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Fig. 1. Given rawMoCap data, our method constructs a heterogeneous graph neural network (left) to solve large body motions (middle) and fine multi-fingered
hand motions (right). Our method is robust to occlusions (black balls) and outliers (green balls).

We present a novel locality-based learning method for cleaning and solving
optical motion capture data. Given noisy marker data, we propose a new
heterogeneous graph neural network which treats markers and joints as
different types of nodes, and uses graph convolution operations to extract
the local features of markers and joints and transform them to clean motions.
To deal with anomaly markers (e.g. occluded or with big tracking errors),
the key insight is that a marker’s motion shows strong correlations with the
motions of its immediate neighboringmarkers but less so with other markers,
a.k.a. locality, which enables us to efficiently fill missing markers (e.g. due
to occlusion). Additionally, we also identify marker outliers due to tracking
errors by investigating their acceleration profiles. Finally, we propose a
training regime based on representation learning and data augmentation,
by training the model on data with masking. The masking schemes aim to
mimic the occluded and noisymarkers often observed in the real data. Finally,
we show that our method achieves high accuracy on multiple metrics across
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various datasets. Extensive comparison shows our method outperforms
state-of-the-art methods in terms of prediction accuracy of occluded marker
position error by approximately 20%, which leads to a further error reduction
on the reconstructed joint rotations and positions by 30%. The code and data
for this paper are available at github.com/localmocap/LocalMoCap.
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1 INTRODUCTION
Motion capture (MoCap) is a popular industry solution for giving
virtual characters realistic motions. It captures the motions of real-
world actors using a variety of sensors. Because of its precision and
flexibility, optical motion capture is still the industry standard for
film and video game production to capture body and hand motions
with highly coordinated movement. Even with high-fidelity and
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expensive motion capture equipment, raw data is inevitably contam-
inated by occlusions, position errors, and mislabelling. Despite the
development of tools for cleaning and solving MoCap data, greater
accuracy still requires manual fixing and adjustment. When it comes
to complex motions like hand motions, even experienced animators
find this process time-consuming.
Numerous efforts in the past have been made to automatically

clean MoCap data and solve for motions. Early methods [Aristidou
and Lasenby 2013; Burke and Lasenby 2016; Feng et al. 2014; Herda
et al. 2000; Kirk et al. 2004; Li et al. 2009, 2010; Liu et al. 2014; Zor-
dan and Van Der Horst 2003] heavily rely on rules abstracted from
empirical observations and hand-crafted features. These methods
can produce satisfactory results with specific patterns and noises
via careful hand-tuning, but they constantly suffer from poor gener-
alization onto real-world data, which contains complex noises, e.g.
simultaneous occlusions of multiple markers, and varying duration
of occlusions. Recently, data-driven methods [Chen et al. 2021; Ghor-
bani and Black 2021; Holden 2018; Pavllo et al. 2018; Perepichka et al.
2019; Tits et al. 2018; Wang et al. 2016; Xiao et al. 2015] have been
employed to address the aforementioned limitations. For instance,
MoCap-Solver [Chen et al. 2021] solves motions and reconstructs
clean markers by separately encoding motion, marker configura-
tion, and skeleton using different neural networks, and achieves the
state-of-the-art results. However, dealing with noisy marker data
with outliers and large simultaneous occlusions remains difficult.
This is especially true for hand markers, which often have subtle
motions involving frequent marker occlusions.
Overall, we observe that the state-of-the-art data-driven meth-

ods [Chen et al. 2021; Holden 2018] have three main limitations.
First, they solve for motion and reconstruct clean markers using
skinning functions, which ignore the complexity of marker motions
(e.g., sliding across the body surface) and may introduce additional
errors due to motion solving errors. Second, they often ignore the
fine-grained correlations between markers, e.g. using one single
fully connected network structure to encoder all markers in the
same way, resulting in inaccurate solving results for certain large
body motions and fine multi-fingered hand movements (see Figs. 9
and 10). Third, all methods have to assume/model data noise, where
a common strategy is to use random sampling per frame. However,
modeling noise data with per-frame random sampling does not
account for long gaps caused by complex and occlusion-intensive
movements and varying occlusion probability of different markers,
potentially lowering solve accuracy on real data.

Three major challenges must be overcome in order to accurately
solve for motions. (1) The ability to deal with complex occlusions
that include simultaneous occlusions and occlusions of varying
duration. Although neural-based methods can be used to learn from
real-world data, using networks alone makes it difficult to learn
complex patterns of marker motions, limiting its use for efficiently
filling occluded marker positions. (2) Modeling the relationships
between markers in a neural network. A critical task in quantifying
such relationships is to establish links between markers with strong
correlations while avoiding links to other markers. Networks with
fully connected structures do not explicitly model such relationships
as they encode all markers in the same way. (3) Creating realistic
large-scale synthetic MoCap data with long occlusion gaps. Due to

the high cost of MoCap systems, obtaining real noise data is difficult,
necessitating data augmentation to generate synthetic noises. Actual
MoCap sequences frequently have occlusion gaps ranging from 40 to
100 frames. The per-frame random sample method fails to generate
occlusion gaps longer than eight frames (see Fig. 4), resulting in a
mismatch between the synthetic and real-data distributions.

We present a data-driven method for cleaning optical MoCap data
and solving for body and handmotions. A key aspect of our approach
is leveraging marker locality by identifying neighbor markers with
stable distances between them across the entire motion. Using this
locality as a prior, we can obtain an initial estimate of occluded
markers’ positions using the distance matrix between neighbor
markers via Euclidean distance matrix optimization, which reduces
the difficulty of network learning intricate marker motions and sig-
nificantly improves accuracy. To quantify the relationships between
markers, we connect markers and related joints and construct edges
between neighbor markers and parent joints to form a heteroge-
neous graph. We perform convolution operations to extract local
features of markers and joints, which enables the network to ac-
curately solve motions. In addition, we augment the dataset with
data distributions similar to real data by sampling occlusion gaps
of varying lengths for different markers based on actual occlusion
probabilities and occlusion gap distributions. In summary, our paper
makes the following three contributions:

• A robust MoCap data occlusion filling method that integrates
locality and learned priors to handle simultaneous occlusions
and occlusions of varying durations.

• A heterogeneous graph neural network that solves motions
by explicitly modeling the relationships between neighbor
markers, allowing it to solve accurate large body motions as
well as fine multi-fingered hand motions.

• A novel method for augmenting motion capture datasets that
takes into account the statistical features of marker occlusion
and generates data with a distribution similar to the real data.

2 RELATED WORK
Human pose estimation is an important and ongoing research topic
in computer vision and computer graphics. While marker-free,
image-based solutions have yielded promising results, marker-based
motion capture remains popular due to its accuracy and flexibil-
ity [Taheri et al. 2020]. MoCap systems’ high-fidelity body motion
data [CMU 2000; Mahmood et al. 2019; Sigal et al. 2010; Trumble et al.
2017] is useful in a variety of applications [Zheng et al. 2020], includ-
ing action recognition [Hua et al. 2023; Yan et al. 2018], action pre-
diction [Cao et al. 2020; Cui et al. 2021], motion synthesis [Chen et al.
2023; Tevet et al. 2022] and image-based pose estimation [Munea
et al. 2020; Varol et al. 2017]. However, raw MoCap data is inevitably
contaminated with errors.
To solve motions from imperfect MoCap data, various methods

for cleaning noises and solving motions have been proposed, which
can be broadly classified into hand-crafted prior-based methods and
data-driven models. The former are based on hard-coded empirical
rules such as spatiotemporal continuity and bone-length consis-
tency, which are implemented using skeleton templates [Herda et al.
2000; Kirk et al. 2004; Zordan and Van Der Horst 2003], Kalman
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filters [Aristidou and Lasenby 2013; Burke and Lasenby 2016; Li
et al. 2009, 2010] and low-rank matrix completion [Feng et al. 2014;
Liu et al. 2014]. However, the priors used in these methods make
assumptions about the data and noise distributions, limiting their
ability to handle real-world data with more complex noises.
Data-driven methods learn from a large database to acquire in-

trinsic knowledge of MoCap data, such as KD-tree [Baumann et al.
2011; Tautges et al. 2011], local PCA [Chai and Hodgins 2005; Liu
and McMillan 2006], self-similarity [Aristidou et al. 2018], sparse
encoding [Wang et al. 2016; Xiao et al. 2015], and model averag-
ing [Tits et al. 2018]. With the advancement of deep-learning, a
number of neural-based methods have emerged [Chen et al. 2021;
Ghorbani and Black 2021; Holden 2018; Pavllo et al. 2018; Perepichka
et al. 2019]. SOMA [Ghorbani and Black 2021] uses a transformer-
based network to automatically label the marker point cloud. While
SOMA assigns unlabeled markers to specific body parts (such as
the inner left wrist and right elbow), our method solves motions
with labeled markers. The majority of works focus on repairing
occluded markers and solving motions. [Pavllo et al. 2018] uses
auto-encoder-based models to recover occluded hand markers and
solve hand motions. [Perepichka et al. 2019] presents a missing
marker completion method by comparing motions generated by
commercial software with those generated by a neural solver, the
accuracy of these methods is determined by the neural solver. Deep-
Merf [Madadi et al. 2021] fixes occluded markers with a denoising
autoencoder and employs a cascading network to regress SMPL
body parameters [Pavlakos et al. 2019] from joint positions esti-
mated with an attention model. However, this method is based on
the SMPL model and is difficult to apply to characters with different
skeleton topologies. Holden [Holden 2018] solves skeletal motions
from MoCap data for characters with arbitrary skeletons using a
simple forward neural network with residual blocks. Their method
solves the motion and skeleton frame by frame and necessitates
smoothing as a post-processing step for temporal motion continuity.
MoCap-Solver [Chen et al. 2021] solves motions in a temporal win-
dow by encoding body shapes, marker distributions, and motions
separately to ensure temporal continuity. Their method reconstructs
clean markers based on skinning functions with solved motions,
which ignores the complexity of marker motions (e.g. sliding over
the body surface), and may induce additional errors due to motion
solving errors. In contrast, our method fills the occlusion by incor-
porating hand-crafted priors and learned intrinsic priors, which
accurately reconstruct occluded markers. Furthermore, previous
methods [Chen et al. 2021; Holden 2018] do not explicitly quantify
the local feature of markers, which negatively affects solving result
of certain large body motions and fine multi-fingered hand motions.
Unlike them, our method extracts local features by constructing a
heterogeneous graph that distinguishes markers and joints as dif-
ferent types of nodes and performing graph convolution operations
on it, which significantly improves solving accuracy.

3 METHOD
Given a sequence of raw body and hand marker data 𝑀𝑟𝑎𝑤 ∈
R𝑇×|𝑀 |×3, i.e., the positions of markers 𝑀 in a temporal window
of 𝑇 frames, and their occlusion status 𝑂 ∈ [0, 1]𝑇×|𝑀 | , which is

a binary mask indicating the marker visibility, our method aims
to solve the body and hand motions 𝑌 ∈ R | 𝐽 |×9+3, which consists
of the body’s global translation and the rotation of every joint 𝐽 ,
and the underlying skeleton 𝑆 ∈ R | 𝐽 |×3. In this section, we will
first explain the neighbor markers and then present our pre-process
method and the motion solving network. At the end, we describe
the data augmentation algorithm.
Our method leverages spatial locality based on neighbor mark-

ers N(𝑀). To find neighbor markers N(𝑀𝑖 ) for marker 𝑀𝑖 , we
first compute the variances of pairwise distances between markers
across the motions and choose 𝐾 markers with the lowest variances.
The stable distances between𝑀𝑖 and its neighbor markers help to
efficiently solve for occluded marker positions. Furthermore, the
neighbor markers can better represent motions of the correspond-
ing body parts, assisting the motion solving networks in accurately
solving body and hand motions.

Initially, the raw data𝑀𝑟𝑎𝑤 is subjected to a cleaning process that
includes occlusion gap filling and outlier removal, resulting in re-
fined data𝑀𝑐𝑙𝑒𝑎𝑛 . This step contributes to enhancing accuracy of the
motion solving network. The occlusion gap filling process is a two-
step process in which we first calculate an approximate value𝑋𝐸𝐷𝑀
of occluded markers based on their distances to neighbor markers,
then fine-tune it using a bidirectional Long-Short Time Memory
(biLSTM) network. Outliers are detected by identifying abnormal
values in markers’ acceleration curves and replaced by simple spline
interpolation. To reduce training difficulty, we split body and hand
markers and remove their global transformations by explicitly cal-
culating local coordinate systems of wrist and waist markers. The
resultant aligned clean markers are denoted by𝑀𝑐𝑙𝑒𝑎𝑛,𝑙𝑜𝑐𝑎𝑙 .
Next, we use heterogeneous graph neural networks to solve the

motion frame-by-frame, as shown in Fig. 3. We train three networks
with similar structures to separately solve body and hand motions.
We begin by constructing a heterogeneous graph G comprised of
the marker graph G𝑀 , whose nodes and edges represent marker
and their spatial adjacency, and the joint graph G𝐽 , whose nodes
and edges represent joints and bones, respectively. The connections
between two graphs are based on spatial proximity of markers and
joints. Our network employs both intra-graph and inter-graph con-
volution components, with the former operating within subgraphs
and the latter transferring information between them. The network
first extracts the markers’ features from the marker graph G𝑀 us-
ing a stack of intra-graph convolution layers, and then feeds these
features into two branches: a global branch composed of residual
blocks that extract global motion features, and a local branch com-
posed of inter-graph convolution layers that extract local features of
marker and joint nodes, representing the motion pattern of the body
part. To obtain body motions, the features extracted by local and
global branches are concatenated and fed into a stack of intra-graph
convolution layers operating on joint graph G𝐽 .
Our approach generates synthetic data for data augmentation.

We simulate occlusion gaps by randomly sampling gaps based on
the occlusion probability of markers 𝑝𝑜𝑐𝑐,𝑖 and the gap length distri-
bution 𝑔𝑙 . Furthermore, we shift markers to simulate outliers based
on given shifting probabilities and intensities 𝑝𝑠ℎ𝑖 𝑓 𝑡 and 𝜎𝑠ℎ𝑖 𝑓 𝑡 .
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Fig. 2. The pipeline of our method consists of three main modules. Left: Given the raw MoCap data, we clean the data by fixing occluded markers with the
EDM algorithm with a bi-directional neural network and identifying outliers by locating the peaks on the marker acceleration curve, and remove the global
transformation of body and hand markers by explicitly calculating their local coordinates using waist and wrist markers. Top right: Using the aligned clean
body markers, we solve the body and hand motions separately using heterogeneous graph neural networks, whose details are shown in Fig. 3. Bottom right:
We augment our dataset by randomly sampling gaps and adding shifting based on actual MoCap data.

3.1 Preprocess
Real-world optical motion capture data is frequently plagued by
occlusions and outliers, making it difficult for the solver to solve
motions accurately. Furthermore, the global transformations of body
and hand reduces the accuracy of the neural motion solver. To miti-
gate these issues, we preprocess the data by filling occlusions and
remove outliers, and align markers to remove the global transfor-
mation, thereby facilitating more effective network training.

Marker occlusion is a common problem in optical motion capture
systems caused by body occlusion or marker dropping. Occlusion
gap filling is a highly non-linear problem due to the complexity
of body motion and the uncertainty of the lengths and quantity of
occlusion gaps. To address this issue, we propose a recurrent neural
network-based approach. In contrast to previous learning-based
methods, we use the Euclidean distance matrix optimization (EDM)
algorithm to obtain an initial value for the network by solving
the position of occluded markers based on the distance matrix of
their neighbor markers. This approach is based on the observation
that during motion, the distances between neighbor markers vary
slightly. As a result, we calculate the position of the occluded marker
based on its distances to neighbor markers in its visible frames.
Specifically, given a marker 𝑀𝑖 ∈ R3 that is occluded between

frames 𝑠 and 𝑒 , we begin by identifying 𝐾 visible neighbor markers
𝑀𝑗 ∈ N (𝑀𝑖 ) between these frames. We then compute distance
matrices 𝐷𝑠

𝑖
, 𝐷𝑒
𝑖
∈ R(1+𝐾 )×(1+𝐾 ) for 𝑀𝑖 and its neighbor markers

at the start and end of the occlusion gap, respectively. We use linear
interpolation to estimate the distance matrix at frame 𝑡 within this
interval: 𝐷𝑡

𝑖
=

(𝑒−𝑡 )𝐷𝑠
𝑖
+(𝑡−𝑠 )𝐷𝑒

𝑖

𝑒−𝑠 . Formally, 𝐷𝑠
𝑖
and 𝐷𝑒

𝑖
lie in a space

of symmetric positive definite matrices where interpolation should
follow geodesics. In practice, we found that linear interpolation
provides a great approximation of the distance matrix at frame 𝑡 ∈
[𝑠, 𝑒], as the distance between𝑀𝑖 and neighbor markers vary only
slightly. Furthermore, instead of treating neighboring markers as
rigid bodies by using fixed distance matrices, the interpolated matrix
reflects subtle change of distances between markers due to markers

sliding over the skin surface or dynamic effects of soft body tissues.
Following that, we employ an EDM optimization method [Zhou et al.
2020] to compute occluded marker’s position𝑀𝑡

𝑖,𝐸𝐷𝑀
. Formally, the

EDM optimization algorithm is defined as follows:

min
𝑀𝑡

𝐸𝐷𝑀,𝑖

𝑓 (𝑀𝑡
𝐸𝐷𝑀,𝑖 , 𝑀

𝑡
𝑗 ) =

∑︁
𝑀𝑗 ∈N(𝑀𝑖 )

��| |𝑀𝑡
𝐸𝐷𝑀,𝑖 −𝑀

𝑡
𝑗 | |

2 − 𝐷𝑡𝑖 [𝑖, 𝑗]
��.
(1)

To solve Eq. 1, the optimization is divided into two stages, where
we first compute an initial guess on a set of marker positions
𝑃𝑡
𝑖
∈ R(𝐾+1)×3 that satisfies 𝐷𝑡

𝑖
, then align 𝑃𝑡

𝑖
with N(𝑀𝑖 ) by a

rigid transformation. To calculate 𝑃𝑡
𝑖
, where one marker position

corresponds to the occluded marker and the others correspond to
its neighbor markers, we compute their initial positions using the
Multi-Dimensional Scaling method [Torgerson 1952] as follows:

𝑃𝑡𝑖 = [p1, ..., p𝑟 ] = 𝑑𝑖𝑎𝑔(
√︁
_1, ...,

√︁
_𝑟 ) [x1, ..., x𝑟 ]𝑇 , (2)

where p𝑖 represents the points in 𝑃𝑡𝑖 , the eigenvalues _𝑖 and cor-
responding eigenvectors x𝑖 are from eigen decomposition of the
MDS embedding − 1

2 (𝐽𝐷
𝑖
𝑡 𝐽 ), where 𝐽 = 𝐼 −

1
𝐾+111

𝑇 is the centering
matrix with 𝐼 being the identity matrix and 1 being vector of all
ones and 𝑟 is the rank of 𝐽𝐷 𝐽 .

Next, we align the initial guess 𝑃𝑡
𝑖
to N(𝑀𝑖 ) using rigid transfor-

mation by solving the well-known Rotation Orthogonal Procrusts
Problem [Zhang et al. 2010]. For simplicity, we use a closed-form
solution by Singular Value Decomposition (SVD).
However, the distances between markers do not fully represent

the complex motion patterns of markers. Next, we fine-tune the
EDM result using a recurrent neural network that learns from a
large dataset. The network is made up of an intra-convolution layer
that extracts markers’ local features and a biLSTM layer that uses
temporal information. In the following section, we will go over the
intra-convolution layer in more detail. The network takes as input
the aligned marker positions and their occlusion status, denoted
as [𝑀𝑡

𝐸𝐷𝑀,𝑙𝑜𝑐𝑎𝑙,𝑖
, 0] for occluded markers and [𝑀𝑡

𝑐𝑙𝑒𝑎𝑛,𝑙𝑜𝑐𝑎𝑙,𝑖
, 1] for
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visible markers. The network estimates the offset𝑀𝑡
𝑜 𝑓 𝑓 ,𝑖

from the
EDM results to the ground truth using the following loss function:

L𝑜𝑐𝑐 =
∑︁

| | (1 −𝑂𝑡𝑖 ) ⊙ (�̂�𝑡
𝑐𝑙𝑒𝑎𝑛,𝑙𝑜𝑐𝑎𝑙,𝑖

− (𝑀𝑡
𝐸𝐷𝑀,𝑙𝑜𝑐𝑎𝑙,𝑖

+𝑀𝑡
𝑜 𝑓 𝑓 ,𝑖

)) | |,
(3)

where �̂�𝑡
𝑐𝑙𝑒𝑎𝑛,𝑙𝑜𝑐𝑎𝑙,𝑖

is ground truth, and ⊙ is element-wise product.
Another critical issue that can affect the quality of optical MoCap

data is outlier. A common method for reducing such jittery move-
ments in data is to apply a filter to the entire sequence, such as the
Savitzsky-Golay filter [Savitzky and Golay 1964] used in [Holden
2018], which may reduce the fidelity of outlier-free parts. To reduce
the affection to these parts, we identify the outliers and only fix the
frames near where the outlier appears. In contrast to normal mark-
ers, which have smoother movement patterns, outliers have sudden
jumps or accelerations due to labeling errors or other sources of
noise. As a result, we use movement smoothness as a criterion to
identify outliers, which are defined as markers with acceleration
peaks that exceed a certain threshold. We remove the marker se-
quence around the outlier and fill the gap with spline interpolation
to improve motion fidelity.
To remove global transformation, we use a straightforward yet

effective method for aligning body and hand markers to the local
space. Similar with [Chen et al. 2021], we select markers around rigid
body parts, such as the waist and wrist. However, we observe that
even these markers are not rigid bodies and exhibit slight non-rigid
deformations, potentially causing instability in the rigid body align-
ment. To tackle this issue, we explicitly compute local coordinate
systems using relationships between reference markers. A more
detailed explanation can be found in the supplementary material.

3.2 Motion Solving
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Fig. 3. Our solving network structure. The network operates on a heteroge-
neous graph comprising the marker graph and joint graph. It first extracts
the local features of markers, which are subsequently transferred to joint
features and finally transformed into motion.

We construct a heterogeneous graph G = (G𝑀 ,G𝐽 ,A𝑀𝐽 ), using
the markers𝑀 and joints 𝐽 . This graph comprises the marker graph

G𝑀 , joint graph G𝐽 , and the adjacency matrix A𝑀𝐽 representing
the edges between the two subgraphs. The marker graph is denoted
as G𝑀 = (V𝑀 , E𝑀 ), whereV𝑀 is the set of graph nodes indicating
markers, and E𝑀 denotes its edges connecting neighbor markers
(see the second paragraph of Section 3). In the joint graph G𝐽 =

(V𝐽 , E𝐽 ), each node in V𝐽 represents a joint and edges in E𝐽 are
identical to the connections between joints. The connections are
dictated by the target skeleton structure. We construct the adjacency
matrix A𝑀𝐽 based on the distance between joints and markers at
T-pose, whereV𝑀,𝑖 andV𝐽 ,𝑖 are connected if their corresponding
marker and joints’ distance is below a threshold. To represent the
global transformation, we add an additional node toG𝐽 that connects
to every other nodesV in both G𝐽 and G𝑀 .
The inputs of our network are positions of aligned markers and

their visibility at frame 𝑡 : [𝑀𝑡
𝑐𝑙𝑒𝑎𝑛,𝑙𝑜𝑐𝑎𝑙

,𝑂𝑡 ], which are mapped to
their corresponding nodesV𝑀 in G𝑀 . The output of the network
comprises features of joint nodes V𝐽 in G𝐽 . Specifically, the output
of V𝐽 ,𝑖 contains the rotation matrix 𝑌 𝑡

𝑖
∈ R9 and the joint offset

𝑆𝑡
𝑖
∈ R3. Since the network does not guarantee orthogonality, we use

Gram-Schmidt orthogonalization as a post-process for the rotation
matrix. The first three dimensions of the translation node represent
the global translation. To ensure bone length consistency, the final
joint offset is computed as the average of estimated joint offsets
across the motions, denoted by 𝑆𝑖 =𝑚𝑒𝑎𝑛(𝑆1𝑖 , ..., 𝑆

𝑇
𝑖
).

Our convolution operations are built based on the skeletal convo-
lution in [Aberman et al. 2020]. To gather information from neigh-
boring nodes, the operation employs a learned filter. There are some
distinctions between intra- and inter-convolutions: the former ag-
gregates the local features of the nodes’ neighbors of the same type,
whereas the latter aggregates the local features of their neighbors of
a different type. A marker node in our scenario gathers information
from neighboring marker nodes in intra-convolution and aggregates
features of linked joint nodes in inter-convolution. The convolution
operation is illustrated below:

𝑓 ′V𝑖
=

∑︁
V𝑗 ∈N(V𝑖 )

𝑊𝑖 𝑗 𝑓V𝑗
+ 𝑏𝑖 , (4)

where 𝑓V𝑖
and 𝑓 ′V𝑖

are the input and output features of node V𝑖 ,
respectively. N(V𝑖 ) is the set of its neighbors, and𝑊𝑖 𝑗 , 𝑏𝑖 are the
learned filters and biases, respectively. It should be noted that un-
like traditional convolution operations, our convolution operation
employs different filters and biases for different edges.

We train the network using the following loss with three terms:

L𝑠𝑜𝑙𝑣𝑖𝑛𝑔 = _𝑀 (𝑌 − 𝑌 ) + _𝑆 (𝑆 − 𝑆) + _𝐹𝐾 (𝐹𝐾 (𝑌, 𝑆) − 𝐹𝐾 (𝑌, 𝑆)),
(5)

where the first two terms push the estimated motion and skeleton
𝑌, 𝑆 to their ground truths 𝑌, 𝑆 , and 𝐹𝐾 () is the forward kinematic
function computing global positions of joints according to the mo-
tion and skeleton, and _𝑀 , _𝑆 , _𝐹𝐾 are predefined weight factors.

3.3 Data Augmentation
One of the most crucial tasks for our networks is to learn to deal with
complex occlusions. However, obtaining such noise data is hard due
to the high cost of optical MoCap systems and the low frequency of
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Fig. 4. (a) Occlusion probabilities and (b) gap length distribution of the
real MoCap data. Markers on the right side of body tend to have higher
occlusion probabilities than those on the left side. The distributions of gap
length follow a heavy-tailed distribution.

noise occurrences in modern MoCap scenarios. For instance, our
real MoCap dataset has an overall occlusion probability of only 5%.
Consequently, there is a limited amount of data available, which
makes it easy for the networks to overfit. To address this issue, we
draw inspiration frommasked autoencoders [He et al. 2022] and feed
the network with strategically perturbed data. We apply a training
regime based on representation learning and data augmentation by
simulating shifting and occlusion gaps based on their spatial and
temporal patterns. Notably, markers located at different positions
on the body exhibit varying occlusion probabilities 𝑝𝑜𝑐𝑐,𝑖 due to
differences in motion patterns. For instance, hand markers have
higher occlusion probabilities than that of other body parts, as they
are most densely placed and the motions of hand are the most
complex. Furthermore, because the motion and capture situation
is continuous, occlusions usually last for a period of time rather
than occurring haphazardly in single frames. The distribution of
occlusion gap lengths follows a heavy-tailed distribution that is
consistent across different markers. To simplify the process, we use
the average gap length distribution of all markers when generating
synthetic data.We illustrate the occlusion probabilities 𝑝𝑜𝑐𝑐,𝑖 and the
occlusion gap length distribution 𝑔𝑙 collected from real data on Fig.
4. We also illustrate the gap length distribution of our method and
per-frame random sample methods [Chen et al. 2021; Holden 2018].
Our method generates gaps that are closest to the real distribution,
whereas the per-frame random sample method fails to generate
gaps longer than 6 frames.
Given the overall occlusion probability 𝑝𝑜𝑐𝑐 and total sequence

length 𝐿, we first compute the gap number 𝑁𝑙,𝑖 , which represents
the number of gaps with length 𝑙 for marker𝑀𝑖 , using the gap length
distribution and marker occlusion probabilities as follows:

𝑁𝑙,𝑖 =
⌊𝐿
𝑙

𝑙𝑔𝑙∑(𝑙𝑔𝑙 )
𝑝𝑜𝑐𝑐

𝑝𝑜𝑐𝑐,𝑖∑
𝑝𝑜𝑐𝑐,𝑖

)
⌋
, (6)

where 𝑙𝑔𝑙∑(𝑙𝑔𝑙 ) indicates gap possibility weighted by gap length,

𝑝𝑜𝑐𝑐
𝑝𝑜𝑐𝑐,𝑖∑
𝑝𝑜𝑐𝑐,𝑖

represents weighted occlusion probability for marker
𝑀𝑖 , and ⌊·⌋ represents floor operator.
Using the calculated occlusion gap numbers 𝑁𝑙,𝑖 , we randomly

select segments from longest to shortest without overlapping and set

them to occluded. Selecting segments randomly or from shortest to
longest may lead to insufficient space for occlusion gaps. After that,
we add shifts to markers on randomly sampled frames by applying
offsets with the uniform distribution 𝑜 ∼ 𝑈 (−𝜎𝑠ℎ𝑖 𝑓 𝑡 , 𝜎𝑠ℎ𝑖 𝑓 𝑡 ).

4 RESULTS AND EXPERIMENTS
We conduct our experiments on two distinct datasets: a real dataset
and a synthetic dataset, each featuring characters with different
marker configurations and skeleton structures. The real dataset
was captured in a game studio, and the synthetic dataset is gener-
ated by driving the SMPL+H body [Romero et al. 2017] using the
body motions from the CMU MoCap dataset [CMU 2000] and the
hand motions from the GRAB [Taheri et al. 2020] dataset. We use 6
neighbor markers with the lowest distance variances for occlusion
fixing and 3 for motion solving networks. The supplementary ma-
terial contains additional information about our dataset, network
architectures, hyper-parameters, and other implementation details.

4.1 Evaluation
We present the results of our method for unseen motions in Fig. 5.
Our method successfully handles diverse motions, including large
body movements and fine hand motions. Additionally, our method
is robust to marker occlusions and outliers.

Input Data Ground Truth Our ResultInput Data Ground Truth Our Result

Fig. 5. Our method can accurately solve diverse unseen body motions and
fine multi-fingered hand motions. Our method is robust to occlusions (black
ball) and outliers (green ball).

Following that, we assess the efficacy of our data augmentation
method on the real dataset. We randomly sample the training data,
selecting 20%, 40%, ..., 100% to train the occlusion fixing and solv-
ing networks, and then test them using the same testing set. The
quantitative results are shown in Fig. 6. The losses decrease as the
data scale increases because the training set contains more diverse
data. We also run experiments that augment training data by adding
corrupted data from sampled data to the training set. We compare
our data augmentation method with the per-frame random sample
method used in [Chen et al. 2021; Holden 2018]. Our method im-
proves network performance for marker occlusion fixing because it
can generate long occlusion gaps with a data distribution similar
to real data. The per-frame random sample method degrades the
network’s performance on real data, as it fails to generate long oc-
clusion gaps. In terms of solving network, our data augmentation
method improves network performance by 10% when only a small
amount of training data is available. The per-frame random sample
method, on the other hand, does not significantly improve network
performance.

On the real dataset, we tested different selection criteria and num-
bers of neighbor markers. The results show that choosing markers
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Table 1. Comparison with other methods and ablations for our method.

Optimization-
based Methods

(Vicon for Real

Mosh++ for Synthetic)

[Holden 2018] MoCap-Solver
Ours

(w/o EDM

initial value)

Ours
(w/o splitting

body & hand)

Ours
(w/o marker

convolution)

Ours

Body Hand Body Hand Body Hand Body Hand Body Hand Body Hand Body Hand

Real
JOE (°) 4.21 1.37 2.54 0.80 1.89 0.58 1.27 0.58 1.31 1.17 1.78 0.57 1.22 0.45
JPE (cm) 1.75 0.49 1.02 0.27 0.89 0.20 0.76 0.21 0.85 0.55 0.85 0.18 0.61 0.15

OMPE (cm) 5.32 2.01 3.62 1.58 3.27 1.46 3.83 1.71 2.76 1.76 2.60 1.15 2.55 1.11

Synthetic
JOE (°) 5.72 6.37 3.53 2.21 2.76 1.72 2.47 1.78 2.25 3.41 2.65 1.70 2.15 1.59
JPE (cm) 2.02 0.79 1.37 0.27 1.08 0.21 1.12 0.23 1.17 0.53 1.09 0.20 1.00 0.18

OMPE (cm) 7.20 1.25 4.58 0.58 4.28 0.57 5.22 0.83 4.02 1.18 3.66 0.38 3.67 0.35
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Fig. 6. Occluded marker position error and joint angle error vs. training
data scale. We also test two data augmentation methods: "Real" denotes
real dataset without augmentation, whereas "Real + Ours" denotes the same
dataset supplemented with data generated using our augmentation method.

Ours
w/ augmentation

Ground Truth Ours 
w/o augmentation

Ours
w/ augmentation

Ground Truth Ours 
w/o augmentation

Fig. 7. Qualitative comparisons of motions solved using our network trained
with 20% of training set with and without data augmentation. We render
the skeletons and overlay the ground truth’s skeleton onto ours.

with the smallest distance variances as neighbor markers outper-
forms choosing those with the smallest mean distances. Our ap-
proach yields the best results with six markers for occlusion filling
and three markers for the network resolution. Please refer to supple-
mentary materia for an in-depth qualitative analysis and discussion.
We conduct three ablation studies to validate the efficacy of our

method’s modules. The first study does not use the EDM optimiza-
tion for the occlusion fixing module, and the second does not sep-
arate the body and hand markers and solves their motions in a
single network. Finally, the third uses residual modules rather than
performing intra-convolutions on the marker graph G𝑀 . The quan-
titative results are shown on the right side of Table 1. For occlu-
sion fixing, the initial value given by EDM improves marker posi-
tion accuracy by approximately 40%. As a result of more accurate
marker positions, the solving network estimates motions closer to
the ground truth with errors reduced by approximately 4% for the
body and 20% for the hands (where markers have higher occlusion
probabilities). Solving whole-body motions with a single network
negatively affects the accuracy of both hand and body motions,

which justifies the necessity of splitting body and hand markers and
solving them using separate networks, which improves hand motion
accuracy in terms of angle error by 60% and body motion accuracy
by 5%. Solving motions by first extracting markers’ local features
on the marker graph G𝑀 significantly improves performance of the
solving network, reducing errors in terms of angle differences by
approximately 30% for body motions and 15% for hand motions.

4.2 Comparison with Prior Methods
We compare ourmethodwith two neural-based approaches: [Holden
2018] and MoCap-Solver [Chen et al. 2021] on the two datasets. Ad-
ditionally, we compare our method with two optimization-based ap-
proaches: Vicon [Vicon 2023] for the real dataset and Mosh++ [Mah-
mood et al. 2019] for the synthetic dataset. The neural-based ap-
proaches are trained with the same dataset and evaluated using
the same unseen data. To ensure a fair comparison, the body and
hand markers are aligned using the same strategy and trained using
separate networks for neural approaches. We use three metrics to
quantitatively evaluate the reconstructed marker sequence and the
solved motions, namely OMPE (Occluded Marker Position Error),
JOE (Joint Orient Error), and JPE (Joint Position Error). The first
one is the distance between the estimated occluded marker position
and the ground truth. The latter two represent different aspects of
motion solving accuracy: JOE is the angle difference for joints and
JPE is the global joint position difference.

On the left of Table 1, we list the quantitative results for compari-
son methods. Our method outperforms the baseline methods for all
metrics. For body motions and markers, JOE and JPE are about 30%
lower, while OMPE is 20% lower than the best of them. For hand,
all metrics are approximately 20% lower than the state-of-the-art
methods. Furthermore, our method achieves lower average errors
and generates fewer large errors compared with other methods. We
present two detailed comparisons of body and hand motions in Fig.
8, where our method tends to generate motions with the highest
accuracy. Optimization based methods [Mahmood et al. 2019; Vicon
2023] lack the learned prior knowledge for the occluded markers
and motions, which fails to accurately solve motions when large
numbers of markers are occluded. For two reasons, our method
outperforms other neural-based methods [Chen et al. 2021; Holden
2018]. First, our method better reconstructs the positions of the
occluded markers, providing a better input to the solving network.
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Second, our solving network extracts local features of each marker
and joint, which aids in generating motions that are close to the
ground truth. We present additional qualitative comparisons of large
body motions on Fig. 9 and fine hand motions on Fig. 10.

Ground TruthOurs[Holden 2018] MoCap-SolverVicon

Fig. 8. Qualitative comparisons of motions solved using various methods.
Top / bottom row: bodies with large motions and hands with fine motions,
with the hand marked using red boxes and enlarged for easier comparison.
Our method generates motions that are closest to the ground truth.

5 CONCLUSION, LIMITATIONS, AND FUTURE WORK
We present a learning-based method that leverages locality to clean
optical MoCap data and solve body and hand motions. We have
evaluated it on diverse and complex benchmarks and highlighted
improved performance over prior baseline methods. Compared with
previous methods, our method better recovers the occluded markers’
positions and more accurately solves the body and hand motions.
Additionally, our method generates synthetic MoCap data with
distributions close to real data.

Our method has limitations. First, our data augmentation method
solely considers the spatiotemporal distribution of occlusions. Incor-
porating other occlusion and noise patterns, such as simultaneous
occlusion, varying shifting intensities of markers on different parts
of body, and mislabeling between close markers, may yield a dis-
tribution more closely resembling real data. Second, our method is
unable to detect subtle marker swaps, such as those between the
index and middle fingers. Detecting and correcting such exchanges
is a worthwhile future endeavor.
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Ground TruthOurs[Holden 2018] MoCap-SolverVicon

Fig. 9. Additional comparison of body motions solved by different methods. To compare with the ground truth, we render the skeletons and overlay the
ground truth’s skeleton onto those generated by solving methods.
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Ground TruthOurs[Holden 2018] MoCap-SolverVicon Ground Truth Body

Fig. 10. Additional comparison of hand motions solved by different methods. To avoid the interference of body motions, we use the same body motions
for different methods. To compare with the ground truth, we render the skeletons and overlay the ground truth’s skeleton onto those generated by solving
methods.
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