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Fig. 1. Our method can generate real-time clothing animation results with detailed wrinkles for various body poses and shapes with
different clothing types on a commodity CPU. Our method can also be applied in VR scenarios (right image).

Abstract— We present a CPU-based real-time cloth animation method for dressing virtual humans of various shapes and poses. Our
approach formulates the clothing deformation as a high-dimensional function of body shape parameters and pose parameters. In order
to accelerate the computation, our formulation factorizes the clothing deformation into two independent components: the deformation
introduced by body pose variation (Clothing Pose Model) and the deformation from body shape variation (Clothing Shape Model).
Furthermore, we sample and cluster the poses spanning the entire pose space and use those clusters to efficiently calculate the
anchoring points. We also introduce a sensitivity-based distance measurement to both find nearby anchoring points and evaluate their
contributions to the final animation. Given a query shape and pose of the virtual agent, we synthesize the resulting clothing deformation
by blending the Taylor expansion results of nearby anchoring points. Compared to previous methods, our approach is general and able
to add the shape dimension to any clothing pose model. Furthermore, we can animate clothing represented with tens of thousands
of vertices at 50+ FPS on a CPU. We also conduct a user evaluation and show that our method can improve a user’s perception of
dressed virtual agents in an immersive virtual environment (IVE) compared to a realtime linear blend skinning method.

Index Terms—clothing animation, virtual agents, social VR, virtual try on clothing shape models.

1 INTRODUCTION

There is considerable interest in generating human-like virtual agents
for AR and VR applications. These agents are used to generate immer-
sive social experiences for games, training, entertainment, virtual space
visitations, or social-phobia treatments. In order to maintain the sense
of presence in virtual environments, it is essential that these virtual
agents look realistic and interact in a plausible manner [2].

There has been a great deal of work on improving the realism of vir-
tual humans in terms of rendering, body shapes, facial expressions, hair,
locomotion, etc. A key issue is related to dressing three-dimensional
virtual humans using garments and animating the cloth deformation
corresponding to draping and wrinkles. This is crucial because up to
80% of a human body can be covered by clothing. As virtual agents
move, bend, or interact with the environment, the clothing folds, wrin-
kles, and stretches to conform to the virtual agents’ poses. This is also
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important in the context of efficient virtual try-on simulation. In these
applications, the user can experience the fit of several garments on their
3D models or avatars. The goal is to experience real-life clothes on
virtual models and evaluate the garment behavior when a user moves
around or stands in different poses. Recently, many AR-based inter-
faces have been proposed for virtual try-on. All these applications must
be able to simulate or animate the cloth and garments at interactive
rates.

Physics-based simulation methods directly model the non-linear
behavior of clothing and contacts to generate realistic cloth simula-
tions [3, 13, 46]. However, high-resolution clothing meshes and com-
putationally expensive nonlinear solvers are frequently used, making
it difficult to simulate clothing at interactive rates (i.e. 30fps or more).
Moreover, dressing bodies of different shapes requires a separate sim-
ulation or setup for each body shape. This makes it difficult to use
physics-based methods for real-time VR or virtual try-on applications.

Many data-driven clothing animation methods synthesize the cloth
deformation from pre-computed clothing deformation samples for dif-
ferent body poses [36, 75]. Peng et al. [27] considered the effect of
body motion and shape on cloth deformation, and resized the garment
to fit the body. However, their method cannot achieve real-time perfor-
mance Recently, many learning-based or neural methods [38, 49, 54]
have been proposed for realtime cloth synthesis. However, these meth-
ods need to use a large training database, which can be hard or time
consuming to generate. Furthermore, most neural methods tend to use
powerful desktop GPUs at runtime for real-time performance. These
approaches may not be practical for VR or AR applications, which
run on untethered all-in-one devices like Oculus Quest VR HMD or
Hololens AR Headsets. As a result, we need fast solutions that have
low computational runtime requirements on CPUs.
Main Results: In this paper, we present a novel CPU-based real-time
algorithm for cloth synthesis for VR and virtual try-on applications.



We use a data-driven approach and present a new method to simulate
plausible deformation effects at an interactive rate. We factorize the
clothing deformation into two independent components: the pose-
dependent deformation and the shape-dependent deformation. We
refer to the pose-dependent deformation as the clothing pose model,
which is used to predict clothing deformations under various poses;
we refer to the shape-dependent deformation as the clothing shape
model, which can predict clothing deformations under various shapes.
We also present a clothing synthesis scheme that combines these two
components through Taylor expansion. Our method adopts a pose-
and shape-dependent skinning scheme for clothing synthesis to meet
the needs of real-time virtual try-on on a CPU for synthetic bodies
of various shapes and poses (as shown in Figure 1). The three novel
components of our work are:

Clothing shape model: We present a novel pose-independent cloth-
ing shape model. Given a set of clothing instances simulated on bodies
with a specific pose and various shapes, we first reduce the dimensional-
ity with Principal Component Analysis (PCA). Next, we map the body
shape parameters to the coefficients of the PCA basis of the clothing
deformation space. Therefore, given a set of body shape parameters,
we can predict the corresponding clothing deformation result.

Taylor expansion to approximate clothing deformations: We
present a real-time clothing synthesis method by considering both
the pose-dependent deformation and the shape-dependent deforma-
tion using Taylor expansions. We represent clothing deformation as
a function of body shape parameters β and body pose parameters θ ,
f (β ,θ). The clothing deformation in the neighborhood of the given
anchoring point (β0,θ0) is approximated with a Taylor expansion. The
partial derivatives of the clothing deformation are calculated numer-
ically using the clothing pose model and the clothing shape model
to predict f (β0,θ0 +∆θ) and f (β0 +∆β ,θ0), respectively. Given the
new parameters (β = β0 +∆β ,θ = θ0 +∆θ), we synthesize the cloth-
ing deformation by blending the Taylor expansion results from the
nearby anchoring points. Accordingly, our approach can add the shape
dimension to any clothing pose model. Moreover, we use a sensitivity-
based measurement to compute the distance between the input and the
anchoring points and to calculate the blending weights.

Sampling scheme: We present a pose space analysis method to gen-
erate a compact example database in parallel, which can significantly
reduce the offline computational cost. In order to generate plausible
results, we cluster the pose space into a small number of clusters. We
use the cluster centers to calculate the anchoring points and thereby
build a compact database. This sampling scheme can also be used
to generate the database of the sensitivity-optimized rigging (SOR)
method [75], and thereby significantly improving their results.

Our approach is general and provides a universal scheme to add the
shape dimension to any clothing pose model with a compact database.
We validate our method with SOR [75] and a sequence of simulated
clothing instances. Our results show that, with a small number of anchor
points (approximately 150), our method can generate realistic clothing
deformations with an extra time consumption of 4ms per frame. On a
commodity CPU, we obtain 56 FPS for a long-sleeved shirt with 12K
vertices. We also perform a preliminary user study in an immersive VR
setting and highlight the perceptual benefits of our approach compared
to prior interactive methods based on linear blend skinning.

2 RELATED WORK

Physics-based clothing simulation. In the past two decades, follow-
ing the seminal work by Baraff et al. [3], physics-based clothing
simulation has become a hot topic in the computer graphics commu-
nity. The following works focus on integration methods [17, 32, 67],
strain limiting [24, 42, 51, 63, 65, 71], and various clothing simula-
tion models [8, 12, 13, 16, 26, 29, 31, 68, 79]. While these methods
can produce highly realistic clothing deformations, they are typically
quite time-consuming, especially with high-resolution cloth meshes.
Many acceleration methods have been developed, including the pro-
jective dynamics method [7, 40], where integration is interpreted as an
optimization problem; the Chebyshev semi-iterative approach, which
accelerates the projective dynamics method [18,69]; and position-based

dynamics [45], where internal forces are replaced by position-based
constraints to achieve both efficiency and stability. Recently, parallel
GPU-based methods have been developed for implicit integration and
contact handling [25, 39, 57, 59, 60], which perform implicit integration
and accurate collision handling (including self-collisions). The under-
lying collision queries are performed using CCD tests that involve use
of algebraic solvers and reliable computations [44, 58] for the elemen-
tary tests. The overall simulation algorithms exploit the parallelism on
one or more GPUs and can accurately simulate at 2−10 fps on high-
end desktop GPUs. The actual running time can vary based on mesh
resolution as well as the number of colliding configurations between
triangles. Most VR applications require 30 fps (or higher performance)
and current physics-based methods cannot offer such performance. Fur-
thermore, in many applications, we need to perform cloth simulation
on a mobile device (e.g., a smartphone) and we need methods that
have a lower computational overhead. The time-consuming nature
of collision processing has also prompted many researchers to focus
on developing accelerated data structures such as bounding-volume
hierarchies [37], distance fields [19], shape approximation with simple
primitives [62, 74], and other spatial partitioning methods [61]. Com-
bined with position-based dynamics [45], these methods can achieve
real-time clothing animation with plausible dynamics for a medium res-
olution mesh. However, the resulting clothing animation lacks detailed
wrinkles.

Data-driven clothing animation. Data-driven clothing anima-
tion techniques have received considerable attention in recent years for
real-time applications that require high fidelity. De Aguitar et al. [15] re-
duced the dimension of cloth space and body space with PCA and then
learned a conditional dynamical model of cloth in the low-dimensional
linear cloth space. Their method is fast and stable but cannot generate
clothing deformations with highly detailed wrinkles. Wang et al. [70]
regarded wrinkles as a function of local joint angles and augmented
coarse simulations with detailed wrinkles from a pre-computed wrinkle
database. Kim et al. [36] exhaustively searched a motion graph to
generate realistic secondary motion of clothing deformations. How-
ever, both the memory space and the computational resources for the
database are prohibitively high. Hahn et al. [30] simulated clothes
in low-dimensional linear subspaces learned from performing PCA
on clothing instances in different poses. While they can reproduce
detailed folding patterns with only a few bases, the method is still too
costly to be used in real-time clothing animation. To balance speed
and quality, Xu et al. [75] introduced real-time example-based cloth-
ing synthesis using sensitivity-optimized rigging to achieve physically
plausible clothing deformation. Given a set of pre-computed example
clothing deformations sampled at different poses, the method first rigs
the example clothing shapes to their poses with the underlying body
skeleton at each example pose in the offline stage. At runtime, the
method synthesizes a clothing deformation of the input pose by blend-
ing skinned clothing deformations computed from nearby examples.
Jin et al. [33] represented clothing shapes as offsets from the under-
lying body surface, and used convolutional neural networks to learn
pose-dependent deformations in the image space. Gao et al. [20, 21]
proposed a novel deformation representation along with a sparse blend-
ing method that can compactly models the target deformation with a
small number of deformation modes. Wang et al. [73] learned a motion
independent latent space that is used for interactive authoring of gar-
ment animation for an input body animation sequence. Other methods
are based on neural networks designed for triangle meshes and used to
predict high-resolution clothing deformations [9, 11].

In addition to the significant advances achieved in pose-dependent
clothing animation, variability in the human body shape has also been
considered in clothing animation for virtual try-on applications. In-
spired by SCAPE [1], Peng et al. [27] introduced a model of clothing
animation called DRAPE (DRessing Any PErson), which separated
clothing deformations due to body shape from those due to pose vari-
ation. DRAPE can fit avatars of various poses and shapes with cus-
tomized garments and change the clothing model according to the body
shape. Recently, many techniques have been proposed for learning-
based clothing simulation. Wang et al. [72] learned a shared shape



space in which users are able to indicate desired fold patterns simply
by sketching, and the system generates corresponding draped garment
and body shape parameters. However, their approach cannot gener-
ate clothing deformations corresponding to different poses. Inspired
by SMPL [41], Santesteban et al. [54] introduced a learning model
of cloth drape and wrinkles. The key innovation of their method is
that they added corrective displacements caused by body shape and
pose variations to the template cloth mesh and then deformed the tem-
plate mesh using a skinning function. In many ways, our approach
is complimentary to this method. A limitation of their method is that
the training dataset is prohibitively large, which is similar to other
learning-based or neural methods [28, 38, 49, 66]. Moreover, most of
these neural methods need to use a desktop GPU for realtime runtime
performance and may not be practical for many VR and AR applica-
tions. By treating clothing as an extra offset layer from the body, Ma
et al. [43] trained a conditional Mesh-VAE-GAN to learn the clothing
deformation from the SMPL body model. This work has the limitation
in that the level of geometric details they can achieve is upper-bounded
by the mesh resolution of SMPL. Yang et al. [76] modeled the cloth-
ing layer as an offset from the body and performed PCA to reduce
the self-redundancies. In contrast, we perform PCA directly on the
coordinates of clothing deformations to compute our clothing shape
model. Many other works focused on cloth reconstruction from a single
image or scan data [48, 50, 52], as well as cloth material recovery from
video [77].

Sensitivity analysis. Sensitivity analysis was originally used to
determine the impact of the input data on the output results in linear
programming problems [53], and it has been widely used to solve opti-
mization problems in the field of graphics, including shell design [35],
composite silicone rubber design [78], and robotics design [23, 80].
Sensitivity analysis was first introduced to the clothing simulation com-
munity by Umetani et al. [64] to build up a mapping between variations
of 2D patterns and 3D clothing deformations to achieve interactive
clothing editing. After that, Xu et al. [75] proposed a technique called
sensitivity optimized rigging (SOR) to perform real-time clothing an-
imation. They use sensitivity to both rig the clothing instances in
example poses and find the example poses nearest to the input pose. In
this paper, we use sensitivity to find the anchoring points nearest to the
input pose and shape.

Taylor expansion. A complex function can be approximated by its
first order Taylor expansion in a neighborhood of the keypoint locations.
Such a method has been applied in the field of simulation and animation
to solve various approximation problems. To generate real-time facial
animations, Barrielle et al. [5] applied first-order Taylor approximation
to the computations of the Singular Value Decomposition, thereby
significantly accelerating the simulation of volumetric forces. Shen et al.
[55] adopted a finite Taylor series approximation of the potential energy
to avoid numerical singularity and instability during the simulation
of inextensible ribbon. In the cloth simulation community, Taylor
expansion is generally used to make the first order approximation of
the internal force. To solve the nonlinear equation involved in the
implicit backward Euler method, Baraff et al. [3] applied a Taylor
series expansion to the force acting on the cloth and made the first
order approximation, which leads to a linear system. As a result,
their cloth simulation system can handle large time steps in a stable
manner. Chen et al. [10] proposed a fully geometric approach to
simulate inextensible cloth that is subjected to a conservative force.
They use Taylor expansion to linearize the constraint that preserves
isometric deformations. In this paper, we use Taylor expansion to
factor the clothing deformation (which is a complex high-dimensional
nonlinear function without an analytical expression) into two parts, as
introduced by body shape and pose variations.

3 METHOD

3.1 Taylor Expansion For Clothing Deformation
Algorithm 3.1 and Fig. 2 illustrates the pipeline of our approach. Our
system consists of two stages: the offline training stage and the run-
time clothing synthesis stage. To model the nonlinear deformation
of clothing mesh under different poses and shapes, we precompute a

Algorithm 1 Pseudo-algorithm of our method
The offline stage
Step 1: Classifying the pose date-set into k clusters.
Step 2:

1: for each cluster center do
2: simulate clothing for different body shapes;
3: train a clothing shape model;
4: end for

Step 3: train an external clothing pose model.

The online stage
Input: body shape and pose parameters (β ,θ).
Output: the clothing deformation for (β ,θ).
Step 1: compute the clothing deformation for input pose θ for the
clothing pose model.
Step 2: find several nearby anchoring points for the input (β ,θ).
Step 3:

1: for each nearby anchoring point do
2: compute the clothing deformation for input shape β for the

corresponding clothing shape model;
3: compute the Taylor expansion result of the anchoring point;
4: end for

Step 4: blend the Taylor expansion results for nearby anchoring points.

pose training set of clothing meshes with a single template body in
multiple poses and develop a shape training set fit to different body
shapes in each pose. We use the pose training data to train a clothing
pose model to predict the pose-dependent clothing deformation, given a
template body (e.g. SOR); for each pose in the shape training data, we
train a clothing shape model to predict the shape-dependent clothing
deformation with a fixed pose. At run-time, the method separates
deformations induced by pose and shape (i.e. a clothing pose model
and a clothing shape model) through Taylor expansion. Given a query
body pose and shape, we first find nearby clothing pose models and
clothing shape models and then blend the Taylor expansion result of
each nearby anchoring point to synthesize an intermediate mesh. We
then resolve penetrations and add damping to get the final clothing
mesh for the input body.

Specifically, we represent the input body with shape parameters β

and pose parameters θ . The clothing deformation Y can be formulated
as a high-dimensional function Y = f (β ,θ) and approximated by the
clothing on its nearby example body with shape parameters β0 and
pose parameters θ0 (we refer to (β0,θ0) as the anchoring point) using
first-order Taylor expansion:

f (β ,θ) = f (β0,θ0)+∆β fβ (β0,θ0)+∆θ fθ (β0,θ0), (1)

where ∆β and ∆θ are the shape and pose difference, respectively,
between input body and its nearby example body.

We use forward difference to calculate the partial derivatives
fβ (β0,θ0) and fθ (β0,θ0) in Eq. 1 as follows:

f (β ,θ) = f (β0,θ0)+∆β · f (β ,θ0)− f (β0,θ0)

∆β

+∆θ · f (β0,θ)− f (β0,θ0)

∆θ

= f (β0,θ)+( f (β ,θ0)− f (β0,θ0)),

(2)

where f (β0,θ) represents the clothing under a new pose with the body
shape unchanged, which can be computed via a clothing pose model.
f (β ,θ0) denotes the clothing for a new body shape with the pose
fixed, which can be calculated through a clothing shape model. Cor-
respondingly, ( f (β ,θ0)− f (β0,θ0)) represents the shape-dependent
cloth deformation, which is the cloth mesh deformation during the body
shape change from β0 to β under the anchoring pose θ0.

In this way, the cloth deformations induced by body shape and pose
can be separately computed and then combined. However, such an
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Fig. 2. Overview of our runtime clothing synthesis workflow. Given a query pose and shape, we first calculate the LBS synthesis results for the new
shape and the original shape, and we refer to these as the shape dimension. The “pose dimension” is obtained from an external clothing pose model
with the query pose and the original shape. Then we blend the “shape dimension” and the “pose dimension” using Taylor expansion to synthesize an
intermediate result. Finally, we apply some refinement techniques such as penetration resolution to generate the final result. Sec.3.6 details the
construction of clothing shape models.

approximation cannot accurately obtain the clothing deformation under
(β ,θ) since the term of shape-dependent cloth deformation in Eq. 2
should be measured under the new pose θ as ( f (β ,θ)− f (β0,θ)),
rather than under the anchoring pose θ0. To improve the approximation
accuracy, we apply the Linear Blend Skinning (LBS) method to predict
the cloth deformation for the new pose θ from the cloth mesh under
its nearby sample pose θ0. Therefore, our method requires that the
garment is not too loose on the avatar. The shape-and-pose dependent
cloth mesh deformation f (β ,θ) can be formulated as the Augmented
Taylor Expansion:

f (β ,θ) = f (β0,θ)+
(
LBSθ

θ0
( f (β ,θ0))−LBSθ

θ0
( f (β0,θ0))

)
, (3)

where LBSθ
θ0

stands for the linear blend skinning from pose θ0 to θ .
Since Taylor expansion can only predict the function value at points

that are not far away from the expansion point, we apply Taylor expan-
sion at multiple points, and then blend these approximation results.

Note that both training and running a clothing pose model are time-
consuming in practice. Taking SOR as an example, it takes about
30 hours to construct the necessary database and more than 10ms to
predict the clothing deformation under a new pose, which is too time-
consuming in our scenario since we need to run the clothing pose model
once at each expansion point. To address this problem, we generate
expansion points that have the same β value, such as (β0,θ1), (β0,θ2),
(β0,θ3) · · · , etc. In this way, all expansion points share one clothing
pose model f (β0,θ) trained at β0, referred to as the original shape.
In our implementation, the original shape is the medium stature body
obtained by setting the shape parameters of the SMPL body model [41]
to be all zeros.

At run-time, given a query pose and shape, our method first finds the
nearby clothing shape models through a sensitivity-based distance mea-
sure. For each nearby anchoring point, we compute the approximation
result for the query pose and shape according to Eq. 3. After that, we
blend the approximation results with blending weights computed from
the distance measure. In summary, our model predicts the clothing
under any given body shape parameter β and pose parameter θ by

f (β ,θ) = f (β0,θ)+
Ns

∑
s=1

wsLBSθ
θs
( f (β ,θs)) −

Ns

∑
s=1

wsLBSθ
θs
( f (β0,θs)),

(4)

where Ns is the number of clothing shape models and ws is the blending
weight of the s-th data point. Figure 2 illustrates the computation of
this equation where the three items in the right-hand side of Eq. 4 are
referred to as the pose dimension, the LBS synthesis for new shape,
and the LBS synthesis for original shape. Details will be given in
the following sections. Please see the Appendix for the validation
of separability of pose-dependent deformation and shape-dependent
deformation.

3.2 Clothing Shape Model
The clothing shape model captures clothing deformation induced by
the body shape. The model is learned from the clothing shape examples
that are simulated under various body shapes with a fixed pose. In
our database construction stage, we use the following procedure for
all anchoring poses. Each of them is used to generate a clothing shape
model for a specific pose. We use a SMPL parametric human model to
represent the variations in human body shape. For each of the first four
principal components of the body shape parameters β in the SMPL
model, we generate 4 body shapes (βk =−2,−1,1,2) while keeping
the remaining parameters in β as 0. Besides these 16 body shapes, we
add the nominal shape with β = 0. As a result, we generate 17 different
body shapes.

For each generated body shape, we perform a simulation for one-
second to drape the clothing on the avatar. All the simulations are
generated using a clothing model that combines the StVK membrane
model [68] and the isometric bending model [6] to simulate a garment.
During these simulations, the connectivity and topology of the garment
mesh do not change for the body shapes.

For the k-th generated clothing instances, we concatenate the cloth-
ing coordinates of all vertices into a single column vector ~ck. Next, we
collect all 17 clothing samples into a matrix S = [~c1, ...,~ck, ..., ~c17]. We
use Principal component analysis (PCA) to compute a low-dimensional
subspace so that ~ck can be approximated by the following equation:

~ck =U~φ k +~u, (5)

where ~u is the mean coordinates of clothing meshes and ~φ k is the
clothing shape coefficients to represent the clothing shape ~ck. The
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Fig. 3. Clothing shape model. Deviations from the mean shape: (a) the average coordinates of the training data, referred to as the mean shape; (b-d)
mean shape deformed along the first three principal component directions ( ± 3 standard deviations). Note that we apply PCA on the coordinates of
cloth vertices, the global displacement in the vertical direction of (b) is introduced by the body height.

matrix U represents the first few principal components of the shape
deformation space. As shown in Figure 6, the variance converges
around 5 principal components, which corresponds 98.6% of the total
variance. Moreover, we find that the remaining principal components
have little effect on the final result. Therefore, we use the first 5
principal components in our clothing shape model to balance efficiency
and accuracy. Figure 3 illustrates the mean and first three principal
components for a men’s long-sleeved shirt.

Given 17 body and clothing training pairs, we learn a linear mapping,
W , between body shape parameters and clothing shape parameters using
L2-regularized least squares with the weight of the regularized term
being 0.2. For an input body shape β , the corresponding clothing shape
coefficients ~φ can be predicted as:

~φ =W ·
(

β ,β 2,1
)T

. (6)

The clothing shape deformation under the body shape β can be
predicted based on ~φ shown in Eq. 5. In practice, we observe that
there might be some small inter-penetrations between the predicted
clothing mesh and the body mesh. We resolve this issue by pushing the
implicated clothing vertex in the direction of the normal of its closest
body vertex until there are no penetrations.

3.3 Clothing Pose Model
The clothing pose model captures clothing deformation introduced
only by pose changes. Many excellent clothing pose models have been
presented over the last decade [30, 36, 75]. Our animation scheme does
not limit the type of clothing pose model; in extreme cases, we apply
a simulated sequence as the clothing pose model (see Sec. 4.4). For
real-time virtual try-on applications, we adopt the sensitivity-optimized
rigging method proposed in [75] since it has a good balance of accuracy
and speed.

3.4 Runtime Synthesis
Given an input body with shape parameters β and pose parameters
θ , our method first finds nearby example poses through a sensitivity-
based distance measure and then approximates the clothing deformation
using Taylor expansion, as shown in Eq. 4. Specifically, the first term
f (β0,θ) computes the clothing under the input pose with the original
body shape, which can be predicted through the clothing pose model
described in Sec. 3.3.

The computation of the second term ∑
Ns
s=1 wsLBSθ

θs
( f (β ,θs)) con-

sists of three steps: predicting new clothing instances f (β ,θs) for each
clothing shape model, applying LBS to f (β ,θs), and blending the LBS
results.

For each clothing shape model, we first calculate the clothing shape
coefficients ~φ through Eq. 6 using the input shape β . Then we compute
the new clothing instances f (β ,θs) by the right side of Eq. 5.

To apply LBS to new clothing instances f (β ,θs), we first find the
closest body vertex for each clothing vertex and set the bone weights,
ws

b, of a clothing vertex to that of its closest body vertex. We refer
to this step as the binding information updating step. Then we de-
form each nearby clothing mesh f (β ,θs) towards the query pose as
ȳs = ∑

Nb
b=1 ws

b
(
Rθs,θ

b ys +T θs,θ
b

)
, where Rθs,θ

b and T θs,θ
b are the relative

rotation and translation of bone b from example pose θs to input pose θ ,
respectively, and ws

b is the bone weight defined on the clothing vertex
ys of f (β ,θs). We denote this equation as LBSθ

θs
( f (β ,θs)), as shown

in Eq. 4.

We use a sensitivity-based distance measurement both to find nearby
clothing shape models and to compute the blending weights ws. To
reduce the required clothing shape models in the database, we divide
the clothing mesh into several regions, as in [75]. To this end, we
manually partition the bones into Ng = 7 regions (shown on the top left
of Figure 4). A region weight wg,y for a clothing vertex y is computed
by summing the bone weights w0

b for the bones of the current region. w0
b

is computed in the T-pose s = 0 for β through the binding information
updating step. In this way, our method synthesizes the result for each
region separately.

For each region g, we compute the sensitivity-based distance Ds
g(θ)

between the input pose θ and the pose of the s-th data point as the
weighted sum of differences of joint angles:

Ds
g(θ) = ∑

y∈Y
wg,y

3NL

∑
m=1
||δ̄y,m ·Θm(θ ,θs)||2 =

3NL

∑
m=1

Qg,m||Θm(θ ,θs)||2,

(7)

where superscript and subscript s correspond to the values for the
s-th clothing shape model, NL is the number of joints, and Θm(θ ,θs)

calculates the m-th joint angle difference. δ̄y,m = 1
17 ∑

17
k=1 ||δ

k
y,m|| is

the average sensitivity of 17 training shapes, where sk
y,m indicates the

three-dimensional coordinate differences of a clothing vertex y under
a small joint rotation of m-th joint angle, calculated under T-pose and
the k-th training shape. Qg,m = ∑y∈Y wg,y||δ̄y,m||2 reflects the influence
of the m-th joint angle on region g. δ̄y,m indicates the influence of
the m-th joint angle on clothing vertex y, which is computed in the
database construction stage. Each time we change the body shape, we
update Qg,m for each region once according to the new region weights
of clothing vertices. At run-time, we can compute the sensitivity-based
distance Ds

g(θ) efficiently since we only have to calculate the joint
angle differences Θm(θ ,θs).

Given the distance Ds
g(θ), the weight for the region is calculated as

W s
g (θ) = 1/(Ds

g(θ)+ ε)k, where ε is a small number in case of zero
division and k regulates the influence of closer examples. A small k
tends to smooth the animation and lose fine wrinkles, while a large
k tends to preserve fine details but results in discontinuity. In our
implementation, we set k = 3. In practice, the first five nearest clothing
shape models are considered as nearby and used in synthesizing the
final result, i.e. we set W s

g (θ) = 0 except for the top five largest ones.
Finally, the blending weight for each clothing vertex in example s is

calculated as:

ws =
NG

∑
g=1

(
wgW s

g (θ)/
Ns

∑
s=1

W s
g (θ)

)
. (8)

The computation pipeline of the third term ∑
Ns
s=1 wsLBSθ

θs
( f (β0,θs)) is

basically the same as the second term except for the body shape. In
other words, we first compute clothing instances under the original
shape β0 for each clothing shape model, denoted as f (β0,θs). Then
we blend the LBS results of f (β0,θs) using the same weights as in
the second term. Note that f (β0,θs) and their binding information are
computed only once for an application.

3.5 Refinement
3.5.1 Decaying Effects
In practice, we find our clothing synthesis result may experience sudden
changes for sudden input pose changes. Similar to [75], we prevent
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Fig. 4. The LBS synthesizing process. Given a query pose and shape, we first choose nearby clothing shape models. For each chosen clothing
shape model, we change its shape to the query shape (the original shape), and deform the clothing mesh to the query pose using a linear blend
skinning. Finally, we blend these deformations to get what we call the LBS synthesis for the query shape (the original shape).

Fig. 5. The result before (left) and after (right) our penetration handling
process.

such a problem by blending the distance at the current time step Ds
g

with that of the previous time step D′sg :

Ds
g = ηD′sg +(1−η)Ds

g, (9)

where η is the damping ratio, ranging from 0 to 1. To determine the
damping ratio, we first calculate the relationship between the damping
ratio and the norm of residual, computed under the original body shape.
Then we choose the maximum value of the damping ratio while the
norm of the residual is still low (please see the appendix for more
details). The rationale is that the higher the value of the damping ratio,
the stronger the decaying effect and the less flickering. We believe this
simple technique will introduce some hysteresis while maintaining a
natural result.

3.5.2 Penetration Handling
After we get the synthesized result through Eq. 4, there might be
interpenetrations between the clothing mesh and the body mesh (as
shown in Figure 5). Like SOR [75], we use a re-projection technique
with three steps to resolve this problem.

First, every time we change the shape of the avatar, for each clothing
shape model we re-calculate the initial distance of a clothing vertex
from its closest body vertex. We refer to this as the initial clearance.
Second, in the run-time stage, if the clearance between a clothing vertex
and its closest body vertex is less than the initial clearance, for each
nearby clothing shape model, we re-project the clothing vertex towards
the direction of the normal of its closest body vertex as:{

ŷs = y+d ·~n
ds = max(0, ds

0−hs),
(10)

where y is a clothing vertex synthesized by Eq. 4, ~n is the normal
of the closest body vertex of y, and hs is current clearance. We set

ds
0 = min{hs

0,εp}, where hs
0 is the initial clearance, and εp is to mimic

the penetration depth margin in cloth simulation (in our implementation,
we empirically set εp = 5mm). Finally, we blend the re-projection
results of all nearby examples as ȳ = ∑

Ns
s=1 wsŷs.

3.6 Database Construction
Our database corresponds to clothing shape models corresponding
to various poses. To generate our example database, we first select
32 motion sequences from the CMU motion capture library [14] and
sample a pose for every four frames. In total, we obtain 17k different
poses representing the whole pose space. Then we use weighted K-
means to classify these poses into a certain number of clusters, which
will be used to generate our example database of the clothing shape
model. In our implementation, it takes about one hour to classify these
poses into a typical value of 150 clusters.

The weight of a joint should reflect its importance in clothing ani-
mation. For instance, while the rotation of the knee joint has little, if
any, influence on the animation result of a T-shirt, it plays a crucial role
in the deformation of pants. To this end, we use the sum of the norm
of the sensitivity of a joint, sL, as its weight in the clustering process,
calculated as

sL = ∑
y∈Y

3

∑
m=1
||δ̄y,m||, (11)

where m represents the degree of freedom of joint L and δ̄y,m is the
same as in Eq. 7 (i.e. sL is computed over all the training shapes).

The cluster centers are essentially the anchoring points for Taylor
expansion in Eq. 4. For each anchoring point, we generate a clothing
shape model, which we elaborate on in Sec. 3.2.

4 EXPERIMENTS

We implemented our approach in C++ and reported its performance on
an off-the-shelf computer with an Intel Core i7-7700K CPU 4.20GHz
and 16GB memory. The same material parameters are applied for all
types of clothing: bending stiffness is 10−5N/m , stretching stiffness is
30N/m, area density is 0.1kg/m2, and dynamics and static coefficient
of friction is 0.3.

4.1 Database Construction and Run-time Performance
We create databases for three clothing models: a long-sleeved shirt and
pants for a male body and a T-shirt for a female body (see Figure 1). For
each clothing model, we first calculate its joint weights using Eq. 11;
then we use weighted K-means to obtain anchoring points; finally, we
generate a clothing shape model for each anchoring point. Based on the
independence of the anchoring points, our data points can be generated



Clothing Long-sleeved shirt T-shirt Pants
number of vertices 12.2k 12.0k 11.7k
number of triangles 23.4k 23.8k 22.4k

number of data points 150 / 150 150 / 150 150 / 170
database size (MB) 208.5 / 56.7 206.3 / 56.0 199.5 / 61.7

construction time (hrs) 15 / 7 10 / 6 14 / 8
runtime frame rate (FPS) 56 55 71

Table 1. Statistics for three different clothing databases. The number to
the left of “/” is the data for our method while the number to the right of “/”
indicates the data for the external clothing pose model we use, i.e. SOR.
Note that we have discarded the translation item in SOR and replaced
the sampling method with ours. These measures contribute to the high
speed of the database generation process of SOR.

in parallel. Take T-shirt as an example, we generate 150× 17+ 150
(the data used for our method + the data for SOR) clothing instances to
generate our database. On the other hand, [54] simulated 7,117×17
clothing instances. That is, the size of their database is more than
40 times larger than ours. We also compare the performance with
TailorNet [49]. For a typical clothing deformation, TailorNet generates
about 20 training style-shape pairs, each with 2,600 training poses.
As a result, TailorNet generate 20∗2,600 = 52,000 clothing instances,
and the overall dataset size is about 19 times larger than ours. Moreover,
it takes 20 hours to train their model on a single GeForce RTX 2080
GPU. On the contrary, our approach takes only 3 minutes on an Intel
Core I7-7700K CPU 4.20GHZ to train our clothing shape models (i.e.,
about 400 times faster). At runtime, for a men’s shirt with 7.9k vertices
and 19k triangles, their takes about 80 ms per frame on the CPU, which
is about 4 times slower than our method. Overall, our approach can
provide realtime performance using a CPU for VR applications. Table
1 shows the details of databases constructed for these clothing models.

4.2 Improvement on SOR by applying our sampling
method

Each step of Markov Chain Monte Carlo (MCMC) sampling in SOR
aims to find the pose that maximizes the norm of the residuals of the
synthesized clothing, i.e. they try to minimize the maximum error.
However, a pose with the biggest error is sometime not a natural human
pose. On the other hand, our sampling method can generate poses
that are representative of real life. Therefore, we believe our sampling
method is better than the one used in SOR. To demonstrate this, we
replace the sampling scheme in SOR with our sampling method and
regenerate the database for SOR. The weights of joints in the clustering
process are computed with the sensitivity under the original body shape
from SOR. As shown in Table 2, our method reduces the norm of the
residual force by over 22%, as computed over the 32 motion sequences
described in Sec. 4.1. Furthermore, the sampling points generated by
our sampling method are independent of each other, which enables the
database to be generated in parallel.

4.3 Clothing Shape Model
Many promising learning-based or neural methods can also offer
realtime cloth synthesis performance and generate interesting ef-
fects [38, 49, 54]. However, they require a desktop GPU for runtime
computations and the fidelity can vary based on human poses and
movements. Therefore, we compare our clothing shape model to that
of DRAPE [27], a state-of-the-art realtime CPU-based method that has
low computational overhead. Instead of using the SCAPE body [1],
we map the first four shape parameters of SMPL [41] to their cloth-
ing shape parameters and use our training data to train this mapping
function. We take a men’s long-sleeved shirt as the representative
clothing type for quantitative experiments of clothing shape models.
The results are similar for other clothing types. To better evaluate the
performance of the clothing shape model, we use the average Euclidean
vertex distance to measure the prediction error and compute the average
prediction error for 100 randomly generated body shapes.

Figure 7 (left) illustrates the average errors for 20 different clothing
shape models (20 different poses). Compared to DRAPE, our method

Fig. 6. Convergence of variance during PCA of the training data (left most
column in Figure 2 in Appendix). Our method applies PCA to coordinates
of clothing vertices while DRAPE applies PCA to deformation gradients
of clothing triangles. We can see that our method converges faster and
captures more variance with a given number of principal components.

reduces the error for each clothing shape model by 60%. This can also
be seen in the prediction results of the second clothing shape model for
a random body shape; please see the right part of Figure 7. As shown
in Figure 6, our method captures more variance than DRAPE given
the same number of principal components (98.6% vs. 87.2% when
using the first 5 principal components), which contributes to the higher
performance of our clothing shape model. It is also worth noting that
the square term β 2 reduces the prediction error by 3%.

Furthermore, our mapping function from body shape to clothing
deformation only involves multiplication and addition, and thus is more
efficient to calculate than DRAPE, where an optimization problem
needs to be solved. In practice, it takes 22ms for our clothing shape
model to predict the new clothing information, compared to 300ms for
DRAPE.

4.4 Animation Results
We use SMPL [41] to generate template body meshes under different
shapes and apply dual quaternion blending [34] to animate the body
mesh. The skinning weights are calculated using Pinnochio [4] and the
motion sequences are from the CMU motion capture library [14].

At run-time, given a new input pose, we employ Eq. 4 to obtain a
coarse result and then add the decaying effect and resolve interpenetra-
tions to get the final result. Given a new input shape, we re-compute
the new clothing instance f (β ,θs) and update the binding information
for each clothing shape model (See Sec. 3.4), which takes 0.022s each
time. In our implementation, all clothing shape models can be handled
in parallel, and it takes 0.7s to handle 150 data points for the men’s
long-sleeved shirt.

Theoretically, our algorithm can add the shape dimension to any
clothing pose model. To demonstrate this, we run our method with
both SOR and a sequence of simulated clothing instances. First, we use
SOR as our clothing pose model. We turn off the penetration handling
process in SOR and leave it for our method to address. We also discard
the translation item (rightmost item in Eq. 1 of [75]) in SOR since
we find it has little impact on the final result, especially when using
our sampling method. These measures contribute to the high speed of
our method. We use our sampling method to generate both the SOR
database and our database. As shown in Figure 1, our method can
predict clothing instances with fine wrinkles. Please refer to Table 1 for
detailed statistics.

Second, we use simulated clothing instances as our clothing pose
model. We simulate the garment mesh under a randomly chosen motion
sequence while keeping the same body shape parameters. Then we use
the resulting clothing instances as the clothing pose model in Eq. 4.
Figure 8(b) shows that our method can recover realistic fold patterns.
We can see that the quality of our result relies on the external clothing
pose model, i.e. if the clothing pose model is more accurate, our result
is closer to the ground truth (Figure 8(c)). This can also be seen in
Figure 9. We will elaborate on this in the following section.



nd p 1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
SOR 45.6 28.0 25.7 28.1 29.0 29.8 28.9 26.0 25.8 25.2 23.7 23.3 23.1 22.6 22.3 22.2
Ours 27.6 20.5 20.0 18.4 16.5 18.7 18.2 17.3 17.4 18.9 17.6 17.2 16.4 16.9 17.4 17.2
Imp 39% 27% 22% 34% 43% 37% 37% 33% 33% 25% 26% 26% 29% 25% 22% 22%

Table 2. Quantitative comparison between the original SOR and our method. nd p stands for the number of data points and “Imp” is an abbreviation of
“improvement”. We can see that our sample scheme can reduce the norm of the residual by more than 22%, meaning that the synthesized clothing
deformations of our method are closer to the equilibrium states.

5.0cm

0.0cm

OursSimulation DRAPE

Fig. 7. Comparison of our clothing shape model and that of DRAPE. The bar graph on the left shows the errors for 20 clothing shape models. The
prediction results for the second clothing shape model for a random body shape are shown on the right. The errors are marked in green.

4.5 Convergence
We use the average Euclidean vertex distance between the synthesized
clothing and the simulation clothing as the error to measure the physical
accuracy of our result. The error is calculated over 16×400 randomly
chosen shape and pose pairs (16 shapes and 400 poses for each shape).
As shown in Figure 9, the error of the results with SOR drops to 1.06
cm at 150 data points, which we believe is acceptable in most scenarios.
Given the number of data points, the error of the results with simulation
is much less than that of results with SOR, which demonstrates that
our method can be improved if a more accurate clothing pose model is
employed.

4.6 Ablation Study
The first-order module (see Eq. 2) plays a key role in predicting the
clothing deformation for the input pose and shape based on the an-
choring point. Without this module, we can only simulate a cloth-
ing deformation at each anchoring point without the prediction ca-
pability. Therefore, our approach can only synthesize clothing de-
formations at anchoring points. In this case, the synthesis equation
reduces to f (β ,θ) = ∑

Ns
s=1 ws f (β0,θs), where the symbols are the

same as the ones in Eq. 4. According to Sec. 3.1, all the anchor-
ing points would share the same β values. Given two anchoring points
with different poses, a simple blending of the two clothing deforma-
tions could lead to an unrealistic deformation. Therefore, we apply
LBS to f (β0,θs) to improve the deformation prediction for the in-
put pose. Our final equation for the ablation study corresponds to
f (β ,θ) = ∑

Ns
s=1 wsLBSθ

θs
( f (β0,θs)). In practice, this formulation re-

sults in poor synthesis results (see Fig. 10).

4.7 VR Scenarios
Our method can be applied to VR scenarios. As shown in Figure 11, we
provide the user with an immersive VR experience from a first-person
perspective with an HTC Vive (left most). The clothing deformations
for the agents are generated by our method.

4.8 User Evaluation
We conducted a user study to demonstrate the perceptual benefit of
our method compared to the prior technique in generating clothing
deformations for the agent in immersive settings.

Experiment Goals & Expectations: We hypothesize that the cloth-
ing deformations generated by our method will exhibit more detailed
wrinkles and more dynamics compared to prior methods and that par-
ticipants will strongly prefer our results to those of prior methods.

Experimental Design: The study was conducted based on a within-
subjects, paired-comparison design. Participants explored two simu-
lations with a fixed exposure time wearing a HTC Vive headset. The
clothing deformations in the two simulations were generated using our
method and the LBS method. The order of scenes was counterbalanced,
as well as the order of the methods. After these two simulations, par-
ticipants answered a set of questions, and our questionnaire design is
inspired by prior methods [22, 47, 56].

Comparison Methods: Previous methods generally adopt skinning
methods to deform the clothing mesh of an agent in virtual environ-
ments. Therefore, we evaluated our method against the Linear Blend
Skinning (LBS) method.

Environments: We use three scenarios for the user study. The
first scenario was comprised of a man sweeping in the living room,
while wearing a long-sleeved shirt and pants. The second scenario
consisted of a man that has a different shape and wiping the windows,
while wearing the same clothes as the first scenario. The last scenario
corresponded to a woman wandering in a living room, while wearing a
t-shirt and shorts. Participants can walk around and observe the agent
doing some tasks. Please refer to Figure 11 and the supplemental video
for more details.

Metrics: Participants were asked to indicate their preference for a
method using a 7-point Likert scale, with 1 indicating a strong prefer-
ence for the method presented first, 7 indicating a strong preference for
the method presented second, and 4 indicating no preference. In terms
of reporting the results, we normalized the participant responses so that
1 indicates a strong preference for our method.

Results: Our study was taken by 18 participants, 9 male, with a
mean age of 24.44± 1.95 years. The participant responses clearly
demonstrate the benefits of our algorithm. For each question, we
performed a one-sample t-test comparing the mean of the question with
a hypothetical mean of 4 (no preference or no impact). The question
“Which clothing animation looks more realistic?” was shown to be
significant for each scenario: t(17) = -6.336, p < 0.001; t(17) = -8.166,
p < 0.001; t(17) = -7.114, p < 0.001. The question “Which wrinkles
look more natural?” was also significant for each scenario: t(17) =
-6.761, p < 0.001; t(17) = -7.432, p < 0.001; t(17) = -6.101, p < 0.001,
as was “Which agent looks more like a real person?”: t(17) = -4.579,
p < 0.001; t(17) = -6.216, p < 0.001; t(17) = -5.532, p < 0.001;.
Figure 12 and Table 3 provide further details on participant responses.

5 DISCUSSION

The rationale of our sampling method is that Taylor expansion locally
approximates surrounding values of an anchoring point while cluster
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Fig. 8. Comparison between the synthesis results achieved using SOR as the clothing pose model and those achieved using simulation as the
clothing pose model. (a) Synthesis result (left) using SOR (right); (b) synthesis result (left) using simulation (right); (c) simulation result; (d) Euclidean
vertex distance between the synthesis results and the simulation clothing. The errors are marked in green. We can see that the synthesis result
achieved using simulation (right) has fewer errors than the result achieved using SOR (left).

Question (Which...) 1 2 3 4 5 6 7 mean SD
clothing animation looks more realistic? 4 / 4 / 4 5 / 6 / 9 6 / 7 / 3 3 / 1 / 1 0 / 0 / 1 0 / 0 / 0 0 / 0 / 0 2.44 / 2.28 / 2.22 ±1.042 / ±0.895 / ±1.060
wrinkles look more natural? 6 / 4 / 1 7 / 12 / 11 1 / 1 / 4 4 / 0 / 0 0 / 0 / 2 0 / 1 /0 0 / 0 / 0 2.17 / 2.06 / 2.50 ±1.150 / ±1.110 / ±1.043
agent looks more like a real person? 4 / 5 / 5 6 / 6 / 3 4 / 3 / 6 3 / 4 / 4 0 / 0 / 0 1 / 0 / 0 0 / 0 / 0 2.56 / 2.33 / 2.50 ±1.338 / ±1.138 / ±1.150

Table 3. The response frequency of subjects in the study described in Sec. 4.8. Scores are normalized such that 1 indicates a strong preference for
our method and 7 indicates a strong preference for the LBS method. For each scenario (separated by “/”), participants prefer our method over the
prior method on several dimensions.

Fig. 9. Convergence of synthesis error while using an increasing number
of data points.

(a) Our results with (right) and
without (left) penetration handling.

(b) Ablation study results with (right)
and without (left) penetration handling.

Fig. 10. Ablation study. Without the first-order module, the synthesis
equation does not result in good deformation prediction results for new
body shapes and could result in non-plausible deformations.

centers are the best set of points to approximate all the points, i.e.
they are the best set of anchoring points. Compared to the MCMC
sampling process used in SOR [75], our sampling process is able to
sample more typical poses in real life, while their sampling step finds a
pose that maximizes the error of the synthesized clothing, which might
produce weird poses. Experimental results show that SOR results can be
significantly improved when using our sampling method. Additionally,
thanks to the mutual independence of our data points, our database
can be constructed in parallel, while the MCMC process in SOR must
run serially since their sampling process depends on the previously
constructed data. Please refer to Sec. 4 for details.

Limitations: Our method assumes that the clothing coordinate dif-
ferences introduced by body shape variation are linear with body pose,
i.e. the clothing coordinate differences caused by body shape variation
under the new pose can be predicted from the anchoring pose using

Fig. 11. The avatar in a VR scenario. We provide the user with an
immersive VR experience from a first-person perspective with HTC Vive.
The avatar looks around and observes an agent performing some tasks.

LBS. This hinders the application of our approach to garments that are
loose on the avatar (See Fig. 13).

Furthermore, the final results of our method are highly dependent on
the clothing pose model used. If the clothing pose model is not accurate,
then our result is also not accurate. In addition, the efficiency of the
clothing pose model creates a bottle-neck in our method. To overcome
this difficulty, we plan to develop our own clothing pose model in the
future. The wrinkles and folds generated in the animation suffer from
some sudden changes when body poses change too quickly. The reason
for this is that our scheme is trained on clothing instances of static
equilibrium, and the estimations from different poses are inconsistent.
Although we have employed a decaying factor to smooth the animation,
it cannot solve this problem completely.

Finally, our method cannot guarantee that all the penetrations are
resolved, especially when the clothing is too tight on the body. In
this case, the LBS result for each anchoring pose may result in deep
penetrations, and the blending result will make penetrations even worse,
which is beyond the ability of our penetration resolving method to
address. When this is the case, we believe that the clothing is not
suitable for the body, suggesting that the clothing is a bad fit. In
addition, when the clothing has too many folds, self-penetration might
occur in our synthesis results.

Future work: We want to extend our method to other control pa-
rameters like clothing material and clothing patterns. For clothing
material, for example, we first need to devise a clothing material model.
Given a set of clothing material parameters, this model can predict the
corresponding clothing deformation. Then, we sample some valuable
poses as the Taylor expansion anchoring points. Finally, we blend local
approximation results at run-time.

We currently use the average sensitivity of 17 training shapes to
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Fig. 12. Participant preferences in user evaluation. The questions were “Which clothing animation looks more realistic?”, “Which wrinkles look
more natural?”, and “Which agent looks more like a real person?”. Scores are normalized such that 1 indicates a strong preference for our method
and 7 indicates a strong preference for LBS method. For each scenario, participants rated our method preferably in terms of generating more
realistic or plausible clothing animation (2.44±1.042, 2.28±0.895, 2.22±1.060), generating more natural-looking wrinkles (2.17±1.150, 2.06±1.110,
2.50±1.043), and enhancing the presence of the agent (2.56±1.338, 2.33±1.138, 2.50±1.150).

Fig. 13. Our method may not work well when the garment on the avatar
is too loose. For a T-shirt model originally designed for the SMPL body
with the first four parameters = [0,0,0,0], our method may produce poor
results (right) for another avatar with parameters = [-2,2,0,0] (left).

calculate the distances of anchoring points. However, as the body shape
changes, the sensitivity changes accordingly. In the future, we plan to
train a sensitivity model, i.e. a model that can predict the corresponding
sensitivity of the clothing given a new set of body shape parameters.
We believe this will help us to find better anchoring points at run-time.
It may also be useful to develop hybrid techniques that can combine our
approach with physics-based simulation or neural methods to improve
the fidelity or realism of cloth effects.

6 CONCLUSION

In this paper, we have presented a clothing synthesis scheme that uses
Taylor expansion to combine two independent components: the pose-
dependent deformation and the shape-dependent deformation. As a
result, our method can add the shape dimension to various clothing
pose models. Our method does not need to modify or retrain the
clothing pose model. The core innovation here is that we regard clothing
deformation as a function of body shape parameters and body pose
parameters and use Taylor expansion to locally approximate clothing
deformations around anchoring points. Due to the high computational
cost of higher-order derivatives, we use linear Taylor expansion in both
offline and online processes. Our clothing shape model can efficiently
predict realistic clothing deformations under various body shapes and
has the potential for use as a stand-alone application.

Using only a CPU, our method can generate realistic clothing de-
formations under various body poses and shapes in real time without
resizing the cloth model. Furthermore, we believe that our method
can be extended to add other parameters such as clothing material and
clothing pattern to clothing pose models.
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Appendix: AgentDress: Realtime Clothing Synthesis for Virtual
Agents using Plausible Deformations

Category: Research

Paper Type: Technology

1 INTRODUCTION

This document consists of additional information for the paper Agent-
Dress: Realtime Clothing Synthesis for Virtual Agents using Plausible
Deformations. Section 2 validates the local linear separability of pose-
dependent deformation and shape-dependent deformation. Figure 2
presents qualitative comparison between the original SOR and our
method (quantitative comparison is in Sec. 4.2 of the manuscript).
Figure 3 illustrates how we choose the damping ratio described in Sec.
3.5.1 of the manuscript. Figure 4 presents more results of our method.
Figure 5 illustrates part of our training data.

2 SEPARABILITY

In this section, we validate the local linear separability of pose-
dependent deformation and shape-dependent deformation. For an an-
choring point, we uniformly sample m neighboring data points (we set
m = 100 in our experiment), all of which are a distance r from the an-
choring point. Specifically, we randomly generate 3NL +4 (number of
joint angles plus 4 shape parameters) numbers that are then concatenat-
ed into a vector~e. We normalize~e in terms of 2-norm and then multiply
it by r. The first 3NL components of the final~e are the displacement of
joint angles from the anchoring point while the last 4 components are
the displacement of the shape parameters. Then, for each neighboring
point, we calculate the average Euclidean vertex distance between the
simulation result and the synthesized result as the approximation error.
The average approximation error of all neighboring points is regarded
as the approximation error of the anchoring point at distance r.

We run this procedure both practically and theoretically. Practically,
we apply Eq. 3 in the main document to compute the synthesized
clothing; theoretically, we replace each term on the right-hand side of
Eq. 3 (i.e. f (β0,θ); f (β ,θ0); and f (β0,θ0)) with the corresponding
simulation result. Hence, in the practical experiment, the error comes
from three sources: the clothing pose model, the clothing shape model,
and the linear approximation. In the theoretical experiment, the error
is caused only by the linear approximation. As shown in Figure 1,
for a randomly chosen anchoring point, both results can recover the
folds and wrinkles with good fidelity; the error of the theoretical exper-
iment is smaller than that of the practical experiment given the same
distance r. Meanwhile, when r is small, both approximation errors are
relatively small. The errors converge to zero when r approaches ze-
ro. This demonstrates the approximate separability of pose-dependent
deformation and shape-dependent deformation.

6.0cm

0.0cm

(a) (b) (c) (d)

Fig. 2. Qualitative comparison between the original SOR and our method:
(a) original SOR result; (b) error between original SOR result and the
simulation result; (c) our result; (d) error between our result and the
simulation result. The errors are marked in green. We can see that our
result is closer to the ground truth and looks more natural, especially in
the sleeve area.

optimal damping ratio

Fig. 3. Relationship between the damping ratio and the norm of the
residual. We choose the maximum damping ratio that keeps the norm of
the residual low.
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Anchoring point:
 anchoring pose & the original shape

simulation result
on new pose and shape

practical result
error: 0.78cm

theoretical result
error: 0.27cm

Fig. 1. Validation of the local linear separability of pose-dependent deformation and shape-dependent deformation. Practically, we use Eq. 3 in the
manuscript to compute the synthesized clothing and, theoretically, we replace each term on the right-hand side of Eq. 3 with the corresponding
simulation result. As shown in the graph, both approximation errors converge to zero when the distance to the anchoring point approaches zero. The
images on the right are the results for a randomly generated pose and shape with r = 0.5. Both results (the middle two) can realistically recover the
folds and wrinkles (the right-most figure is the ground truth) while the theoretical result has a smaller error.

Fig. 4. Synthesis results. Clothing patterns are shown in blue.
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Fig. 5. Part of our training data. Each column is the training data for a clothing shape model. The poses in each row are the clustering result in the
database construction stage.
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