

ABSTRACT
Optimizing the memory footprint of 3D models can have a major
impact on the user experiences during real-time rendering and
streaming visualization, where the major memory overhead lies in
the high-resolution texture data. In this work, we propose a robust
and automatic pipeline to content-aware, lossy compression for
texture atlas. The design of our solution lies in two observations:
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1) mapping multiple surface patches to the same texture region
is seamlessly compatible with the standard rendering pipeline, re-
quiring no decompression before any usage; 2) a texture image
has background regions and salient structural features, which can
be handled separately to achieve a high compression rate. Accord-
ingly, our method contains joint operations of image segmentation,
re-meshing, UV unwrapping, and texture baking. To evaluate the
efficacy of our approach, we batch-processed a dataset containing
100 models collected online. On average, our method achieves a
texture atlas compression ratio of 81.41% with an averaged PSNR
and MS-SSIM scores of 40.90 and 0.98, a marginal error in visual
appearance.
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1 INTRODUCTION
Textured meshes are the mainstream 3D model representation em-
ployed in the current GPU rendering pipeline. For efficient real-time
rendering, a standard solution for artists is to map high-resolution
textures onto the 3D mesh surfaces to encode rich appearance de-
tails. As a result, accessing these texture data can not only pose
a major performance bottleneck for network data streaming, ren-
dering algorithm, GPU bandwidth, and memory footprint, but also
cause a large file size in disk or package size when releasing the
developed applications.

Traditionally, 3D game assets aremanually crafted by artists. Dur-
ing the modeling process, they can flexibly reuse mesh parts with
the same texture data to save the final texture size for the completed
model. On a parallel front, 3D reconstruction and AI-generated 3D
models have recently surged as promising alternative approaches
and garnered significant research attention. These methods use 3D
scanning [Zhou and Koltun 2014], photogrammetry software [Ag-
isoft 2023; Reality 2023], and inverse rendering [Hasselgren et al.
2021; Mildenhall et al. 2020] to digitalize real-world 3D assets, from
which a mesh representation can either be directly generated or
converted from iso-surfacing such as marching cube [Lorensen and
Cline 1987] and the surface appearance can be recovered via visual-
guided texture baking [Hasselgren et al. 2021]. However, the 3D
meshes generated by these algorithms usually have high-resolution
textures that contain repeated contents mapped to separate regions
on the 3D surface, leading to excessively large texture data. To
reduce the amount of texture data, one possible way for artists is to
fine-tune these models by manually identifying the repeated texture
contents and manipulating the texture, the UV mesh, and the 3D
surface mesh. However, relying on manual processes is intractable
not only because of the tedious and iterative editing, but also due to
the rapidly growing amount of reconstructed or learned 3D models.
Therefore, to compress the textures of algorithmically generated
3D models, designing an automatic and robust approach is urgent
and highly demanded.

Given a 3D mesh with UV and texture, we propose a fully au-
tomatic pipeline that can greatly reduce its texture size by com-
pressing its repeated contents, while incurring minimal changes to
the visual appearance. Our key observation is that, by modifying
the UV atlas, multiple surface patches can be mapped to the same
texture region, while being seamlessly compatible with existing
rendering pipeline without requiring any decoding algorithms or
additional information. We further observe that the texture image
can be considered as having two types of contents, i.e. salient fore-
ground regions with rich information and background areas with
typically monotonic color, which can be processed separately to

achieve a high compression rate. Accordingly, our algorithm has
three major phases: repeated salient region removal, background
compression, and new texture generation.

Our approach can automatically compress the texture of any 3D
model, with a single user-controlled parameter 𝜖 to balance the
compression ratio and the visual quality. We batch-tested the pro-
posed method on 110 models acquired through 3D scanning, where
we achieved a texture compression ratio of 81.41% and an averaged
PSNR and MS-SSIM of 40.90 and 0.98, respectively, compared to
the input models. A complex scene processed using our method
is illustrated in Figure 1. We attach as supplementary the tested
dataset and the results, including meshes, textures, statistics, and
video clips of the final rendered results of each model in the dataset.
The executable program can be found here1.

To sum up, the contributions of our work include:
• We introduce the problem formulation of content-aware,
standard renderer-compatible texture compression for gen-
eral 3D models via removing repeated texture contents.

• To the best of our knowledge, we are the first to propose
an automatic and practical technical pipeline to reduce the
texture size by designing dedicated strategies for the fore-
ground and background texture contents, respectively, while
synchronizing the changes among the texture, the UV map
and the 3D mesh.

2 RELATEDWORK
Our method compresses the texture of a 3D model by removing
repeated texture contents, which is highly related to topics in image
and texture compression, feature extraction, and image matching,
as briefly reviewed below.

2.1 Image and Texture Compression
Digital image compression is a highly active field of research. Many
traditional methods such as JPEG [Wallace 1991] utilize spectral
redundancy between neighboring samples within an image to de-
sign both the compressor and the decompressor, as summarized
in [Hussain et al. 2018]. More recently, innovative and enhanced im-
age compression formats, such as JPEG XL [Alakuijala et al. 2019]
have been proposed to mitigate the potential artifacts of JPEG com-
pression. Meanwhile, a large number of neural image compression
techniques have emerged, capitalizing on advancements in neural
networks for image perception quality. These techniques employ
CNN [Zhao et al. 2019], RNN [Toderici et al. 2017], and GAN [Rippel
and Bourdev 2017; Tschannen et al. 2018] to recover the high-level
repetitive contents. However, these methods compress through
global encoders and decoders and do not support random access,
so they are not suitable for real-time rendering on GPUs.

Based on the demand for efficient random-access texture com-
pression methods for real-time applications on GPUs, a series of
algorithms that exploit data locality for block coding have been pro-
posed, including BC1-BC7 in DirectX [Microsoft 2020], Ericsson tex-
ture compression (ETC1/ETC2) [Ström and Akenine-Möller 2005;
Ström and Pettersson 2007] in OpenGL ES, and ASTC [Nystad et al.
2012]. QuickETC2 [Nah 2020] utilizes the luma difference of the im-
age blocks for the preprocessing of compression mode selection to
1https://texture-atlas-compression.github.io
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Figure 2: Pipeline overview: The input to our method is a 3D model with a texture (a) and a UV map (b). We first detect and
remove the repetitive salient feature regions by updating the UV map with the representative region colored in blue (c). We
then compress the background texture to generate a new UV map by removing triangles with repetitive contents (d). Finally,
we create a new UV atlas by cutting and re-packing (e). We further bake a new texture via differentiable rendering (f).

reduce the unnecessary compression overhead, thus achieving ac-
celerated ETC compression. GST [Krajcevski et al. 2016] introduces
a novel supercompression method based on the state-of-the-art
entropy encoding technique known as ANS for already compressed
textures, designed for endpoint compressed formats like DXT and
PVRTC. Vaidyanathan et al. [2023] introduce a neural compression
technique specifically designed for material textures by integrating
techniques from GPU texture compression as well as neural image
compression. They compress the texture and the mipmap chain
together and use a small neural network to decompress them.Wang
et al. [2008] proposed a search-based block encoding technique,
where large image blocks are affine-transformed to match repeated
blocks, which again requires additional changes to the standard
GPU rendering pipeline. Peyré [2009] presents a generative model
for textures that uses a local sparse description of the image content.
Li and Wand [2015] introduce approximate translational building
blocks for unsupervised image decomposition and synthesis. Nvidia
introduced the nvCOMP library [NVIDIA 2022] to achieve fast loss-
less compression of data on the GPU. However, these prior works do
not consider the textures mapped onto 3D surfaces, where multiple
factors, including texture, UV mesh, and 3D mesh, will be jointly
affected during the texture compression.

Carr and Hart [2002] developed seamless meshed atlases for
solid texturing. Purnomo et al. [2004] introduced a parametric ap-
proach to building seamless atlases based on quadrilateral charts.
Box Cutter [Limper et al. 2018] introduced a method to improve
atlas packing efficiency without changing UV distortion. But they
do not take into account the semantic information carried by the
texture itself for compression. Wei et al. [2008] proposed an ap-
proach to compress procedural-like material texture, but requires
an additional control map and does not consider the relationship
between 3D mesh surface and the texture. We propose the first-ever
pipeline to reduce texture size by removing semantic-level repeti-
tions from textures while jointly modifying the 3D mesh and UV
mapping. We note that our approach is not suitable for processing
textures generated by texture synthesis techniques.

2.2 Feature Extraction and Matching
The first phase in our pipeline involves detecting texture patches
containing salient information. Salient object detection and seg-
mentation is a well-established research area in computer vision.
However, it was not until recently that fine-grained object bound-
aries could be identified and segmented using a series of novel
deep network architectures, including boundary-aware attention

feedback network [Feng et al. 2019], pixel-wise contextual atten-
tion network [Liu et al. 2018], and GAN [Mukherjee et al. 2019].
Recently, the Segment Anything Model (SAM) [Kirillov et al. 2023]
has made a breakthrough in terms of both robustness and quality. It
is trained on a large-scale segmentation dataset and can be adapted
to the texture domain, as demonstrated in our work.

Switching gears to feature matching, the Kanade-Lucas-Tomasi
(KLT) algorithm [Lucas and Kanade 1981; Shi et al. 1994] was pro-
posed to register two rectangular image blocks with similar con-
tents, by locally optimizing the relative affine transformation and
maximizing a similarity score. Leung and Malik [1996] proposed a
comprehensive algorithmic pipeline for detecting, localizing, and
grouping instances of repeated scene elements. Their algorithm
uses a graph with individual image elements as nodes and their
affine transforms as edges. However, these algorithms focus on
rectangular image blocks. Berg et al. [2005] proposed to match only
correspondence points instead of an entire image block. Cheng et al.
[2010] proposed a boundary band matching method that requires
user interaction to detect duplicate objects. Recent deep-learning-
based techniques [Aberman et al. 2018] can detect corresponding
points without exhaustive search. By incorporating SAM and KLT
algorithms into our pipeline, we derive robust performance in re-
dundant feature removal. Although KLT is limited to affine trans-
formations, we found it sufficient to match the texture patches in
our dataset. Note that other feature matching algorithms [Berg et al.
2005; Cheng et al. 2010; Kong et al. 2013] can be used within our
pipeline if non-rigid matching is desired.

3 METHOD
The input to our method is a general 3D model with provided UV
atlas and texture image. Our goal is to output a new model with
updated mesh, UV, and texture, such that the new texture size is as
small as possible, while the output model is visually similar to the
input from all viewing directions.

As illustrated in Figure 2, our approach has three major phases.
We first detect and remove the repetitive salient feature regions
by mapping the corresponding 3D surface patches to the same UV
region, resulting in concordant updates of mesh, UV, and texture
(Figure 2(c), Section 3.1). In our second phase, we compress the back-
ground texture by processing the triangles that are not in the salient
regions. Specifically, we cluster the non-salient triangles with small
color variations into groups, identify a representative triangle for
each group, and remap all 3D triangles within the same group to the
UV region of one representative triangle (Figure 2(d), Section 3.2).
At this point, the remapped texture image usually contains many
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void spaces that can be squeezed out. Our last phase creates a new
UV atlas by cutting and re-packing (Figure 2(e), Section 3.3). We
then bake a new texture image by adapting a differentiable render-
ing technique to remove seam artifacts (Figure 2(f), Section 3.3). The
pseudocode for the first two phases are attached as supplementary
material.

3.1 Repetitive Salient Feature Removal
In this work, we refer to a salient feature as a semantically mean-
ingful structural pattern that can span across multiple triangles, as
shown in Figure 2(ab). To remove such redundant features, multiple
challenges arise: 1) Unlike 2D images, textures for a 3D model are
not continuous at UV patch boundaries; 2) robustly detecting the
feature contour for general 2D images is a classical challenging
problem in computer vision; and 3) the texture content is mapped
back to the 3D surface, so changes to the texture content should
be synchronized by corresponding changes to UV atlas and 3D
meshes for visual consistency. To detect and remove the redundant
salient features while addressing the aforementioned challenges,
we introduce an automatic strategy consisting of the following four
steps.

Step 1: Texture Dilation. To handle the texture content discontinu-
ity across UV chart boundaries, we dilate the texture by adopting the

𝑣𝑖

𝑣 𝑗

𝑛𝑖

𝑛 𝑗

𝑇 −1
𝑒→𝑒′

𝑇𝑒→𝑒′

𝑒
𝑒′

Figure 3: The void space of the
texture adjacent to the edge 𝑒

(green) is filled up by copying
from the texture content of an-
other UV patch neighboring the
corresponding edge 𝑒′.

traveler’smapmethod [González
and Patow 2009]. As illus-
trated in Figure 3, we first
find all the UV boundary
edges corresponding to cuts,
i.e. the corresponding 3D
mesh edges are not on the
boundary. We then dilate the
UV patches by extruding ev-
ery UV vertex 𝑣 on such
boundaries along its normal
direction 𝑛 by a distance
𝑑𝐷 . For each boundary edge
𝑒 (𝑣𝑖 , 𝑣 𝑗 ), we can construct a
quadrilateral region formed
by four vertices, denoted as
𝑀 (𝑣𝑖 , 𝑣 𝑗 , 𝑣 𝑗 + 𝑛 𝑗𝑑𝐷 , 𝑣𝑖 + 𝑛𝑖𝑑𝐷 ). We further dilate the texture im-
age in the quadrilateral region by copying the texture data from
the other UV patch. Assuming the corresponding edge on the
other patch is 𝑒′, 𝑒 and 𝑒′ can be aligned via an affine transfor-
mation 𝑇𝑒→𝑒′ . We can thus recover a continuous local copy of
cross-chart contents by copying the texture data from 𝑇𝑒→𝑒′𝑥 back
to 𝑥 ∈ 𝑀 (𝑣𝑖 , 𝑣 𝑗 , 𝑣 𝑗 + 𝑛 𝑗𝑑𝐷 , 𝑣𝑖 + 𝑛𝑖𝑑𝐷 ). An example of dilation is
shown in Figure 9.

Step 2: Feature Extraction. We adopt the recently proposed SAM
model [Kirillov et al. 2023] that has an excellent zero-shot trans-
ferability to novel domains, which outputs a set of texture regions
denoted as M 𝑓 , representing the set of foreground features of the
dilated texture 𝑀 . Each region 𝑀𝑖 ∈ M 𝑓 is equipped with a seg-
mentation mask marking all the pixels belonging to the salient
feature. Note that, for any𝑀𝑖 ∈ M 𝑓 , it could overlap with another
region𝑀𝑗 ∈ M 𝑓 or even fully contains it, which means a pixel can

belong to multiple regions. As shown in Figure 4, M 𝑓 may also
contain non-salient features and incorrect segmentation. Based on
the assumption that a salient region should have an appropriate
size and a large color variation, we consider a region 𝑀𝑖 ∈ M 𝑓

as invalid and discard it from M 𝑓 if it does not satisfy the two
conditions below:

• |𝑀𝑖 |/|𝑀 | ∈ [𝜖, 𝜖], where | • | is the number of pixels in • and
𝑀 without subscripts denotes the entire texture image;

• 𝜎 (𝑀𝑖 ) ≥ 𝜖𝜎 , where 𝜎 (𝑀𝑖 ) is the standard hue variation of
pixel colors within𝑀𝑖 .

SAM

(a)

(b)

(c)
mask

feature

Figure 4: The dilated texture is first preprocessed by applying
the SAM model. Further filtering is then applied to each
candidate region𝑀𝑖 . A region is invalid if it has small color
variations (a) or inappropriate size (b); otherwise, it is valid
(c). For each valid region, we show the salient feature on the
top row and the corresponding mask at the bottom.

Step 3: Repetitive Feature Detection. GivenM 𝑓 , we move on to
match all regions with repetitive contents. We iterate through each
pair 𝑀𝑖 , 𝑀𝑗 ∈ M 𝑓 and attempt to register 𝑀𝑖 to 𝑀𝑗 via the KLT
approach introduced in [Lucas and Kanade 1981; Shi et al. 1994;
Wang et al. 2008]. Instead of matching on the full rectangular region,
as done in the original algorithm, our computational domain is the
salient irregular region𝑀𝑖 . For completeness, we briefly describe
the approach below.

Given𝑀𝑖 and𝑀𝑗 , we compute an affine transformation𝑇𝑖 𝑗 , such
that for any texel 𝑥 ∈ 𝑀𝑖 , the color difference between 𝑀 [𝑥] and
𝑀 [𝑇𝑖 𝑗𝑥] is small. To this end, the following image-matching objec-
tive 𝑂 (𝑀𝑖 ,𝑇𝑖 𝑗 ) is minimized:

argmin𝑇𝑖 𝑗𝑂 (𝑀𝑖 ,𝑇𝑖 𝑗 ) ≜
∑
𝑥∈𝑀𝑖

∥𝑀 [𝑥] −𝑀 [𝑇𝑖 𝑗𝑥] ∥2

𝜎 (𝑀𝑖 )𝛼 + 𝜆
, (1)

where coefficients 𝛼 and 𝜆 are perceptual factors to better pre-
serve low-contrast features in relatively smooth regions [Wang
et al. 2008]. Note that𝑀𝑗 does not participate in the optimization
process, but it is used to offer an initialization of 𝑇𝑖 𝑗 through the
registration of the bounding boxes of 𝑀𝑖 and 𝑀𝑗 . Equation 1 is
solved using Newton’s method (refer to [Wang et al. 2008] for
details). We consider 𝑀𝑖 successfully registered to 𝑀𝑗 whenever
𝑂 (𝑀𝑖 ,𝑇𝑖 𝑗 ) ≤ 𝜖𝑜 |𝑀𝑖 | on convergence.

Step 4: Local Re-meshing. With all the salient regions matched,
the region setM 𝑓 is written as the disjoint union:M 𝑓 =

⋃
𝑖 M

𝑓

𝑖
,

whereM 𝑓

𝑖
is the region subset with the same repetitive contents

that are successfully matched. We select the representative region
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(𝑎) (𝑏)

(𝑑 ) (𝑒 )

(𝑓 )

(𝑐)

(𝑔)

𝑀∗
𝑖

𝑀
𝑗
𝑖

Figure 5: Given the representative region𝑀∗
𝑖
(a), we first di-

late𝑀∗
𝑖
to get an enlarged mask (b). A local UVmesh (orange)

T𝐸 (𝑀∗
𝑖
) is selected, covering 𝑀∗

𝑖
(c), and a set of boundary

(green) and interior (yellow) samples are then computed on
𝑀∗
𝑖
(d). This is followed by creating a newmesh T𝐶 (𝑀∗

𝑖
) using

CDT with both boundary and interior samples as hard con-
straints (e) and another CDTwith both the boundary samples
and the boundary loop of T𝐸 (𝑀∗

𝑖
) as hard constraints (f). To

unify UV coordinates for other feature regions, e.g.𝑀 𝑗
𝑖
, we

will replace the local UV patch of𝑀 𝑗
𝑖
with 𝑇𝑖 𝑗T𝐶 (𝑀∗

𝑖
) (green),

and re-mesh the gap region T𝐸 (𝑀 𝑗
𝑖
) −𝑇𝑖 𝑗T𝐶 (𝑀∗

𝑖
) (orange) (g).

𝑀∗
𝑖
∈ M 𝑓

𝑖
that has the smallest registration error with other re-

gions. and refer all other UV patches in M 𝑓

𝑖
to 𝑀∗

𝑖
for texture

compression. To this end, a widely used technique is re-indexing,
where an image codebook is maintained and all relevant patches
are replaced with an index into the codebook [Hussain et al. 2018;
Wang et al. 2008]. However, this strategy requires an additional
codebook indexing procedure, which can considerably complicate
the existing rendering pipelines. Instead, we propose a re-meshing
algorithm that unifies the UVmapping of all the duplication patches
by slightly modifying the local connectivity around the patches.
Our approach generates 3D models with data representation fully
compatible with the standard rendering pipeline.

Taking 𝑀
𝑗
𝑖

∈ M 𝑓

𝑖
for example, which is to be referred to by

𝑀∗
𝑖
∈ M 𝑓

𝑖
(Figure 5(a)), we first dilate 𝑀∗

𝑖
by 𝑑𝑀 pixels to ensure

that the salient content is fully contained in the mask (Figure 5(b)),
which also ensures that the transformed mask𝑇𝑖 𝑗𝑀∗

𝑖
fully contains

𝑀
𝑗
𝑖
. Due to the possible inaccuracy near the feature boundaries of

the SAM segmentation, this step is used to avoid the cases where
there is missing coverage of salient features during re-meshing.
Next, as highlighted in the orange region in Figure 5(c), we identify
a local UV mesh enclosing 𝑀∗

𝑖
, denoted as T𝐸 (𝑀∗

𝑖
). We compute

an averaged edge length of T𝐸 (𝑀∗
𝑖
), denoted as |𝑒 |, and sample the

boundary of𝑀∗
𝑖
at a regular interval of 0.5|𝑒 |. We further sample

the interior of 𝑀∗
𝑖
using Poisson disk sampling with radius |𝑒 |

(Figure 5(d)). Given the set of boundary and interior samples, we
adopt the Constrained Delaunay Triangulation (CDT) [Žalik and
Kolingerová 2003] to create a mesh T𝐶 (𝑀∗

𝑖
) for 𝑀∗

𝑖
(Figure 5(e)).

We further perform a CDT to fill the following gap (Figure 5(f)):

T𝐸 (𝑀∗
𝑖 ) − T𝐶 (𝑀∗

𝑖 ) . (2)

In order to refer𝑀 𝑗
𝑖
to𝑀∗

𝑖
in the UV space, we transform T𝐶 (𝑀∗

𝑖
)

by 𝑇𝑖 𝑗 computed from our previous step, denoted as 𝑇𝑖 𝑗T𝐶 (𝑀∗
𝑖
).

Next, we identify a local UVmesh enclosing the transformed salient

region, denoted as T𝐸 (𝑀 𝑗
𝑖
). We remove all the triangles in T𝐸 (𝑀 𝑗

𝑖
),

insert the transformed local patch𝑇𝑖 𝑗T𝐶 (𝑀∗
𝑖
), and run another CDT

to fill the following gap:

T𝐸 (𝑀 𝑗
𝑖
) −𝑇𝑖 𝑗T𝐶 (𝑀∗

𝑖 ), (3)

which is illustrated as the triangles in orange in Figure 5(g). Note
that, all the newly created meshes in the above steps will be re-
flected on the 3D mesh as well, where the 3D vertex coordinates of
newly introduced vertices are copied from the input mesh through
barycentric interpolation in UV space.

3.2 Background Compression
After the repeated structural contents are removed, we proceed to
our second stage, compressing the background by removing trian-
gles containing repeated background colors. We denote the back-
ground of the texture as M𝑏 = 𝑀 − ∪𝑖 (∪𝑗𝑇𝑖 𝑗T𝐶 (𝑀∗

𝑖
) ∪ T𝐶 (𝑀∗

𝑖
)),

representing the texture regions excluding the compressed salient
features. Unlike foreground features that can span multiple trian-
gles, the background is often composed of constant-color regions.
Therefore, we consider background at the triangle element level.
Specifically, we perform the following two steps: clustering all tri-
angles in groups with (nearly) constant color; compressing all the
triangles in a group by referring their UV coordinates to one trian-
gle.

M 𝑓

M𝑏

M𝑏
1

M𝑏
2

M𝑏
3

(a) (b)
Figure 6: We separate the texture domain (a) into foreground
salient featuresM 𝑓 and background trianglesM𝑏 . We fur-
ther cluster background triangles into constant-color groups
M𝑏

1,2,3. We pick one triangle 𝑀∗
𝑗
to representM𝑏

𝑗
leading to

the shortest cut length (b). Oftentimes, our greedy algorithm
will find the triangle that is connected to some foreground
salient regions.

Step 1: Clustering. Each triangle in the background occupies a
texture region consisting of a set of texels, and we compute the
mean and variance of their colors in HSV color space for closer
alignment with human perception of color attributes. Triangles
with excessively large color variance should be left uncompressed,
while other triangles are considered to have a nearly constant color
if they satisfy the following condition:

𝜎 (𝐻 ) < 100𝜖 ∧ 𝜎 (𝑆) < 0.5𝜖 ∧ 𝜎 (𝑉 ) < 3𝜖, (4)

where 𝜎 (•) is the color variance of the color channel •,𝐻 ∈ [0, 360),
𝑆 ∈ [0, 1], 𝑉 ∈ [0, 1], and 𝜖 is the only user-controllable parame-
ter. All the triangles with nearly constant color will typically form
multiple disconnected regions. If a region is tiny, then compressing
it will not increase the compression ratio much but create cuts,
which might not be beneficial for rendering. Therefore, we choose
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to filter out those tiny regions as well if their covered texture area is
smaller than a parameter 𝑠 . For all the rest of the triangles with near
constant color, we perform a mean-shift clustering [Comaniciu and
Meer 2002] in the HSV feature space with the bandwidth thresh-
old set to 0.5𝜖 . Since 𝜖 controls both the triangles participating in
clustering and the clustering bandwidth, essentially, it balances the
number of groups that affects the final texture compression ratio
against the visual similarity. After clustering, the constant-color
subset of M𝑏 endows a disjoint union:

⋃
𝑖 M𝑏

𝑖
⊆ M𝑏 .

Step 2: Compression. For each cluster of triangles M𝑏
𝑖
, we con-

sider them as all having the same color. Similar to compressing
the foreground, we refer all the triangles to one representative
𝑀∗
𝑖
∈ M𝑏

𝑖
. However, unlike foreground regions that span many

triangles, the background triangles can be randomly disseminated
across the texture space, and treating each triangle as a separate UV
patch can create many cuts, introducing additional seam artifacts
and inadvertently affecting the memory footprint. To reduce the
unnecessary cuts, we observe that if triangles in the same cluster
M𝑏
𝑖
are already connected to a non-background patch, then they

do not need to be cut apart. Further, if a background triangle is
connected to a foreground region, then such connecting edges do
not need to be cut either. Therefore, we adopt a greedy algorithm
to search for the representative triangle as the one in M𝑏

𝑖
with

the largest area while satisfying the above two rules, as illustrated
in Figure 6.

3.3 New Texture Generation
After removing the repetitive texture content, the UV mesh may
contain large void spaces. During this final stage, we eliminate
these voids by generating a new UV atlas, and then bake a new
texture image to replicate the visual appearance of the input as
closely as possible.

Step 1: UV Packing. We adopt the standard UV atlas generation
pipeline in XAtlas [Young 2023], which involves cutting, param-
eterization, and packing. Since our goal is to replicate the visual
appearance as closely as possible, we skip the parameterization sub-
step of XAtlas by default to avoid distortions to the input UV map,
and compute only rigid transformations during the UV packing.

Step 2: Texture Baking. After regenerating UV atlas, we can fill in
the texture image by interpolating the input texture. However, since
we have cut the mesh along multiple boundaries for compression, a
naive interpolation scheme can lead to discontinuous colors along
new UV patch boundaries (Figure 11(a)). We propose to eliminate
this problem by a global texture baking using the differentiable-
rendering-based optimization framework [Hasselgren et al. 2021].
Starting from the interpolated texture as an initialization, we per-
form 5,000 iterations of stochastic gradient descent to optimize the
compressed texture image. During each iteration, we randomly
generate a camera orientation, render both the uncompressed and
compressed models, and then compute the 𝑙1-pixel-wise distance
as our objective function. We further found that the camera poses
sampled on a global spherical surface as in [Hasselgren et al. 2021]
prevent texture optimization in geometrically self-occluded regions
(Figure 11(b)). Instead, we sample the camera position at a dis-
tance 𝑑𝑁 along the normal direction of a randomly picked triangle

to capture as many texture details as possible (Figure 11(c)). This
strategy is simple yet effective, considerably improving the visual
appearance metrics: PSNR and MS-SSIM.

3.4 Implementation Details
We implement the proposed pipeline in Python with the smallest
SAM model provided by the authors [Kirillov et al. 2023] (vit_b) for
salient segmentation. We did not use a larger SAMmodel due to the
limitation of our computational resources. We employ CGAL [Brön-
nimann et al. 2017] for CDT in the local re-meshing step, XAt-
las [Young 2023] for UV cutting and packing, and the codebase of
NVdiffmodeling [Hasselgren et al. 2021] for texture baking.

Hyper Parameters. We use the following default parameter set-
tings: 𝑑𝐷 = 0.02Δ, where Δ is the width of the input texture and
𝑑𝐷 controls the dilation distance for the traveler’s map; 𝜖 = 0.001
and 𝜖 = 0.25 filter out extremely small and large salient patches for
repetitive feature detection; 𝜖𝜎 = 2.0 determines if a patch is salient
or not; 𝛼 = 1.5, 𝜆 = 1.0, and 𝜖𝑜 = 0.01 are chosen as suggested
in [Wang et al. 2008] for robust salient feature registration; 𝑑𝑀 = 2
for mask dilation distance that is used during local re-meshing.

𝑠 is used to filter out those small connected regions of a cluster
during background compression to avoid unnecessary cuts, where
a large 𝑠 may affect the final texture compression rate as illustrated
in Figure 10 left. 𝑑𝑁 is the distance between cameras and the mesh
surface during texture baking, balancing the captured texture details
and the texture continuity near seams (Figure 10 right). We chose
𝑠 = 0.005|𝑀 | and 𝑑𝑁 = 2.0 as default values.

As described in Section 1 and Section 3.2, 𝜖 is the only parameter
we expose to users since it plays a critical role in determining the
number of clusters for the background compression, which is also
intuitive for users to tune. We highlight in Figure 12 the effect of
choosing different values for 𝜖 . A higher value of 𝜖 leads to smaller
texture images but larger visual discrepancy. By default, we set
𝜖 = 0.10 for all the experiments.

4 EXPERIMENTS
All of the experiments are run on a desktop machine equipped
with an RTX2060 GPU and an i7-9700 CPU, where both SAM and
NVdiffmodeling are performed on the GPU and all the other steps
of our approach are run with a single CPU thread. We provide a
computational timing statistics of the major steps of our approach
on the entire dataset in the supplemental document.

Dataset. We collect a dataset containing 110 3D reconstructed
models, where 100 are manually downloaded from the Gazebo
platform [Robotics 2023] and 10 from OmniObject3D [Wu et al.
2023]. We then downsample the texture of each model to 10242

due to the GPU resource limitation to run SAM. Table 1 on page
7 shows the statistics of the examples in the paper and Figure 14
provides the corresponding visual gallery.

Evaluation Metrics. We employ four metrics to evaluate the ef-
ficacy of our method from various aspects. The ratio between the
number of texels of the input texture and that of the output texture,
denoted as CR. We evaluate the appearance quality of 3D models
using the generated texture via PSNR and MS-SSIM [Wang et al.
2003], which is computed by sampling a set of 50 camera views
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Table 1: Statistics for models shown in Figures 2, 9, 7, 11 and
12, including numbers of vertices/faces for the input mesh
#𝑉 /#𝐹 and the output #𝑉 ′/#𝐹 ′, the texture compression rate
CR, PSNR, MS-SSIM, Hausdorff Distance (HD denotes the
distance with the unit of 10−3) between the input and the
output meshes, and the computational time 𝑇 .

Models #𝑉 /#𝐹 #𝑉 ′/#𝐹 ′ CR PSNR MS-SSIM HD 𝑇 (𝑠 )

Fig. 2 7.1𝐾/14.2𝐾 8.8𝐾/16.5𝐾 78.14% 39.82 0.97 4.47 529
Fig. 7 (a) 15.6𝐾/31.5𝐾 15.6𝐾/31.5𝐾 86.94% 41.61 0.96 0.00 577
Fig. 7 (b) 3.8𝐾/7.7𝐾 3.8𝐾/7.7𝐾 79.74% 41.81 0.98 0.00 418
Fig. 9 5.4𝐾/10.9𝐾 5.6𝐾/11.2𝐾 85.94% 38.24 0.97 0.94 503
Fig. 11 19.0𝐾/38.0𝐾 19.0𝐾/38.0𝐾 85.94% 39.07 0.96 0.00 692
Fig. 12 7.8𝐾/15.6𝐾 7.8𝐾/15.6𝐾 93.80% 38.44 0.96 0.00 668

from a sphere surface of radius 2.5 centered around the model that
is resized into the box [−1, 1]3. We used the physically based render
with a single light source in NVdiffmodeling [Hasselgren et al. 2021]
to create the rendering for each camera view. Since our salient fea-
ture compression can potentially change the 3D mesh, we further
compute the Hausdorff distance using Metro [Cignoni et al. 1998].
We aim to generate results with small texture size and Hausdorff
distance while maintaining high PSNR and MS-SSIM values.

Results. Over the tested dataset, our method can significantly
reduce the texture size, achieving an ave./min./max. compression
ratios of 81.41%/24.33%/99.06%. The visual discrepancy against
the uncompressed ground-truth mesh is rather small, with the
ave./min./max. PSNR and MS-SSIM at 40.90/35.35/54.16 and 0.98/
0.91/0.99, respectively. Our processed models have small geometric
differences from the inputs, with the ave./min./max. Hausdorff
distance of 1.6 × 10−4/0.00/5.80 × 10−3. Figure 15 shows a set of
results of the processed dataset. We provide all the results and the
full statistics in the supplementary materials.

(b)

(a)

Downsampling Ours Input

Figure 7: Our method compares favorably with direct texture
downsampling. Under the same texture size, direct down-
sampling can lead to significant content blurring, while our
method maintains all the visual details.

Comparison with Downsampling. We compare our method with
direct texture downsampling, a straightforward alternative to tex-
ture compression. We match the compression ratio of downsam-
pling to each of our compressed texture, and compare the PSNR
and MS-SSIM for the two methods. The ave./min./max. PSNR and
SSIM for the downsampled meshes are 39.27/34.28/46.78 and 0.96/
0.90/0.99, respectively, which are all lower than ours. It is worth
noting that the values of the PSNR and MS-SSIM can be greatly

affected by the sphere radius, from which the cameras are sam-
pled. When a larger sampling radius is employed, both PSNR and
MS-SSIM will be higher, since the number of texels taken by the
3D model over the entire screen is small. Figure 13 compares our
approach with downsampling in terms of both metrics by varying
the radius size, where the average PSNR and MS-SSIM values for
the entire tested dataset are shown. As illustrated in the plot, our
method gains more advantages as the camera gets closer to the
model. Visually, as shown in Figure 7, the downsampled result ex-
hibits a significant blurry appearance, while our method preserves
the visual details well.

Compatibility with BC7. To demonstrate the superiority of our
approach when combined with typical compression formats used
in typical GPU rendering pipelines, such as BC7, we performed
the following experiments using the Unity engine by 1) applying
BC7 compression and enabling mip-map directly on the original
input texture, denoted as Ref, 2) rounding the size of our generated
texture to power of 2, applying BC7 and enabling mip-map on
the rounded texture, denoted as Ours1, 3) applying RGB 24 bit
encoding directly on our generated texture, denoted as Ours2 and 4)
repacking the input UV maps using XAtlas, rebaking a new texture,
and using BC7 to compress it, denoted as Repack. As shown in
the Table 2, our approach is fully compatible with current texture
compression methods for GPU rendering, by obviously reducing
the texture storage overhead with the cost of limited rendering
quality degradation.

Table 2: Comparison statistics of our method with alterna-
tive pipelines when using typical compression formats, as
compared to Ref.

Method texture CR memory CR PSNR MS-SSIM

Ours1 90.12% 89.49% 45.08 0.9838
Ours2 91.49% 79.79% 44.46 0.9841
Repack 39.42% 53.78% 46.03 0.9914

Timing. Over the entire dataset, the ave./min./max. time required
to compress a model is 551.4𝑠/382.2𝑠/746.3𝑠 . The average time con-
sumption of each step of our method is summarized Figure 8. Cur-
rently, the two steps, i.e., differentiable rendering of texture baking
and the standard mean shift [Cheng 1995] during the background
compression, dominant 92.5% of the total computation. As a future
work, we plan to design a PSNR-based stopping criteria for differ-
entiable rendering and employ the fast mean shift [Jang and Jiang
2021] to re-engineer our implementation for faster speed.

5 CONCLUSIONS
We present the first automatic algorithm to compress texture atlas
for any 3Dmodels based on the removal of repeated texture content.
Our method outputs the bundle of texture, UV map, and 3D mesh
that is fully compatible with modern rendering pipelines, with
controllable visual similarity against the input groundtruth. On
a dataset of 3D scanned objects, we highlight that our method
achieves a high texture compression ratio, while introducing a
low visual discrepancy. We anticipate our approach will pave the
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54.372%

38.128%

7.252%

0.093%
0.060%
0.052%
0.042%

Texture Baking
Background Compression
Feature Extraction
Local Re-meshing
UV Packing
Repetitive Feature Detection
Texture Dilation

Figure 8: Averaged runtime statistics for the major steps of
our pipeline over the entire dataset.

way for the practical applications of algorithmically generated 3D
content.

Limitations. We do not address the issue when the distortion
of UV map is large. This is because we found that the mapping
distortion is typically small for 3D scanned models. However, for
models with potentially large distortions, a pre-processing step
could be used to unwrap UV in a low-distortion manner and then
re-bake a new texture for the input. In addition, the employed
traveler’s map only partially resolves the discontinuity issue, since
we cannot use an arbitrarily large chart dilation distance to prevent
texture overlapping. To work around this issue, users can roughly
mark the 3D surface region containing salient content, and then
the marked region can be locally re-parameterized through existing
approaches such as [Maggiordomo et al. 2023]. The parameterized
region is then forwarded to SAM for segmentation. Lastly, our
method removes triangles with repeated background colors without
re-meshing, which may cause discontinuity in texture regions with
gradual color changing. This could be potentially addressed through
an optimization involving image gradients and we plan to address
this issue as a future work.
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(b)(a)

Figure 9: The dog bone patch on the bowl is cut apart (a) and
our texture dilation technique extends the patch boundary
to recover it (b).

UV charts / CR PSNR / MS-SSIMUV charts
texel CR

PSNR
MS-SSIM

0.0 0.001 0.005 0.025 0.1 0.5 1.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
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300 / 0.9
250 / 0.8
200 / 0.7
150 / 0.6
100 / 0.5
50 / 0.4

40.6 / 0.969
40.5 / 0.968
40.4 / 0.967
40.3 / 0.966
40.2 / 0.965
40.1 / 0.964
40.0 / 0.963

𝑠 𝑑𝑁

Figure 10: As 𝑠 increases, the number of new UV charts after
repacking decreases, so does the compression rate of the
texture (CR). A large 𝑑𝑁 leads to missing texture details for
a particular mesh region while a small value may result in
appearance discontinuity near texture seams.

(a) (b) (c)

28.47/0.84 34.07/0.91 39.07/0.96

Figure 11: We compared the interpolation-based scheme (a)
and the differentiable-rendering-based scheme (b). The tex-
ture quality is further improved by our normal-based camera
pose sampler (c). The annotated numbers above each exam-
ple are in the format of PSNR/MS-SSIM.

1024×1024 384×384 250×260 168×168 88×88

Input 0.05/39.29/0.97 0.10/38.44/0.96 0.20/36.41/0.95 0.40/34.75/0.93

Figure 12: By choosing larger 𝜖 values, our method generates
a smaller texture image but higher visual discrepancy (lower
PSNR and MS-SSIM). The annotated numbers below each
example are in the format of 𝜖/PSNR/MS-SSIM.
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Downsampling
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1.00
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0.94
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Figure 13: As the radius 𝑟 of the sphere where the cameras are
sampled from gradually decreases, which means a viewer is
getting closer to the 3Dmodel, our method has more obvious
advantages than the downsampling method.

Figure 14: Visual gallery of all the models in the dataset.
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1024 × 1024 283 × 283
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𝐶𝑅 = 79%

38.47/0.96
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Figure 15: For each model, we provide information on the number of vertices and faces of the mesh, as well as the resolution of
the texture, for both the input and the result. Additionally, we report the compression rate of the texture 𝐶𝑅 and the visual
appearance preservation quality in terms of PSNR/MS-SSIM.
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