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S1 Energy-based Interaction Anticipating
Time to collision. We provide a detailed explanation of
how to solve the quadratic function τ t+1

ij = argminτ∥xt
ij +

ṽt+1
ij · τ∥2 to obtain τ t+1

ij , which denotes the time taken for
pedestrian i to collide with a neighbor j (time to collision,
i.e., when the predicted distance is 0). We predict collisions
by assuming a linear extrapolation of the positions of the
pedestrian and the neighbor based on the pedestrian’s coarse
preferred velocity and the neighbor’s current velocity. Then
determine whether there is a time τ∗ at which the two future
linear trajectories intersect, i.e.,

∥xt
ij + ṽt+1

ij · τ∗∥2 = 0, (1)

by rearranging, we obtain the solution

τ∗ = −
∥xt

ij∥2

xt
ij · ṽ

t+1
ij

. (2)

If the solution τ∗ doesn’t exist (i.e., xt
ij · ṽt+1

ij = 0 ) or
is negative, τij = ∞, which means the pedestrian and the
neighbor will not collide in the future. Otherwise, τij = τ∗.

S2 Evaluation
S2.1 Details of Datasets
The ETH-UCY dataset [3, 1] includes pedestrians’ trajecto-
ries in 5 scenes (ETH, HOTEL UNIV, ZARA1, and ZARA2),
including more than 1500 pedestrians and thousands of non-
linear trajectories with various interactions. The trajecto-
ries are recorded in the world coordinates (i.e., meters). We
consider the pedestrian-pedestrian, pedestrian-static obstacle
(e.g., buildings) interactions for ETH-UCY. We follow the
leave-one-out strategy [2, 5] for training and evaluation, i.e.,
training our model on four sub-datasets and testing it on the
remaining one. Following the common practice [2, 5], the raw
trajectories are segmented into 8-second trajectory segments
with time step ∆t = 0.4 seconds, we train the model to pre-
dict the future 4.8 seconds (12 frames) based on the observed
3.2 seconds (8 frames). Since our model works in the im-
age coordinate space (i.e., pixel space), we project the world
coordinates in ETH-UCY into the pixel using the homogra-
phy matrices provided in Y-net [2] for training and testing,
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and then project the pixel results to meters for calculating
quantitative metrics.

The SDD dataset [4] contains videos of a university cam-
pus with six classes of traffic agents with rich interactions, in-
cluding about 185,000 interactions between different agents
and approximately 40,000 interactions between the agent
and the environment. The trajectories are recorded in pix-
els. More complex interactions are considered in SDD, in-
cluding pedestrian-pedestrian, pedestrian-static obstacle (e.g.,
buildings), and pedestrian-dynamic obstacle (e.g., vehicles,
bicycles) interactions. We extract the trajectories like that of
ETH-UCY to train the model for predicting the future 4.8s
(12 frames) based on the observed 3.2s (8 frames).

S2.2 Qualitative Comparisons
Predicted trajectories. As shown in Fig. S2, we provide
more visualization results of the predicted trajectories and
compare them with that of the state-of-the-art method NSP-
SFM [5]. Results show that our method predicts future tra-
jectories closer to the ground truth than NSP-SFM. The
predicted results of NSP-SFM (i.e., results exhibited in the
first row) show strong determinism in reaching a sampled
final goal driven by a goal-attraction model, resulting in the
predicted trajectories deviating from the ground-truth final
positions. In contrast, our method employs an interaction-
conditioned CVAE model for learning socially reasonable
human motion uncertainty, thus achieving better prediction
performance.

Multimodal prediction. As shown in Fig. S2, we provide
more visualization results of the multiple predicted trajec-
tories and compare them with that of the state-of-the-art
method NSP-SFM [5]. The better results of our method ex-
hibited in the second row demonstrate that, by condition-
ing on the socially explainable interaction energy map, our
method learns better human motion uncertainty than NSP-
SFM which doesn’t consider social interactions in human
motion randomness learning.

S2.3 Experiment Setup
Hyperparamters. The hyperparameters utilized in our ex-
periments are shown in Table S1. The same set of hyperpa-
rameters was employed for both the ETH-UCY and SDD
datasets.



Figure S1: Supplementary materials for visualization comparisons with NSP-SFM. The results of NSP-SFM and our method are
shown in the first and second rows, respectively. The visualized trajectories are the best predictions sampled from 20 trials. The
white, green, and red dots represent the observed, ground-truth, and predicted trajectories respectively. The purple dots in the
visualization results of NSP-SFM (i.e., the results in the first row) represent the sampled goals.

Figure S2: Supplementary materials for visualization comparisons of multiple predicted trajectories with NSP-SFM. The results
of NSP-SFM and our method are shown in the first and second rows, respectively. The white and green lines are the observed
and ground-truth trajectories. The yellow lines for each pedestrian are the 20 predicted trajectories.

Table S1: The hyperparameters utilized for implementing
SocialCVAE.
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Learnable parameters. We also show the learned weights
of different interaction energies for ETH-UCY and SDD in
Table S2.3. It is worth noting that all learnable weights were
initialized as 1 prior to training the model. For simplicity, the
weight of the interaction energy with pedestrian neighbors
was not trained and remained at the value 1 in all experiments.

Table S2: The learned weights of different interaction ener-
gies. ws and wd respectively represent the learned weight of
interaction energy with the static and dynamic obstacles.

Learnable Parameter ws wd

ETH 1.0229 -
HOTEL 1.0081 -
UNIV 1.2104 -

ZARA1 1.0497 -
ZARA2 1.1429 -

SDD 1.0644 1.1887

Sub-network architecture. We also provide the detailed
network architectures of the sub-networks employed in our
experiments in Table S2.3. The ReLU activation function
is used in our network for the non-linearity of the network.
The network configurations for both ETH-UCY and SDD



datasets were identical.

Table S3: The architecture of the sub-networks employed in
our experiments.

Sub-network Network Architecture

Section 3.2

LSTM [4, 256, 64]
MLP1 [32, 1024, 512, 64]
MLP2 [2, 1024, 512, 64]
MLP3 [64, 1024, 512, 2]
Linear

(query encoding) [64, 64]

Linear
(key encoding) [64, 64]

Section 3.4

Emot [16, 512, 256, 16]
Emap [10000, 1024, 512, 256, 32]
Eres [2, 8, 16, 16]

Elatent [64, 8, 50, 32]
Dlatent [64, 1024, 512, 1024, 2]
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