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Abstract— We present TraEDITS, a novel traffic trajectory
editing framework for autonomous vehicle testing, which can
generate new traffic behaviors by controlling each vehicle
interactively to increase the diversity or irregularity of traffic
testing data. Given a traffic flow with its original trajectories,
user’s edits, environmental constraints, and physical constraints
as input, our framework is able to generate an edited traffic
flow through a global path planning module and a data-driven
microscopic traffic flow simulation module. With the way-points
from the user, our global planning module generates lane-level
navigation by heuristic-based path planning in discrete space.
By taking internal properties of the vehicle, velocity continuity,
reference path, and collision avoidance into consideration, our
simulation module generates vehicles’ motions based on energy
optimization driven by real traffic data. Given edits of the
desired speed, the lateral deviation, or the reference path, our
approach can generate a new trajectory of the selected vehicle,
and adjust the surrounding vehicles’ trajectories accordingly.
As a result, our framework is able to simulate irregular or even
rare events existing in real traffic. Meanwhile, our framework
can enhance the diversity and irregularity of traffic behaviors
and interactions by creating challenging scenarios like swerve,
nudge, and U-turn. We validate the usability and plausibility of
our framework through extensive experiments and user studies.

I. INTRODUCTION

Though autonomous driving shows great potential in
improving the quality of people’s lives, many challenges
remain to be solved for applying the technique safely. A key
challenge is the safety validation of automated vehicles. In
recent years, instead of road testing, the driving simulator
has become an important tool to generate various traffic
conditions in a safe, low-cost, and controllable way [1], [2].

Current traffic simulation software packages, such as
SUMO [3], SimMobility [4], Vissim [5] and Carla [6],
serve as effective tools for users to generate traffic flows.
However, if users want to generate specific cases or refine
existing simulation results to increase the diversity of testing
data or generate irregular scenarios, they have to start the
simulation over and over by empirically adjusting parameters
based on the previous results, which is frustrating trial-
and-error workflow. We note that similar editing problems
exist in crowd animation [7], where artists can edit crowd
animation interactively using cage-based deformation [8],
mesh-based deformation [9] or using graphical sketches [10].
However, these editing methods are designed for crowds
instead of traffic trajectories. In computer graphics, data-
driven methods have been increasingly used to simulate
traffic behaviors because they are effective in reproducing
real-world traffics at the street level. With the help of
spatial-temporal data acquired by existing in-road sensors,
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continuous traffic flows can be reconstructed to reproduce
dynamic traffic events [11], [12], [13]. Realistic traffic flows
can also be generated by texture synthesis methods [14]
and data-driven optimization methods [15]. Though these
methods can generate plausible traffic simulations, vehicles
have to strictly follow the lane shapes and cannot capture
irregular maneuvers like U-turn, nudge or sudden swerve
that may occur in the real world.

None of the above mentioned methods is able to meet
our demand due to the following main challenges. First,
when we edit an existing trajectory, we must take traffic
rules into consideration (e.g. safe lane changing, acceler-
ation/deceleration, and road regulations), which cannot be
addressed by interactive editing techniques for crowds [7],
[8], [9] [10], where agents can move along any trajectories as
long as collision avoidance is ensured. Moreover, the editing
method must be controllable so that users can generate
specific results while only simulating once by controlling
and editing vehicles during the simulation process. Second,
with user’s edits, vehicles may be guided to show irregular
motions which are difficult to be captured by previous data-
driven simulation methods [11], [12], [13], [14] [15], since
they update vehicle’s motions strongly depending on static
lanes. In addition, such behaviors also need to be regulated
according to the physical and kinematic constraints of the
vehicles, otherwise the simulation may become unrealistic.

To address the above challenges, we present TraEDITS,
a traffic trajectory editing framework to increase the diver-
sity or irregularity of traffic testing data. Inspired by [15],
we employ an optimization-based traffic simulation with
an additional path planning module, and update vehicles’
motions based on path coordinates in order to generate more
diverse behaviors and interactions for autonomous vehicle
testing. By introducing the interactive editing concept, our
framework allows users to control each vehicle and edit final
trajectories during the ongoing simulation process. The main
contributions of this work are as follows:
• We develop a traffic optimization method by taking exist-

ing traffic data, user’s edits, environmental constraints and
physical constraints into consideration, to facilitate traffic
trajectory editing for autonomous vehicle testing.

• We develop a traffic trajectory editing framework to gen-
erate ideal trajectories by interactively controlling individ-
uals in the simulation environment, rather than repeatedly
simulating by empirically adjusting parameters.

• The framework decouples vehicles’ motions from static
lanes to path coordinates, so we can generate scenarios
with diverse behaviors and interactions which are observed
less-frequently in previous methods or datasets and could
be used for testing and data augmentation.
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Fig. 1: Overview of our TraEDITS framework with data-driven traffic simulation module and global planning module.

II. TRAEDITS FRAMEWORK

Fig. 1 shows the overview of our TraEDITS framework.
We first pre-process inputs for TraEDITS (Section II-A). In
the traffic simulation module, we update vehicles’ motions
based on energy optimization with real traffic data (Section
II-B). In the global planning module, we discretize scenarios
and plan new reference paths based on heuristic search
(Section II-C). We further compute physical constraints given
by vehicle kinematics and path geometry (Section II-D) to
improve vehicles’ behavior. A graphical interface is also built
for interactive editing (Section II-E).

A. Coordinate Frame and Scenario Representation

TraEDITS performs in both Cartesian coordinates and
Frenet coordinates. We use (s, d) to describe vehicle’s posi-
tion on a path in Frenet coordinates [16], where s denotes the
longitudinal displacement along the path, and d denotes the
lateral displacement relative to the path. We use pC = [x, y],
vC = [vx, vy], pF = [s, d], and vF = [vs, vd] to represent
position and velocity in Cartesian coordinates and Frenet
coordinates, respectively.

We define Lane and Path differently. Lane indicates the
specific area that vehicles can drive, which is static and
usually given by scene files segment-by-segment. Lane Li =
[QL

i , wi,Ti], where QL
i represents endpoints-pairs of each

segment in Cartesian coordinates, wi represents lane width,
and Ti represents topology between current lane and others,
including incoming, outgoing, and adjacent lanes. Path is the
way from one position to another, usually a set of sequential
points linking the start to the terminal and can be generated
dynamically. Path Pi = [QP

i ,Si,Ci], where QP
i represents

the set of points, Si represents interpolation of the points
using cubic spline, and Ci represents a set of curves on the
path, including start and end points, center, and radius of each
curve. It is noteworthy that QP

i can be easily transformed
between Cartesian and Frenet coordinates by Si.

For a scenario with K lanes, the set of lanes is denoted
as L ∗ = [L0,L1, ...LK ]. We transform lanes topology
given by L ∗ into a directed graph and initialize the set of
paths as P∗ = P∗

topo ∪ P∗
user. P∗

topo = DFS (L ∗) and

P∗
user = ∅ represent the paths generated by lanes topology

and user settings, respectively, and DFS represents depth-
first search function. For any Pi ∈ P∗

topo, we obtain the
set of points QP

i by gathering the endpoints of lanes in an
available depth-first search result, and use them to compute
the cubic spline function Si. Finally, each path Pi ∈ P∗

topo

is a unique link from the origin of a lane without in-comings
to the end of a lane without out-goings.

B. Data-driven Traffic Simulation Module

For the vehicles that have not been edited or affected by
other edited vehicles yet, we try not to change their original
motions so that we can update them with their original
trajectories if there exist. For the vehicles that have already
been edited or affected by other edited vehicles, we update
them with our simulation algorithm because they have to
adjust their motions according to their own changes or edited
neighbors.

Our data-driven traffic simulation algorithm based on
energy minimization is presented as follows. The candidates
generated from the dataset are denoted as D = ∪vdv ,
where dv = [vF ] and vF is velocity transformed into Frenet
coordinates. For a scenario that contains N vehicles, the
state of any vehicle i (i = 1, ..., N) at time t is denoted as
si,t = [pFi,t, pC

i,t, vFi,t, oi,t, ei,t,Pk,t, δi,t], where pFi,t, pC
i,t ∈

R2 represent i’s current position in Frenet coordinates and
Cartesian coordinates, respectively, vFi,t ∈ R2 represents i’s
current velocity in Frenet coordinates, oi,t ∈ R represents
i’s current orientation as Euler angle, ei,t ∈ R represents
a free-flow speed that i desires to travel at, Pk,t ∈ P∗

represents current reference path k that i follows, and δi,t ∈
R represents current lateral deviation relative to the reference
path center that i desires to keep. The state dynamics of
vehicle i are formulated as:

vFi,t+1 = argmin
vF∈dv∈D

E(si,t),

pFi,t+1 = pF
i,t + vFi,t+1 ·∆t,

[pC
i,t+1, oi,t+1] = Sk(pFi,t+1),

[ei,t+1,Pk,t+1, δi,t+1] = Gi,t+1,

(1)



where vF ∈ dv ∈ D is an optimal candidate which minimizes
the energy function E and updates i’s velocity, ∆t is a
timestep, and pF

i,t+1 is the position in Frenet coordinates at
time t + 1. After obtaining the velocity and the position
in Frenet coordinates, we further update the position in
Cartesian coordinates and the orientation of i using cubic
spline function Sk of i’s current reference path Pk,t. The
notation Gi,t+1 represents the user’s edits, and the physical
constraints given by kinematics or path geometry for i. The
energy function E is defined as:

E = wdEd + wcEc + wkEk + waEa, (2)

where Ed is the internal drive term to make vehicles tend
to drive at their desired speeds, Ec is the velocity continuity
term to smooth velocity variation, Ek is the path keeping
term to make vehicles tend to follow their reference path,
Ea is the collision avoidance term to ensure vehicles avoid
collisions with their neighbors, and wd,wc,wk,wa are the
corresponding weights.

Internal Drive Term: We assume that there is a desired
speed at which the driver feels comfortable traveling on roads
in sparse traffic flow. The internal drive term is used to make
a vehicle reach and keep its desired speed, which is defined
as follows:

Ed = e

(∣∣∣∥vF∥−ei,t

∣∣∣)
, (3)

where ei,t is the desired speed of vehicle i at time t.
Velocity Continuity Term: Vehicles cannot change their

velocity suddenly within a short timestep ∆t due to physical
limitations. Our velocity continuity term is in accordance
with [15], and it can smooth velocity variation of a vehicle
both in magnitude and direction.

Path Keeping Term: Vehicles normally tend to keep
driving along lane centers in the real world. We prefer the
vehicles to drive along paths rather than lanes in our work,
for there may exist manually generated paths that are away
from lane centers. The path keeping term is defined as:

Ek = e

(
|vd·∆t−δi,t|

)
, (4)

where vd ∈ vF is the lateral component of velocity in Frenet
coordinates, and δi,t is the lateral deviation that i desires to
keep away from its reference path at time t.

Collision Avoidance Term: A vehicle should avoid colli-
sions with others that are too close to it. Vehicles can behave
more smoothly and realistically when the collision avoidance
term is penalized in the energy function, so we treat it as
a part of optimization instead of a hard constraint. Here
we consider the collisions that may occur within the next
timestep:

Ea =
1

∥Nt∥
∑

j∈Nt

wi,j · e
(
l−∥pCj,t−pCi,t∥

)
, (5)

where j is any neighbor vehicle belonging to the neighbors
set Nt at time t, l is a cut-off distance for the maximum look-
ahead, wi,j is the weight between each j and i, set to the
cosine of angle between i’s moving direction and direction
of i pointing to j, or zero if it is negative.

Fig. 2: Lane approximation using capsule based on grid map.
The white areas are undriveable, the blue areas are drivable
and the red areas are lane centers.

In comparison with [15], we update vehicles’ states in
Frenet coordinates to decouple their motions from the strong
restriction of static lanes, so that more diverse behaviours
and interactions are possible. The adjustable values like
desired speed, lateral deviation and reference path are further
integrated into the energy function, which provides basic
interfaces to control and edit vehicles interactively.

C. Global Planning Module

The global planning module provides manipulations of
generating self-defined reference paths dynamically. For a
given scenario, the space is discretized into the grid map
which stores information about lanes and vehicles. Then
users can set sequential key points which are used to plan a
new path based on heuristic search.

Scenario Discretization: The grid map is constructed
on a 2D plane with a given resolution. All the nodes are
initialized as undrivable areas. Then according to given static
scenario files, we fill the nodes by a specific sign representing
drivable areas according to a lane shape approximation. We
use a capsule with an oriented bounding box and two circles
to represent each lane segment (Fig. 2). Lane centers are
given by endpoints-pair of each segment and highlighted
with another sign. Finally, median filter is applied to fill in
the holes or gaps caused by undersampling. After simulation
starts, the grid map is used to store vehicles’ positions and
updates dynamically to accelerate real-time neighbors search.

Path Planning With Post-Processing: Users can create
a new path Pi = [QP

i ,Si,Ci] by setting a sequence of key
points. These key points are mapped to specific nodes on the
grid map first. Then the whole path is generated segment-
by-segment, where the first node of each segment acts as the
start point and the second one acts as the goal. We apply the
A* search algorithm [17] to plan the path with a modified
heuristic function:

g(n) =
∥∥n − ngoal

∥∥+ α · e(β·sign), (6)

where
∥∥n − ngoal

∥∥ is the Euler distance between the current
node and the goal, and the second term is to make planning
process tend to search along lane centers. sign ∈ [0, 1, 2]
is the node’ sign mentioned above, where 0 represents
undrivable areas, 1 represents drivable areas, and 2 represents
lane centers. α, β are adjustable coefficients.



෨𝜙

𝜙𝑚𝑎𝑥

𝛿

end point

𝑅
𝑅

start point

center

（a） （b）

𝒗𝐶 ∙ ∆𝑡

Fig. 3: (a) A segment of identified curve with start and end
points, center and radius R, (b) the lateral deviation δ given
by the steering angle limitation.
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Fig. 4: Graphical user interface of TraEDITS. (a) Main
simulation menu, edits stack and vehicle attributes window.
(b) Path planning mode with clicking key points.

We further down-sample the result and smooth the points
QP

i with a Gaussian filter, and fit them with the cubic
spline Si. Finally the manually generated path Pi becomes
available for vehicles to follow, as P∗

user = P∗
user ∪ [Pi].

D. Extra Physical Constraints

Frenet coordinates representation decouples vehicles’ mo-
tions from strictly following static lanes, so that vehicles can
drive along any path based on the traffic simulation module.
However, such deformation may cause distortions since
vehicles usually take different actions when following paths
with varying shapes in the real world. We further compute
the constraints given by kinematics and path geometry to
improve vehicles’ behaviours according to identified curves
on the path.

Curve Identification: As shown in Fig. 3(a), identifying
curves for path Pi is to find out the start and end points,
center, and radius of each curve segment to create Ci based
on the path points QP

i and the cubic spline function Si.
We perform equidistant sampling for the whole path and
calculate the curvature for each point based on the cubic
spline function at first. Then we label any point whose
curvature becomes non-zero as the start point, and find its
pair-wise end point whose curvature returns to zero. Finally,
we calculate the center and the radius as in [18] for each
curve whose length is greater than a threshold.

Constraints Computation: A four-wheel vehicle changes
its direction by turning the steering wheel. The steering angle
ϕ is defined as the angle between the steering wheel direction
and the front of the vehicle. In general, the vehicle’s steering
angle has an upper bound that can be denoted as |ϕ| < ϕmax.
When a vehicle drives along a path with an extremely sharp
curve, it will certainly lead to a lateral deviation from the path
because it is unable to apply the necessary steering angle. A
temporary desired lateral deviation is given to handle such
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Fig. 5: Performance of the traffic simulation module. We
show average update time (s) with parallel implementation,
time percentage of energy optimization and neighbors search
per frame over different numbers of vehicles.

#Key
Points

Path
Length

#Heuristic
Search Steps

Percentage of
Lane Center

Planning
Time

2 2571.43 222,066 99.47% 25.61
3 2568.99 142,026 99.03% 8.44

5
2579.02 31,186 97.81% 1.08
1370.97 5,867 89.33% 0.21
721.24 1,595 78.50% 0.11

10 2563.17 7,657 90.01% 0.20

TABLE I: Performance of global planning module. We show
number of heuristic search steps, percentage of nodes labeled
as “lane center” in the final path and planning time (s) by
varying number of key points and path length (foot).

situation and computed as:

δ̃i,t =
∥∥∥vCi,t∆t

∥∥∥ · sin
(
max(|ϕ̃| − ϕmax, 0)

)
, (7)

where δ̃i,t is the temporal lateral deviation for i passing
the current curve, ϕ̃ is the necessary steering angle to pass
the curve along the path without deviations, and ϕmax is
the maximum allowed steering angle for the vehicle. If∣∣∣ϕ̃∣∣∣ > ϕmax, the vehicle will deviate from the path rather
than driving along it. We give a demonstration in Fig. 3(b).

Moreover, drivers usually decelerate to a slower speed
through a turn for both comfort and safety. We compute such
safe speed for each curve, and set it as a temporal desired
speed to the vehicle passing a certain curve. By following
[19], such safe speed is computed as:

ẽi,t =
√
(µ+ tan θ) gR, (8)

where µ and θ are the friction coefficient and bank angle of
the lane, respectively, g is the gravitational acceleration, and
R is the radius of the curve.

The physical constraints above are appended to the set
Gi,t = Gi,t∪ [δ̃i,t, ẽi,t] with a higher priority than other user’s
edits and applied to traffic simulation by Eq. 1.

E. Graphical Editing Interface

We design a graphical user interface (Fig. 4) to collect
user’s edits and feed them to the global planning module
and the traffic simulation module. When simulating, users



Parameter Value Unit Description
wd 1.0 - the weight for the internal drive term in Eq. 2
wc 0.5 - the weight for the velocity continuity term in Eq. 2
wk 10.0 - the weight for the path keeping term in Eq. 2
wa 5.0 - the weight for the collision avoidance term in Eq. 2
l 50.0 foot the cut-off distance for the maximum lookahead in Eq. 5
α 20.0

- the coefficients for heuristic-based path planning in Eq. 6
β -1.5

ϕmax 30.0 degree the upper bound for vehicle’s steering angle in Eq. 7
µ 1.0 - the friction coefficient of the lanes in Eq. 8
θ 0.0 degree the bank angle of the lanes in Eq. 8
g 9.8 m/s2 the gravitational acceleration in Eq. 8

TABLE II: The values of the important parameters.

can move the viewport in 3D space to select a certain vehicle
i and show its attributes. Some of its attributes can be edited
like desired speed ei, lateral deviation δi, and reference path
Pk. Each edit for i is stacked in the set with an expected
timestamp t, denoted as Gi,t = Gi,t ∪ [ei,t,Pk,t, δi,t], and
applied by Eq. 1 in the traffic simulation module when the
time is right. Under the path planning mode, users can click
key points on the lanes which will be sent to the global
planning module to create new reference paths. Parameters
of path smoothing can also be adjusted here.

III. EXPERIMENTAL RESULTS

A. Experimental Setup

The following experiments were implemented on a com-
puter with a 3.60GHz Intel(R) Xeon(R) W-2123 CPU with
8-core processors and 32GB memory. TraEDITS was imple-
mented in C++, compiled as a x64 dynamic link library and
imported into Unity3D where the graphical interface was
built. We applied parallel computation to improve perfor-
mance because vehicle updates in the traffic simulation mod-
ule are highly parallelizable. The values of some important
parameters we used in our experiments are shown in Table II,
which were pre-defined in a JSON configure file and loaded
by the program.

The real traffic dataset and original trajectories used in
our experiments were from Next Generation Simulation
(NGSIM) [20]. We filtered the original data before using
them since they exhibit certain noise artifacts.

There are two scenarios used in our experiments which
were generated by SUMO NetEdit and originally defined in
XML files. The first scenario is an off-ramp on a highway.
The off-ramp has a single lane and the main road has four
lanes in the same direction. Its size is 3205.67×340.29
(foot) with 12.84% “drivable” areas and 1.23% “lane center”
areas. The second scenario is an intersection with a four-lane
dual carriageway. Its size is 1877.44×1389.98 (foot) with
5.16% “drivable” areas and 0.51% “lane center” areas. The
discretization resolution is 1.0×1.0 (foot) for each.

B. Performance

To evaluate the performance of the traffic simulation
module, we performed a series of experiments with different

numbers of vehicles. As shown in Fig. 5, the computation
time scales almost linearly with the number of simulated
vehicles, and it can stay at 30 frames per second (fps) when
the number of vehicles is around 1,800 in the test scenarios.
We give a detailed percentage of average computing time
(ms) of energy optimization and neighbors search. The time
percentage of energy optimization decreases and the time
percentage of neighbors search increases when the number of
vehicles becomes large. In fact, the time of energy optimiza-
tion almost remains unchanged since it basically depends on
the size of dataset, while there are more neighbors to search
when placing more vehicles in the constant area.

To evaluate the performance of the global planning mod-
ule, we randomly plan different paths by choosing different
key points in the scenarios. Firstly, the path length is kept and
the planning time over different numbers of key points are
given. Then, under constant 5 key points, the planning time is
computed with varying path lengths. The number of heuristic
search steps and the percentage of the nodes labeled as “lane
center” in the final planning path are also counted. As shown
in Table I, the total planning time decreases if we give more
key points or make the path shorter. For a very long path
with only 2 specified key points (starting point and goal), the
search steps of path planning will significantly increase since
much of them are failed trials. Specifically, the percentages
of lane center of the planning paths are all larger than 70% in
our experiments, which validates that our modified heuristic
function shown in Eq. 6 is effective. This value decreases
when the total path length gets shorter or more key points
tend to make the path away from lane centers.

C. Editing Cases

We designed some cases to show the results of trajectories
editing based on existing data by TraEDITS.

The first two cases were generated in the off-ramp sce-
nario. In the first case, we generated a new path crossing four
lanes from the furthest lane to off-ramp in a short distance.
Then we assigned the path to the specific vehicle driving
along the furthest lane, which made it act like deciding
to leave the highway suddenly when nearly missing the
off-ramp (see Fig. 6). We also generated another swerve-
case in the crowded environment, where the specific vehicle



Fig. 6: The original trajectories (top) and the edited trajec-
tories (bottom) for a sudden swerve on the highway.

Fig. 7: The original trajectories (top) and the edited trajec-
tories (bottom) for a swerve in a crowded environment.

originally derived along the lane, is guided to cross through
the congested traffic flow and leave the highway with a
sharper path (see Fig. 7).

The last cases were generated in the intersection scenario.
In the third case, we let the vehicle which got stuck by
leaders in both available lanes deviate from lane center
slightly and accelerate, leading it to nudge and overtake
successfully (see Fig. 8). In the fourth case, we generated
a new path that can make vehicles take a U-turn to the
opposite-direction lane, and assigned the path to the specific
vehicle. The vehicle decelerated to pass the curve smoothly
and then returned to the original state, while the other
vehicles slowed down to wait for it (see Fig. 9).

These examples show that our editing framework can
increase the diversity and irregularity of traffic behaviors
which are rarely seen in real captured traffic data. The
generated cases can also be applied in virtual environment
for autonomous driving testing and data augmentation. Fig.
11 shows snapshots of the U-turn result from driver’s view
in Unity3D.

D. User Study

We conducted two user studies. The first one is to evaluate
the usability of TraEDITS, and the second one is to evaluate
the plausibility of generated results. Both user studies were
taken by 18 participants (13 males and 5 females).

Usability Evaluation: In the first user study, participants
needed to complete the three following tasks in TraEDITS:
• Overtake: Let the specified vehicle overtake the vehicle in

front based on the original trajectories.
• U-turn: Let the specified vehicle make a U-turn based on

the original trajectories.

Fig. 8: The original trajectories (top) and the edited trajec-
tories (bottom) for nudging and overtaking.

Fig. 9: The original trajectories (top) and the edited trajec-
tories (bottom) for making a U-turn at the intersection.

• Schedule: Make the vehicles coming from four directions
(15 vehicles per direction) pass safely at the intersection
without traffic lights during the simulation.

After accomplishing all the tasks, participants were asked
to finish a questionnaire with a six-dimensional NASA Task
Load Index [21], [22] (mental demand, physical demand,
temporal demand, performance and frustration). Participants
had to give a score from 0 to 5 for each term. The question-
naire also has three statements, and we use 5-point Likert
scale to let participants give a score to each statement from
1 to 5 for “totally disagree” to “totally agree”.

Fig. 10(a) shows the average scores of the six-dimensional
NASA-TLX for the three tasks. Except for the third task,
mental demand, physical demand, temporal demand, effort
and frustration are obviously lower than 2 while performance
of all the tasks are higher than 4. The reason why participants
spent more energy on the third task is that the number of
vehicles that were required to be edited was much more than
those in the other two tasks. Generally speaking, TraEDITS
allows users to control vehicles and edit their trajectories
intuitively with a little effort even for the first time.

Fig. 10(b) shows participants’ attitudes towards the three
appending statements. We performed one-sample t-tests for
the three instances by assuming the mean score of each
term is larger than 3 (remain neutral). Overall, participants
significantly agree with that “TraEDITS is beginner-friendly
with intuitive operations” (mean = 4.667, t(17) = 14.577,
q < 0.001), “It is easy to use TraEDITS to complete the
tasks” (mean = 4.222, t(17) = 7.083, q < 0.001) and
“The editing results generated by TraEDITS are satisfactory”
(mean = 4.222, t(17) = 6.414, q < 0.001).

Plausibility Evaluation: In the second user study, we
compare the U-turn results generated by TraEDITS with the
ones by Heter-sim [15], and the U-turn results generated by
TraEDITS with different editing times. We designed three
comparison pairs by showing two side-by-side pre-recorded
videos for each. Participants were asked to indicate their
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statement1: TraEDITS is beginner-friendly with intuitive operations.
statement2: It is easy to use TraEDITS to complete the tasks.
statement3: The results generated by TraEDITS are satisfactory.
*totally agree(5) / totally disagree(1) with the statements.

comparison1: U-turn result generated by Heter-sim(1) / TraEDITS(7) for a single vehicle.
comparison2: Same U-turn result in comparison1 but with multiple vehicles' interactions.
comparison3: U-turn result generated by TraEDITS with only one edit(1) / multiple edits(7).

Fig. 10: (a) Average scores of the six-dimensional NASA-TLX for participants to accomplish the three tasks. (b) The scores
of participants’ attitudes towards the three statements. (c) The detailed scores for the three comparison pairs.

Frame #557 Frame #615Frame #576

Fig. 11: Snapshots of the U-turn result from driver’s view.

preference for a video using a 7-point Likert scale, with 1
indicating a strong preference for the left video, 7 for the
right and 4 for no preference.

Fig. 10(c) shows the scores for comparisons. We per-
formed one-sample t-tests for the three instances by assuming
the mean score of each term is larger than 4 (no preference).
The key frames of the U-turn results used for following
comparisons are also shown in Fig. 12.

For the first comparison, we showed U-turn results gen-
erated by Heter-sim (left) and TraEDITS (right) for a single
vehicle in the scene. The score shows that our result is
significantly better (mean = 5.500, t(17) = 4.467, p <
0.001) because the vehicle in our result can slow down to a
safe speed and deviate slightly from path centers while the
other one kept a high speed all the way.

For the second comparison, we showed the same U-turn
results in comparison 1 but included other vehicles’ inter-
actions in the scene. The score also shows our result looks
significantly more better even with interactions (mean =
5.500, t(17) = 3.768, p = 0.0015 < 0.05).

For the third comparison, we showed U-turn results gen-
erated by TraEDITS with a single edit version (left) and
a multiple edits version (right). In the single edit version,
the edited vehicle made a U-turn while ignoring the other
vehicles which made all others wait for it (see Fig. 12
middle). In the multiple edits version, we changed the edited
vehicle’s behaviour to wait for others to pass by first and then
finish its U-turn (see Fig. 12 bottom). The score shows that
participants significantly prefer to the result with iterative
edits (mean = 5.056, t(17) = 2.587, p = 0.019 < 0.05).

Specifically, most of participants thought it is not only dan-
gerous to ignore vehicles in the target lane when performing
lane-change, especially for U-turn, but socially it can also
be perceived as highly aggressive driving. So the result in
which the vehicle waits until all the other oncoming vehicles

have passed gains more recognition. Such editing can be
seen as unexpected driving situation refinement caused by
driving behaviors which is more implicit than simple traffic
violations.

IV. CONCLUSION

We have presented TraEDITS, a new traffic trajectory
editing framework for autonomous vehicle testing, to in-
crease the diversity or irregularity of traffic testing data.
Our framework integrates data-driven traffic simulation and
global path planning seamlessly, and it can deal with custom
constraints such as the original traffic trajectories, user’s
edits, environmental constraints, and physical constraints. We
update vehicles based on optimization with real-world data
in the traffic simulation module, and plan reference paths
with discretized grid maps and a modified A* algorithm in
the global planning module. Extra constraints from steering
angle and road geometry are also computed. We provide
a graphical interface to let users edit and generate ideal
trajectories intuitively.

Though the proposed framework is promising, it is still
preliminary and can be improved in several ways. Firstly,
vehicles’ motions for passing curves can be extracted from
real-world data instead of empirically modeling them with
steering angle and road geometry. Secondly, reference paths
are better planned in the continuous environment since the
results based on grid maps strongly depend on the dis-
cretization resolution. Thirdly, a more efficient manipulation
method like bulk operation is necessary when editing large-
scale traffic flows.
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