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Figure 1: Given rendered 3D faces as input (top row), our method effectively mitigates the “uncanny valley” effect and improves the overall
authenticity of rendered portraits while preserving facial identity (bottom row). Please zoom in for a better view.

Abstract
Despite rapid advances in computer graphics, creating high-quality photo-realistic virtual portraits is prohibitively expensive.
Furthermore, the well-known “uncanny valley” effect in rendered portraits has a significant impact on the user experience,
especially when the depiction closely resembles a human likeness, where any minor artifacts can evoke feelings of eeriness and
repulsiveness. In this paper, we present a novel photo-realistic portrait generation framework that can effectively mitigate the
“uncanny valley” effect and improve the overall authenticity of rendered portraits. Our key idea is to employ transfer learning
to learn an identity-consistent mapping from the latent space of rendered portraits to that of real portraits. During the inference
stage, the input portrait of an avatar can be directly transferred to a realistic portrait by changing its appearance style while
maintaining the facial identity. To this end, we collect a new dataset, Daz-Rendered-Faces-HQ (DRFHQ), that is specifically
designed for rendering-style portraits. We leverage this dataset to fine-tune the StyleGAN2 generator, using our carefully crafted
framework, which helps to preserve the geometric and color features relevant to facial identity. We evaluate our framework using
portraits with diverse gender, age, and race variations. Qualitative and quantitative evaluations and ablation studies show the
advantages of our method compared to state-of-the-art approaches.

CCS Concepts
• Computing methodologies → Image processing;

† Xiaogang Jin is the corresponding author. E-mail: jin@cad.zju.edu.cn

1. Introduction

Generating photo-realistic and indistinguishable faces from 3D ren-
derings has long been a challenge. Over the last two decades,
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the growth of entertainment industries such as animation, film,
and video games has led to tremendous advances in high-quality
face modeling and rendering technology. Under passive illumina-
tion, approaches based on multi-view stereo systems [BBB∗10,
BHB∗11,BHPS10,FNH∗17,RGB∗20] can reconstruct high-quality
face geometry. Following the pioneering work of Debevec et al.
[DHT∗00], a series of light-stage-based facial appearance capture
methods [SXZ∗20, GFT∗11, GFT∗15, GSSM15] have been pro-
posed to capture the pore-level properties of a human face. While
these approaches can help produce high-quality faces, they are
highly expensive and time-consuming. Furthermore, even though
these faces are of superior quality, they contain subtle unrealis-
tic details that are immediately noticeable because humans are
innately sensitive to such details when perceiving faces. The
“uncanny valley” effect, first described by Japanese roboticist
Masahiro Mori [Mor70], shows how imperfectly human-like ob-
jects, such as robots, 3D animations, and life-like dolls, can have
a negative impact on user experience and interaction [Moo12]. Be-
cause these impersonations do not have a lifelike appearance, they
can cause a sudden shift in a person’s response from empathy to
eerie, frightening, or revulsion, also known as “uncanny" sensa-
tions.

The rise of deep learning, in particular Generative Adversar-
ial Networks (GANs) [GPAM∗14], has inspired researchers to de-
velop high-quality face generation methods [ZPIE17, CUYH20].
In recent years, StyleGAN [KLA19] and its variants [KLA∗20,
KAH∗20,KAL∗21] have paved the way for the semantic manipula-
tion of photo-realistic portraits. The existing methods that can im-
prove the realism of avatar faces [GKJS20, CWZ∗21] are all based
on projecting the rendering-style faces into the pretrained Style-
GAN2 generator, thanks to its high generation quality and diversity.
Garbin et al. [GKJS20] matches a non-photorealistic portrait to a la-
tent code of the pretrained StyleGAN2 generator while maintaining
pose, expression, hair, and lighting consistency. Despite the attempt
to adapt to the real face domain, their method necessitates intri-
cate and time-consuming processing. Furthermore, since the input
is out of the domain of the pretrained model, the output often has
artifacts such as distortion and identity inconsistency. Chandran et
al. [CWZ∗21] project high-quality yet incompletely rendered facial
skin into the latent space of StyleGAN2, generating temporally-
coherent and photo-realistic portraits. Nevertheless, their method
is more of an inpainting process for the missing face components,
such as hair, eyes, and mouth interior. Also, the output images still
retain the rendering style thus lack authenticity.

The limitations of the existing works motivate us to present
a novel StyleGAN-based portrait generation framework to in-
crease the authenticity of rendered portraits. We propose a transfer-
learning-based approach to establish the correlation between por-
trait images with different styles. The key idea is to develop an
identity-consistent fine-tuning method that results in a rendering-
style generator with facial identities matching those of the realistic-
style StyleGAN2 generator. We treat a latent code in the W+ latent
space of a portrait as an implicit representation of both portrait style
and identity. While the portrait style can be either a rendering style
or a realistic style corresponding to the two generators, the por-
trait identity is shared in-between. That is, if we project a rendered
portrait into the rendering-style generator’s W+ latent space, the

realistic-style StyleGAN2 generator can interpret the resulting la-
tent code as a realistic portrait with the rendered portrait’s facial
identity. We find that by doing so, the rendering-style can be ef-
fectively removed from the final output, and the facial identity can
be preserved without distortion. Based on this principle, we first
collect a new dataset of rendering-style portraits, Daz-Rendered-
Faces-HQ (DRFHQ). Inspired by StyleGAN2-ada [KAH∗20], we
use DRFHQ to fine-tune the StyleGAN2 generator, which has been
initialized with the weights of the StyleGAN2-FFHQ generator,
resulting in a rendering-style StyleGAN2-DRFHQ generator. Dur-
ing fine-tuning, we constrain with sketches and color to help the
new generator maintain facial identities. Then we perform latent
code optimization to project the input rendering-style portrait into
StyleGAN2-DRFHQ’s latent space. Finally, we feed the resulting
latent code into the pretrained StyleGAN2-FFHQ generator, yield-
ing a photo-realistic portrait with preserved facial identity. Exten-
sive evaluations demonstrate that our work is capable of generating
plausible results for rendered portraits.

In summary, our work makes the following contributions:

• We present a novel portrait generation framework to overcome
the “uncanny valley” effect for rendered 3D faces.

• Based on a new high-quality rendering-style portrait dataset
(DRFHQ), we propose a novel transfer learning approach to cor-
relate portraits with different styles in the learned latent space
while preserving facial identity.

2. Related Work

Portrait Synthesis. Human face modeling and rendering is a cru-
cial and active research topic for applications in the entertain-
ment, film, and television industries. Most physically-based ren-
dering methods require a multi-view stereo system to reconstruct
pore-level geometry and skin reflectance properties [FNH∗17,
LCC∗22, LBZ∗20, BHB∗11, RGB∗20]. To capture detailed hu-
man faces, a number of light-stage-based approaches [SXZ∗20,
GFT∗11, GFT∗15, GSSM15] have been developed based on the
seminal work for facial appearance capturing and reconstruction
[DHT∗00]. Although the photo-realistic renderings of avatars are
almost indistinguishable from real humans, the “uncanny valley”
effect occurs when an anomaly is revealed from their seemingly
realistic appearance [SN07]. Researchers have suggested methods
to measure the “uncanny valley” effect [SN07, HM17], however,
it is difficult to eliminate such an unpleasant effect in traditional
rendering. Since their introduction in 2020, neural radiance fields
(NeRF) [MST∗20] have spawned a slew of downstream applica-
tions, including face synthesis [GZX∗22, HPX∗22, ZZSC22]. Re-
searchers also combine NeRF with generators [SLNG20,GLWT22,
CMK∗21, XLSL22] to support view-consistent image synthesis
without the need for multi-view images of a specific person. How-
ever, existing face modelling and rendering methods still strug-
gle to produce photo-realistic results that can avoid the “uncanny
valley” effect. The introduction of generative adversarial networks
(GANs) [GPAM∗14] sparks an increasing number of face synthe-
sis models [GAA∗17, KALL18]. Among these works, StyleGAN
[KLA19, KLA∗20, KAL∗21] is mostly favored due to its synthe-
sis quality and manipulation ability, and serves as an inspiration
for many downstream works [PDKR22,ZBG21]. We also build our
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framework based on the StyleGAN model since it not only pro-
vides important prior information of facial identity and appearance
on various human faces, but also allows efficient portrait editing at
a high level.

Face Style Transfer using StyleGAN. Portrait style transfer using
StyleGAN is also related to our work. Pinkney and Adler [PA20]
use a resolution-dependent method to interpolate different styles
at appearance and geometry levels. StyleCariGAN [JJJ∗21] mod-
ulates coarse layer feature maps of StyleGAN by shape exagger-
ation blocks to produce desirable caricature shape exaggerations.
However, it requires a dataset that contains thousands of images,
whereas other approaches have been proposed to reduce the dataset
size to a few hundred [YJLL22a], ∼ 100 [SLL∗21, MYC∗22],
∼ 10 [OLL∗21], or even to achieve one-shot domain adaptation
[ZAFW22, ZLH∗22]. Wu et al. [WNSL21] conduct a thorough in-
vestigation into the properties of aligned StyleGAN and use their
findings to investigate potential applications such as cross-domain
image morphing and zero-shot vision tasks. In addition to exam-
ple images, StyleGAN-NADA [GPM∗22] uses text prompt as in-
put to stylize portraits with the help of a pretrained CLIP model.
This line of research has been expanded to videos [YJLL22b] to
achieve consistent results in a sequence. Sang et al. [SZS∗22] also
attempt to create stylized and editable 3D models directly from
users’ avatars. However, the above methods are intended to gen-
erate stylized portraits from real photos, whereas our work aims
at the opposite: transfer the “rendering-style” of the rendered por-
traits into the “realistic-style” of the results that are indistinguish-
able from real portraits.

Face Realism Improvement using StyleGAN. Improving the re-
alism of rendered faces is still a challenging issue. Garbin et al.
[GKJS20] propose a zero-shot image projection algorithm that re-
quires no training data to find the latent code that most closely
matches the input rendered face. Their objective is the most sim-
ilar to ours. However, their method requires a significant amount of
processing time and may result in inconsistencies in facial identity.
Chandran at al. [CWZ∗21] use a multi-frame consistent method
to project the traditional incomplete face rendering results into la-
tent space to achieve photo-realistic rendering and animation of a
full-head portrait. Despite generating realistic full-head portraits,
their primary goal is to inpaint the missing components. As a re-
sult, their method preserves the input rendered skin but is incapable
of improving the authenticity of resultant faces. The StyleGAN en-
coders [TAN∗21,RAP∗21,RMBCO22,APC21,ATM∗22] and some
optimization-based methods [AQW19, RMBCO22, AQW20] can
project the rendered faces into StyleGAN’s latent space. However,
the rendered faces are far outside the domain of the real faces, thus
resulting in distortion and artifacts or maintaining the “rendering-
style”. Different from these methods, we focus on producing realis-
tic portraits for digital 3D faces while preserving the facial identity.

3. Method

Our objective is to improve the authenticity of digital 3D faces
by substituting them with photo-realistic versions that are indistin-
guishable, all while preserving the avatar’s inherent facial identity.
Fig. 2 demonstrates the key idea of our approach. We conduct por-
trait replacement in the latent space by employing latent code that
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(a) Identity-consistent transfer learning.

(b) The inference phase.

Figure 2: The central idea of our method. (a) In identity-consistent
transfer learning, a single latent code in the W+ latent space can
be interpreted as portraits with the same facial identity but dif-
ferent image styles by Greal and Grendering. (b) In our inference
phase, we invert the input rendered portrait to the W+ latent space
of Grendering. The resulting latent codes can be interpreted as a
realistic-style portrait by Greal while preserving the facial identity
of the input rendered portrait. The rendered portrait is from the Di-
verse Human Faces [AI22] dataset.

implicitly represents portrait style and identity as the interface in-
between. As shown in Fig. 2 (a), we establish identity-consistent
transfer learning on the StyleGAN generator of realistic portraits
(Greal), resulting in a fine-tuned generator (Grendering) of portraits
with a different style, i.e., the “rendering” style. The transfer learn-
ing is performed in a way that given a single latent code in the W+
latent space, the portrait identity can be well preserved in both gen-
erators, only the portrait style is interpreted differently as “realistic-
style” by Greal and “rendering-style” by Grendering. In other words,
the same latent code can generate two portraits with distinct styles
but matched identity. Unlike the style change in the fine-tuning pro-
cess, during the inference phase (see Fig. 2 (b)), we aim to “invert”
the style of the input portrait from “rendering” to “realistic”. We
begin by applying GAN inversion to obtain the avatar’s latent code
in the W+ latent space of Grendering. The latent code is then fed
into Greal to adapt to the realistic style while preserving identity. In
the end, we achieve the final result - a photo-realistic portrait with
the identity of the input avatar.
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Figure 3: An overview of our identity-consistent transfer learning network’s training stage. We begin by initializing a rendering style gen-
erator Grendering with the weights of the pretrained StyleGAN2-FFHQ generator (Greal), which can provide various face priors. During the
fine-tuning of the generator, we only update Grendering and the discriminator, while the sketch generator, Greal , and the mapping network are
frozen. The Lcolor and Lsketch loss encourages small variations in color and face contour between the image generated by Greal and the image
generated by Grendering.

The rest of the section is organized as follows. We begin by intro-
ducing DRFHQ, a new high-quality rendering-style portrait dataset
used for transfer learning (Sec. 3.1). Then we elaborate our trans-
fer learning strategy, which initializes Grendering with the weights
of Greal and fine-tunes Grendering with a different style while mini-
mizing other irrelevant changes (Sec. 3.2). Finally, we present how
we increase the authenticity of rendered portraits in the inference
phase (Sec. 3.3).

3.1. Daz-Rendered-Faces-HQ dataset

We create Daz-Rendered-Faces-HQ (DRFHQ), a dataset that com-
prises high-quality rendering-style portrait images, by collecting
daz3d.com’s gallery [Pro23]. DRFHQ contains 11,399 high-quality
PNG images in 1024× 1024 resolution, with a wide range of gen-
der, age, pose, race, hairstyle, etc. We first align and crop the raw
images using Dlib [KS14] according to the preprocessing method
of FFHQ, then manually filter the aligned images. Due to copy-
right restrictions, we cannot release the collected images but will
provide the corresponding URLs as an alternative. Although sev-
eral publicly available rendering-style datasets exist [WBH∗21,
LLQ∗21, OAA20, AI22], their face resolution is insufficient for
high-quality digital face display [WBH∗21, AI22], or they only
contain a small number of rendered faces [LLQ∗21, OAA20], or
they are rendered using a small number of face models (100 differ-
ent identities) [AI22]. DRFHQ is the first high-quality rendering-
style dataset with a face region resolution of 1024× 1024 that can
be extended to downstream tasks, to the best of our knowledge.

3.2. Identity-Consistent Transfer Learning

Inspired by StyleGAN-ada [KAH∗20], we use DRFHQ to fine-
tune the generator Grendering initialized with the weights of
the pretrained StyleGAN2-FFHQ generator Greal , resulting in a
new stylized generator StyleGAN2-DRFHQ capable of producing
rendering-style portraits. However, simply fine-tuning Grendering
leads to large facial identity deviations in the fine-tuned latent space
compared to the original. To address this issue, we use two addi-
tional losses during the fine-tuning (training) process to constrain
the facial identity. The training pipeline is illustrated in Fig. 3.

Our idea is to use the same latent code in W+ latent space to
implicitly represent the rendered face and its realistic face replace-
ment, hence Grendering and Greal are required to share the same W+
latent space. To do this, we freeze the mapping network during fine-
tuning, resulting in a single latent code z in Z latent space being
mapped to the same latent code w+ ∈W+ of Grendering and Greal .
We will omit the unmodified mapping network in the remainder of
this section and use w+ as the latent code.

Sketch loss. Inspired by DeepFaceEditing [CLL∗21], the geo-
metric features of the face can be well represented by sketches.
Therefore, we add the following L1 loss function:

Lsketch =∥S(Greal(w+) ↓512)

−S(Grendering(w+) ↓512)∥1,
(1)

where Grendering is to be fine-tuned and initialized by the pre-
trained Greal , S is the pretrained sketch extractor in DeepFaceEdit-
ing [CLL∗21] model, and ↓512 denotes the interpolation operation
that downsamples the images to 512×512. According to Eq. 1, the
output of Greal and Grendering are fed into S separately to obtain
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Figure 4: Diverse photo-real faces generated by our method. The generated faces overcome the “uncanny valley” effect by maintaining
identity, facial contour, and color. The input rendered portraits are from the Diverse Human Faces dataset (columns 1, 2), Paul Schultz at
Flickr [Fli22] (columns 3, 4), and rendering-style images generated using Stable Diffusion [RBL∗22] (columns 5-8).

two face sketches, and the geometric contours of the two faces are
constrained to be as similar as possible by using the L1 norm.

Color loss. To preserve the portrait color during transfer learn-
ing, we propose a color loss at the perceptual level based on the
LPIPS loss [ZIE∗18]. However, LPIPS captures the facial appear-
ance similarity, including texture and style-related details, pre-
venting the generator from learning rendering-style. Inspired by
[GKJS20], we solve this problem by removing the appearance de-
tails from the images. Specifically, we first downsample the images
to 256×256 and apply Gaussian blur, then feed the images into the
VGG16 network to compute the LPIPS loss:

Lcolor = LPIPS(B(Greal(w+) ↓256),

B(Grendering(w+) ↓256),
(2)

where B is the Gaussian blur operation with kernel = 13 and σ =
10, and ↓256 denotes the interpolation operation that downsamples
the images to 256×256.

Our objective loss function used in fine-tuning is the weighted
sum of the following losses:

LG = Lorigin+λsLsketch +λcLcolor, (3)

where we empirically set λs = 5 × 10−6 and λc = 3.75 × 103,
Lorigin is the original loss of StyleGAN-ada.

3.3. Inference

In the inference phase, we use a direct latent optimization
[KLA∗20] inversion method to project the rendered portrait x into
the latent space of Grendering. As we aim for the least distortion in-
stead of the best editability, we optimize in the W+ latent space,
which has greater expressive potential:

w+∗,n∗ =argmin
w+,n

LPIPS(x,Grendering(w+,n))

+λnLn(n),
(4)

where Grendering(w+,n) is image generated by Grendering with
noise n, Ln is a noise regularization term, and λn = 1e5. We ini-
tialize w+ as the average latent code in the W+ latent space and

use a 500-step optimization to get w+∗. Finally, we input the re-
sulting latent code w+∗ to Greal , yielding a photo-realistic portrait.
We do not employ the optimized noise n∗ here because the regular-
ization term Ln prevents the noise vector from influencing the final
result.

Figure 5: We apply our method to digital apparel sample display
images. Input images are courtesy of Yayat Punching at the CON-
NECT store [CLO22].

4. Results

This section showcases the outcomes of our photo-realistic portrait
generation framework. We present the results of our approach as
applied to a series of rendering-style portraits. In Figs. 1 and 4,
we display a variety of results that span various genders, ages, and
races, effectively illustrating how our approach can adapt across di-
verse data sources (e.g. Diverse Human Faces dataset [AI22] , inter-
net images, and rendering-style images generated using Stable Dif-
fusion [RBL∗22]. Additionally, we also showcase some examples
where we stitch the generated realistic faces back onto the original
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apparel display renderings (refer to Fig. 5 and Fig. 16). Our gen-
erated realistic faces can easily blend in with the rendered garment
and virtual avatar bodies with only minor post-processing (see Sec.
8). The adoption of our method can significantly enhance the over-
all authenticity of apparel display renderings. In sum, our method
effectively overcomes the “uncanny valley” effect (see Sec. 7) by
largely improving the authenticity of rendered faces while avoiding
portrait infringement liability due to using generated faces. Further-
more, it preserves the facial identity, aligning with the designer’s
preference.

5. Experiments

5.1. Implementation Details

Networks. We use the StyleGAN2-ada architecture [KAH∗20] as
the backbone for our rendering-style generator. StyleGAN2-FFHQ
is the official pretrained model of StyleGAN2-ada on the FFHQ
dataset. We use the training parameters provided in the stylegan2
config of StyleGAN2-ada to fine-tune StyleGAN2-DRFHQ while
freezing the weights of the ToRGB layers and the mapping net-
work. We only update Grendering and the discriminator, while Greal
and the sketch extractor are fixed. The training dataset is amplified
with x-flips, and the fine-tuning time is about 40 minutes on 4 Tesla
V100 GPUs, we stop fine-tuning when the discriminator had seen a
total of 40k real images. PyTorch [PGM∗19] is utilized to train the
networks and all comparisons are conducted on a desktop PC with
Intel Core i7-12700F 2.10 GHz CPU, 32GB RAM and GeForce
RTX 3080Ti GPU (12GB memory). All images used in the train-
ing and testing stages have a resolution of 1024×1024. Regarding
runtime performance, the average time for projecting a rendered
portrait into a latent code is 27.6 seconds, with the generation of
the final result only taking 0.05 seconds. All the other steps within
our approach require negligible time.

Dataset. The fine-tuned rendering-style generator is trained us-
ing the DRFHQ dataset’s 11,399 rendering-style portraits. The test-
ing images in the paper are from the Diverse Human Faces [AI22]
dataset, the CONNECT store [CLO22] and rendering-style images
generated using Stable Diffusion [RBL∗22]. Specifically, we em-
ploy the fine-tuned and LoRA models based on Stable Diffusion
1.5 from https://civitai.com/ for generating rendering-
style images.

5.2. Comparison with State-of-the-Art Methods

In this section, we begin by presenting comparisons between
our proposed method and state-of-the-art (SOTA) facial realism-
improving methods. In Sec. 2, we mentioned that previous works,
such as [GKJS20], [CWZ∗21], can enhance the realism of rendered
faces. However, their datasets and codes are not publicly accessible.
Therefore, we rely on comparisons with StyleGAN inversion meth-
ods (Sec. 5.2.1) and SDEdit (Sec. 5.2.2). Subsequently, we provide
comparisons between our identity-consistent style-transfer method
and SOTA style-transfer methods (Sec. 5.2.3).

5.2.1. Comparison with StyleGAN inversion methods

In this section, we perform qualitative and quantitative experi-
ments to compare our method with StyleGAN inversion methods,

which project unrealistic images onto the manifold of natural im-
ages through image inversion.

Qualitative evaluation. To accomplish qualitative comparison,
we directly project the input rendered portrait into the W+ la-
tent space of StyleGAN2-FFHQ via StyleGAN inversion, and then
compare the inversion results with our own outcomes. As illus-
trated in Fig. 7, we use e4e [TAN∗21], pSp [RAP∗21], Hyper-
Style [ATM∗22], ReStyle [APC21], and latent code optimization
[RMBCO22], for comparison. Those encoders are trained on both
FFHQ dataset and StyleGAN2-FFHQ. For ReStyle, we run test-
ing on both e4e and pSp encoders, using the ReStyle scheme. For
latent code optimization, we use the same inversion method de-
scribed in Sec. 3.3 to project the input images into the W+ latent
space of StyleGAN2-FFHQ. It is clear that those encoders lose
many skin characteristics and produce faces with only smooth skin,
which lacks realism. Furthermore, they retain the rendering style of
the input images that looks unrealistic. Our method, on the other
hand, produces more photo-realistic results with more natural fa-
cial details and completely changes the input image’s unrealistic
rendering-style appearance while maintaining facial identity con-
sistency.

Quantitative evaluation. To the best of our knowledge, there is
no currently viable quantitative metric for assessing the authentic-
ity of synthetic portraits. Furthermore, determining the authenticity
of a portrait is largely dependent on human cognitive abilities. In
light of this, we devised a user study as a quantitative experiment,
with the goal of comparing the authenticity of the results produced
by our proposed method to those produced by SOTA StyleGAN in-
version methods. We collected ten rendered portraits and subjected
them to the six StyleGAN inversion methods mentioned above (see
qualitative experiments in Sec. 5.2.1) and our proposed method, re-
spectively. We presented these ten sets of test cases sequentially
to 20 participants, randomly displaying the results for authenticity
comparison. Fig. 6 shows that the vast majority of our results are
more realistic. This demonstrates our approach’s superiority over
other StyleGAN inversion methods in improving the authenticity
of rendered portraits.
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Figure 6: The distribution of the user study on the authentic-
ity comparison of the methods for improving facial realism. The
y−axis shows the number of output portraits from our method cho-
sen by participants (out of 10 sets), and the x−axis shows the num-
ber of participants. The results show that our method outperforms
other methods for improving facial authenticity.
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Ourse4eInput Latent Code OptimizationpSp HyperStyle ReStyle-pSp ReStyle-e4e

Figure 7: Qualitative comparisons with state-of-the-art StyleGAN inversion methods. From left to right, we show the input image, the
results of e4e, pSp, HyperStyle, ReStyle-pSp, ReStyle-e4e, latent code optimization, and ours. The testing input images (except for row 2) are
generated by Stable Diffusion [RBL∗22] model. Please zoom in for a better view.

Input Stable Diffusion results Ours

Figure 8: Qualitative comparison with SDEdit [MHS∗22]. From
left to right, we present the input image, three randomly generated
images by SDEdit, and ours. The testing input images are from the
Diverse Human Faces dataset. Please zoom in for a better view.

5.2.2. Comparison with SDEdit.

We also conduct a comparison with state-of-the-art diffusion-based
method, SDEdit [MHS∗22]. SDEdit projects an unrealistic image
onto the manifold of natural images by adding noise and then re-
moving it.

Given a single input, our method generates a singular result,
whereas SDEdit produces stochastic results based on the random
noise that is added. Consequently, conducting a fair user study as
an alternative to quantitative testing poses challenges. Therefore,
we opt for qualitative experiments exclusively.

For each input rendering-style image, we set the hyperparameter
t0 = 0.3 for SDEdit and generate three randomly sampled results
utilizing the pretrained latent diffusion model [RBL∗22] trained on
the FFHQ dataset at a resolution of 256 × 256. As illustrated in
Fig. 8, the results produced by SDEdit do not ensure the complete
removal of the rendering-style from the input (rows 2, 4), and they
also do not guarantee facial identity preserving. In contrast, our
approach stably generates more photo-realistic results, showcasing
enhanced natural facial details. Moreover, our approach effectively
removes the unrealistic rendering-style appearance of the input im-
age while preserving the consistency of facial identity.

5.2.3. Style Transfer

In this section, we conduct qualitative and quantitative experiments
to demonstrate the effectiveness of our identity-consistent style
transfer algorithm. We will show that our style-transfer approach
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surpasses other style transfer methods in both style transfer and fa-
cial identity preservation.

We compare our identity-consistent transfer method to the SOTA
StyleGAN-based style transfer methods. Since one-shot domain
adaptation methods [ZAFW22, ZLH∗22] stylize the whole latent
space using a single reference image, we cannot apply them to pro-
cess our diverse testing images. Thus we make comparisons with
StyleGAN-NADA [GPM∗22] and AgileGAN [SLL∗21].

Qualitative evaluation. We present a comparison between
the style transfer results of our identity-consistent style transfer
method and those of StyleGAN-NADA [GPM∗22] and AgileGAN
[SLL∗21] in Fig. 9. For StyleGAN-NADA, we choose “Photo” as
the source text and “Rendered avatar” as the target text. For Agi-
leGAN, we use our DRFHQ dataset as the training dataset to train
AgileGAN. We compare the images generated by different gener-
ators using the same latent code. Results show that the StyleGAN-
NADA semantic guidelines are too vague to produce acceptable
results. AgileGAN generates artifacts and unnatural skin color. In
contrast, our approach produces rendering-style results while pre-
serving face identity.
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Figure 9: Qualitative comparisons with state-of-the-art style
transfer methods based on StyleGAN. From up to bottom, we
present the images generated by StyleGAN2-FFHQ, StyleGAN-
NADA, AgileGAN, and ours. Images in the same column are gen-
erated by the same latent code.

Quantitative evaluation. To evaluate the performance in trans-
ferring style to that of DRFHQ dataset, we utilize Fréchet In-
ception Distance (FID) [HRU∗17] to measure the overall simi-
larity between the distribution of synthesized images and that of
the DRFHQ dataset (see the 2nd column in Table 1). Besides, to
evaluate the geometry and color preservation quality, we compute
the FID of the synthesized rendering-style images with respect to
the realistic-style FFHQ dataset (see the 3rd column in Table 1).
In Table 1, StyleGAN2-DRFHQ represents our identity-consistent
model fine-tuned on our DRFHQ dataset, AgileGAN-DRFHQ rep-
resents AgileGAN [SLL∗21] fine-tuned on our DRFHQ dataset.
Since StyleGAN-NADA [GPM∗22] is text-guided and not trained
on our DRFHQ dataset, FID is for reference only. Our model
achieves the lowest FID as shown in Table 1, indicating that our

StyleGAN2-DRFHQ model is better at both style transfer and fa-
cial identity preservation.

Table 1: Fréchet Inception Distances (FID) score for different
StyleGAN-based style transfer methods and datasets, computed
from randomly generated 50k images. Lower scores are better.

Algorithm DRFHQ FFHQ

StyleGAN2-DRFHQ (Ours) 24.5 16.3
AgileGAN-DRFHQ 62.5 83.5
StyleGAN-NADA 49.9 53.8

To further assess the performance in facial identity preservation,
we utilize a pretrained CurricularFace network [HWT∗20] to com-
pute identity similarity during facial style transfer. Specifically, we
apply our StyleGAN2-DRFHQ model, AgileGAN-DRFHQ model,
and StyleGAN-NADA model to convert the style of 2k images
from realistic to rendering respectively, we then use the Curricu-
larFace network to measure facial identity. As shown in Table 2,
our StyleGAN2-DRFHQ model exhibits superior performance in
preserving facial identity during the process of style transfer.

Table 2: Identity similarity measurement for SOTA StyleGAN-
based style transfer methods, computed from randomly generated
2k images. Higher scores are better.

Algorithm Identity Similarity ↑
AgileGAN-DRFHQ 0.14
StyleGAN-NADA 0.34

StyleGAN2-DRFHQ (Ours) 0.57

5.3. Ablation Studies

In this section, we perform four ablation studies to validate the ef-
fectiveness of different components of our work. We first evalu-
ate the two proposed losses (Sec. 5.3.1), then our transfer-learning-
based framework (Sec. 5.3.2), the employed inversion method (Sec.
5.3.3), and finally our new high-quality rendering-style portrait
dataset (Sec. 5.3.4).

5.3.1. Losses

We define StyleGAN2-FFHQ generator fine-tuned on our DRFHQ
dataset without sketch and color constraints as the baseline. As
shown in Fig. 10, we feed the same latent codes into various gener-
ator variants and compare the resulting portraits.

Sketch loss. Without the sketch constraint, the identity of the
face generated by the baseline differs significantly from that of
StyleGAN2-FFHQ, thus largely affecting facial identity consis-
tency. Thanks to Lcolor, the generator trained without Lsketch gener-
ates portraits that better maintain the identity. However, the seman-
tic information cannot be well preserved due to the downsampling
and blurring of the images fed into the VGG16 network (see the de-
tails of the facial expressions and wrinkles in the images). In con-
trast, Lsketch helps to keep detailed facial structure and semantics in
our full model.
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StyleGAN2-FFHQ Baseline w/o Lsketch w/o Lcolor Ours

Figure 10: Exemplars of the ablation study of the baseline net-
work and ours. From left to right, we present the images generated
by StyleGAN2-FFHQ, the baseline, the generator trained without
Lsketch, the generator trained without Lcolor, and our full generator,
respectively.

Color loss. Compared to generators trained without color con-
straint, those trained with color constraint can better preserve the
color and lighting of the portraits generated by StyleGAN2-FFHQ.

5.3.2. Framework

Although our sketch loss and color loss provide strong guidance for
identity preservation, the proposed losses alone are not enough to
generate satisfactory results without our carefully designed frame-
work. Note that our framework includes model fine-tuning with our
proposed losses, followed by inversion and generation to produce
the final results. As a baseline, we directly project input rendered
images into the realistic portrait latent space (StyleGAN2-FFHQ)
using our proposed losses as guidance for latent code optimization.

Input Baseline Ours

Figure 11: Exemplars of the ablation study of the baseline method
and ours. From left to right, we present the input rendered image
(row 1 from the Diverse Human Faces dataset, row 2 generated
by Stable Diffusion model), the result generated by the baseline
method, and the result generated by ours.

As shown in Fig. 11, we compare the baseline result to ours.
It can be seen that the baseline produces overly smooth results,
while our framework generates more realistic result. Actually, the

sketches and downsampled blurry images in the proposed losses
can provide key identity information but at a coarse level, thus lead-
ing to smooth results that lack details. In contrast, our framework
uses a ∼10k dataset to fine-tune the StyleGAN2-FFHQ model,
which is pretrained on a ∼70k dataset. Both large-scale datasets are
rich in face features at different levels. The fine-tuning process can
effectively model the delicate details of the rendering-style faces in
Grender, allowing to achieve more realistic results when transferring
to Greal .

5.3.3. Inversion

In our framework, we use the latent code optimization described by
Roich et al. [RMBCO22] as our inversion method during inference.
We compare it to the following cutting-edge inversion approaches:
e4e [TAN∗21], ReStyle scheme on e4e (ReStyle-e4e) [APC21],
and II2S [AQW19].

For e4e and ReStyle-e4e, we fine-tune their encoders pretrained
on the FFHQ dataset using our DRFHQ dataset. Then, we input
the rendered images into these fine-tuned encoders, respectively.
For II2S, we use it to directly project input rendered images into
Grendering’s latent space. Finally, we feed these latent codes into
Greal to yield the final results for comparison. As shown in Fig. 12,
e4e changes facial identity and gender (the first row). ReStyle-
e4e lacks facial details, and II2S modifies input image attributes
(glasses appear in the second row of II2S). In contrast, our inver-
sion method surpasses all others.

Input e4e ReStyle-e4e II2S Ours

Figure 12: Exemplars of the ablation study of different inversion
methods. From left to right, we present the input rendered image
(from the Diverse Human Faces dataset), the results generated us-
ing e4e, ReStyle-e4e, II2S, and ours as the inversion method.

5.3.4. Dataset

To validate the efficacy of our high-quality rendering-style portrait
dataset, DRFHQ, in enhancing facial realism, we qualitatively and
quantitatively compare it with the Diverse Human Faces dataset
[AI22]. To this end, we replace our DRFHQ dataset with Diverse
Human Faces dataset during generator fine-tuning, while maintain-
ing method consistency.

Qualitative evaluation. We enhance facial realism in rendered
images using two frameworks: one based on the Diverse Human
Faces dataset and the other on our DRFHQ datasets. Note that
the input rendered portraits for inference are not part of either
dataset. As shown in Fig. 13, our DRFHQ dataset-based frame-
work achieves photorealism and facial identity consistency, while
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the Diverse Human Faces dataset-based framework exhibits greater
disparities in geometry, color and realism.

Input Diverse Human Faces Ours

Figure 13: Exemplars of the ablation study of the Diverse Hu-
man Faces dataset and our DRFHQ dataset. From left to right, we
present the input rendered image, the results generated using the
Diverse Human Faces dataset-based framework, and ours. The in-
put rendered images are generated by Stable Diffusion [RBL∗22]
model.

We attribute this phenomenon to the limited diversity of the Di-
verse Human Faces dataset, which consists of ∼7k images (after
aligning and cropping) but only portrays 100 distinct identities.
In contrast, our high-quality DRFHQ dataset contains ∼10k high-
quality images with diverse attributes like identity, gender, age,
pose, race, hairstyle, lighting, etc. This diversity effectively models
the delicate rendering-style facial details during fine-tuning, lead-
ing to more realistic inference outcomes.

Quantitative evaluation. For quantitative evaluation, we em-
ploy LPIPS loss [ZIE∗18] and L2 loss to assess dataset perfor-
mance in information preservation. Table 3 demonstrates that our
DRFHQ dataset outperforms the Diverse Human Faces dataset in
both metrics, indicating superior overall information preservation.

Table 3: Mean LPIPS and L2 losses from 150 pairs of images for
the Diverse Human Faces dataset-based and our DRFHQ dataset-
based frameworks. Lower values indicate better performance.

Dataset LPIPS↓ L2↓
DRFHQ (Ours) 0.135 0.048

Diverse Human Faces 0.176 0.062

6. Limitations and Future Work.

Our method has some limitations as shown in Fig. 14. When the in-
put faces contain accessories such as unique beards, glasses, hats,
and headsets, the faces generated by our model have visible incon-
sistencies with the original images. This is due to the lack of corre-
sponding relevant semantics in the FFHQ latent space. This limita-
tion can be addressed by enriching the diversity of photo-realistic
face datasets.

(a) (b) (c) (d)

Figure 14: Example of failure cases. Our method may fail in cases
of faces with glasses and hats (a), complicated background (b), and
large posture (c). There exist chromatic aberration and misalign-
ment when we paste the resulting image onto the full-body apparel
sample display images (d). The rendered portraits in (a, b, c) are
from Diverse Human Faces [AI22] dataset.

Our method meets the challenges to reconstruct the background
of images. We attribute this to StyleGAN’s weak expressive capac-
ity for complicated backgrounds. This limitation can be solved by
removing the generated background using the alpha matte.

We notice that our approach cannot process those faces with ex-
treme poses. This is caused by the imbalanced pose distribution
in the training dataset (both FFHQ and DRFHQ). This can be im-
proved by increasing the pose diversity of the dataset and retraining
the StyleGAN model.

Although our method can preserve the identity of the input ren-
dered avatar, small chromatic aberration and misalignment still ex-
ist when we paste the resulting portrait back onto the full-body
apparel sample display image. To achieve seamless integration, a
lightweight post-processing of the resulting portrait is further ap-
plied (see Section 8).
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Figure 15: Distribution of the user study on the authenticity of the
full-body apparel display images. The y−axis represents the num-
ber of output images from our method selected by the participants
(out of 20 pairs), and the x−axis represents the number of par-
ticipants. Results demonstrate that stitching the resulting realistic
faces back onto the full-body apparel display images can effectively
improve the overall authenticity.
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Figure 16: Our method’s application in digital sample display. We replace original rendered 3D avatars’ faces with photo-realistic faces
generated by our method. The results show that the generated photo-real faces blend in with the rendered garments and virtual avatar bodies,
effectively increasing the authenticity of the digital apparel sample display images. The input images are courtesy of Yayat Punching at the
CONNECT store [CLO22], except for the first one in row 1.

7. Application in Digital Sample Display

Our proposed method can also be applied to improve the authen-
ticity of digital sample display images. Fig. 16 shows more exem-
plars where we replace the original rendering style faces with our
generated realistic faces in digital apparel sample display images.
Input images are courtesy of Yayat Punching at the CONNECT
store [CLO22].

To further validate the improvement in the authenticity of digital
sample display, we collected 20 full-body apparel display images
and processed them using our framework, yielding 20 pairs of im-
ages with faces of rendering-style and realistic-style, respectively.
We present these 20 pairs of test cases in sequence to 24 partici-
pants, with the original and processed images in each pair randomly

displayed in position for authenticity comparison. Fig. 15 demon-
strated that the vast majority of the full-body apparel display im-
ages replaced faces by our method are considered more realistic.
This validates that stitching the resulting photo-realistic faces back
onto the full-body apparel display images can effectively improve
the overall authenticity.

8. Lightweight Post-Processing

As mentioned above, one of the applications of our method is to en-
hance the authenticity of digital apparel display images. However,
as shown in Fig. 14 (d) and Fig. 17, directly pasting the result-
ing portrait back onto the original rendered digital apparel display
image may lead to small chromatic aberration and misalignment.
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Figure 17: An overview of our lightweight post-processing method.

To address this issue, we propose a lightweight post-processing
method.

Specifically, we apply face parsing [zll19] to the processed re-
sulting portrait xres, getting the segmentation masks of skin, brows,
eyes, eyeglasses, ears, nose, mouth, lips, and hair. Then we com-
bine them as a single mask m. After that, we paste xres back onto
the original rendered image x, getting x′res, and paste m to an empty
image with the same shape as x, getting m′.

To achieve smooth results, we apply erosion and Gaussian blur
to m′, the resulting mask with smooth boundary is denoted as m̂.
Finally, we compose the original rendered image x and the inter-
mediate image x′res as:

x f inal = m̂⊙ x′res +(1− m̂)⊙ x, (5)

where ⊙ denotes the element-wise multiplication.

9. Conclusions

We present a novel identity-consistent transfer learning method that
can effectively remove the rendering-style appearance in the input
portraits and generate photo-realistic portraits. Besides, we create a
high-quality rendering-style portrait dataset, Daz-Rendered-Faces-
HQ (DRFHQ), which includes 11,399 images with gender, age,
pose, and race variations. To maintain the facial identity, we em-
ploy sketch and color constraints in the finetuning process of the
StyleGAN2 generator on the DRFHQ dataset. During inference,
we first leverage latent code optimization to the input rendering-
style portrait, then feed the projected inversion latent code into
the real-style StyleGAN2-FFHQ generator, and finally obtain the
photo-realistic result with consistent identity. We apply our method
to digital apparel sample display, and experiments show that it can
improve the overall realism of digital apparel samples. Moreover,
our rendering-style DRFHQ dataset has the potential to motivate
other applications such as virtual avatar synthesis and editing.
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