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Abstract

Pedestrian trajectory prediction is the key technology in many
applications for providing insights into human behavior and
anticipating human future motions. Most existing empirical
models are explicitly formulated by observed human behav-
iors using explicable mathematical terms with deterministic
nature, while recent work has focused on developing hybrid
models combined with learning-based techniques for pow-
erful expressiveness while maintaining explainability. How-
ever, the deterministic nature of the learned steering behav-
iors from the empirical models limits the models’ practical
performance. To address this issue, this work proposes the
social conditional variational autoencoder (SocialCVAE) for
predicting pedestrian trajectories, which employs a CVAE to
explore behavioral uncertainty in human motion decisions.
SocialCVAE learns socially reasonable motion randomness
by utilizing a socially explainable interaction energy map
as the CVAE’s condition, which illustrates the future oc-
cupancy of each pedestrian’s local neighborhood area. The
energy map is generated using an energy-based interaction
model, which anticipates the energy cost (i.e., repulsion in-
tensity) of pedestrians’ interactions with neighbors. Experi-
mental results on two public benchmarks including 25 scenes
demonstrate that SocialCVAE significantly improves predic-
tion accuracy compared with the state-of-the-art methods,
with up to 16.85% improvement in Average Displacement Er-
ror (ADE) and 69.18% improvement in Final Displacement
Error (FDE). The code will be released upon acceptance.

1 Introduction
Pedestrian trajectory prediction is a vital task in intelligent
systems for understanding human behavior and anticipating
future motions. Predicting the future movements of pedes-
trians in complex environments is challenging due to the
highly dynamic and subtle nature of human interactions.
Empirical methods explicitly model interactions for crowd
motion prediction, e.g., rule-based model (Reynolds 1987;
Reynolds et al. 1999), force-based model (Helbing and Mol-
nar 1995; Karamouzas, Skinner, and Guy 2014) and energy-
based model (Guy et al. 2010; Karamouzas et al. 2017).
These models are explainable but with lower predictive ac-
curacy, as they cannot fit observed data precisely. In contrast,
various methods based on deep neural nets have been pro-
posed with social interaction modeling by employing social
pooling mechanism (Alahi et al. 2016; Gupta et al. 2018),

graph-based modeling (Mohamed et al. 2020; Bae and Jeon
2021), and attention mechanism (Mangalam et al. 2020; Shi
et al. 2021). While they achieve expressive power and gen-
eralization ability, their black-box nature makes the learned
model less interpretable to human understanding. It remains
a challenge to explore the trade-off between model explain-
ability and prediction capability. Recent research effort has
been focused on exploring the aforementioned trade-off by
designing hybrid models that combine deep neural nets with
explainable interaction (Kothari, Sifringer, and Alahi 2021;
Yue, Manocha, and Wang 2022). However, their predic-
tion accuracy suffers from the deterministic nature of the
physics-driven behaviors (Yue, Monocha, and Wang 2023).

To overcome the challenges while retaining the ad-
vantages of hybrid methods, we propose SocialCVAE, a
new hybrid model for pedestrian trajectory prediction that
combines an energy-based interaction model for socially
explainable interaction anticipations with an interaction-
conditioned CVAE for multimodal prediction. Fig. 1 illus-
trates the framework of our method. SocialCVAE takes ad-
vantage of the data-driven optimization model (Xiang et al.
2023) to quantify the interaction energy cost (i.e., repulsion
intensity) of the temporal coarse predictions and explicitly
represent the interaction energies into the local energy map.
Using the CVAE model conditioned on the interaction en-
ergy map, SocialCVAE learns socially reasonable residuals
for the temporal motion decisions. Similar to the previous
methods (Zhou et al. 2021; Yue, Manocha, and Wang 2022)
that achieve state-of-the-art (SOTA) performance, we em-
ploy the recursive prediction scheme to update future tra-
jectories step by step with the input trajectories at each step
including the updated trajectories.

We conduct extensive experiments on two popular bench-
mark datasets (ETH-UCY (Pellegrini et al. 2009; Lerner,
Chrysanthou, and Lischinski 2007) and SDD (Robicquet
et al. 2016)), and demonstrate SocialCVAE’s superiority
over existing state-of-the-art methods in terms of prediction
accuracy. Furthermore, our results highlight the effective-
ness of using an energy-based interaction model for pedes-
trian trajectory prediction and provide insights into how to
better model pedestrian behavior in complex environments.
The main contributions are concluded as follows:

• We propose a novel multimodal pedestrian trajectory pre-
diction model (SocialCVAE) that leverages the advan-
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Figure 1: The framework of SocialCVAE. (a) The coarse motion prediction model learns the temporal motion tendencies and
predicts a preferred new velocity for each pedestrian. (b) The energy-based interaction model constructs a local interaction
energy map to anticipate the cost of pedestrian interactions with heterogeneous neighbors, including pedestrians, static envi-
ronmental obstacles found in the scene segmentation (e.g., buildings), and dynamic environmental obstacles (e.g., vehicles). (c)
The multimodal prediction model predicts future trajectories using a CVAE model conditioning on the past trajectories and the
interaction energy map.

tages of both empirical and learning-based approaches
for better prediction performance and interpretability of
motion decisions.

• SocialCVAE explores the behavioral uncertainty of hu-
man motion by introducing socially explainable interac-
tion energy maps generated from an energy-based inter-
action model. Both the quantitative and quality results
of SocialCVAE demonstrate that the energy-based inter-
action helps the model better understand the social rela-
tionships between pedestrians, leading to improved pre-
diction performance.

2 Related Works
Energy-based interaction methods. Considering the
nonlinear nature of pedestrian motion dynamics that pedes-
trians try to anticipate and react to the future trajectories of
their neighbors for collision avoidance (Karamouzas, Skin-
ner, and Guy 2014), energy-based methods (Karamouzas
et al. 2017; Ren et al. 2019; Xiang et al. 2023) predicts
pedestrians’ future trajectories by minimizing the antici-
pated social interaction cost calculated by energy func-
tions, i.e., the anticipated repulsion intensity from neighbors.
These models explicitly predict pedestrians’ future motion
by consuming minimum interaction cost, but provide less
prediction accuracy due to relying solely on explicit mo-
tion features such as velocity. Comparatively, our method
is a hybrid model that leverages the social explainability of
energy-based interaction models with the prediction capa-
bility of deep-learning models, resulting in better prediction
performance.

Data-driven methods. With advances in data acquisition
techniques, deep learning methods have been proposed and
achieved impressive results in predicting pedestrian trajec-
tories. RNN structure has widely been used to capture tem-
poral dependencies while considering social interactions us-
ing pooling mechanism (Alahi et al. 2016; Bisagno, Zhang,

and Conci 2018; Gupta et al. 2018) or attention mechanism
(Vemula, Muelling, and Oh 2018; Sadeghian et al. 2019;
Salzmann et al. 2020; Xu, Hayet, and Karamouzas 2022).
Graph-based models that utilize distance-based physical ad-
jacency matrices (Mohamed et al. 2020; Bae and Jeon 2021;
Xu et al. 2022) or attention-based learnable adjacency ma-
trices (Huang et al. 2019; Shi et al. 2021; Duan et al. 2022;
Wu et al. 2023) to learn pedestrian social interactions have
also been developed. Besides, transformer-based models in-
corporate attention mechanisms (Yu et al. 2020; Yuan et al.
2021) to model social interaction for better performance in
pedestrian trajectory prediction tasks.

Recently, prediction accuracy improvement has been
made by NSP-SFM (Yue, Manocha, and Wang 2022), a mul-
timodal prediction model which is a hybrid of steering be-
havior learning based on conservative position-dependent
forces with unexplainable randomness learning. However,
the deterministic force-driven behavior of NSP may result in
performance degradation (Yue, Monocha, and Wang 2023).
Different from NSP-SFM, our method combines the energy-
based interaction model for explicit interaction cost anticipa-
tion with interaction-conditioned human motion uncertainty
learning, resulting in providing socially reasonable random-
ness of future motion and yielding superior prediction per-
formance.

3 Methodology
3.1 Problem Formulation
Pedestrian trajectory prediction aims to predict the positions
of pedestrians’ trajectories in a traffic scenario. Given
the observed trajectories Xo = {X1, X2, . . . , Xn}Tobs

t=1
of n pedestrians over Tobs time steps, where
Xi = {x1

i , . . . ,x
Tobs
i } includes the observed spatial

(2D-Cartesian) coordinates of pedestrian i, our goal is to
predict the pedestrians’ future trajectories X̂pred over the
next Tpred steps. Regarding Xo, the scene segmentation



S (see Fig. 1b) and the observed trajectories of other
dynamically moving obstacles (e.g., vehicles) Xd as inputs,
the prediction task is formulated as:

X̂pred = f(X{o,d}, S), (1)

where f is the model.

3.2 Framework
The framework of our method is illustrated in 1. Overall, So-
cialCVAE learns the uncertainty of human motion and im-
plements it as predicting residuals of a coarse prediction.
Specifically, a coarse prediction model (Fig. 1a) predicts a
temporally reasonable preferred velocity and a new position
for each pedestrian by aggregating the information from a
discrete candidate velocity space, which is built based on the
learned temporal tendency from an RNN-structured tempo-
ral encoder and includes possible temporal motion decisions
(velocities). Then, an energy-based interaction model (Fig.
1b) anticipates the social interaction cost of the preferred ve-
locity with heterogeneous neighbors, including interactions
with pedestrians, static obstacles (e.g., buildings) obtained
from the scene segmentation, and dynamic obstacles (e.g.,
vehicles). We map the interaction energy with the neighbors
onto a local energy map to represent the future occupancy
of the local neighborhood area. Finally, a CVAE model (Fig.
1c), which is conditioned on both past trajectories and the in-
teraction energy map, predicts the socially reasonable resid-
uals of the preferred new position and generates multimodal
future trajectories.

3.3 Coarse Motion Prediction
The coarse motion prediction model predicts a temporally
reasonable future motion for each pedestrian based on the
trajectories in the past Tobs time steps.

Temporal motion tendency learning. We employ a re-
current neural network with one LSTM layer (Hochreiter
and Schmidhuber 1997) to capture the temporal motion de-
pendency and predict future motion. Given the hidden state
ht
i of each pedestrian i at time step t, a temporal extrapola-

tion velocity v̄t+1
i can be obtained:

ht
i = LSTM(ht−1

i , Relu(ϕ(xt
i,v

t
i))),

v̄t+1
i = ϕ(ht

i),
(2)

where ϕ(·) represents Linear transformation, xt
i and vt

i are
the current location and velocity.

As human behavior is diverse and uncertain, multiple
reasonable motion decisions exist for pedestrians. In our
method, the possible motion decisions are explicitly mod-
eled as the velocity candidates in a discrete candidate ve-
locity space V t

i,C , which is generated based on the temporal
extrapolation velocity v̄t+1

i . An illustration of V t
i,C is shown

in Fig. 2. V t
i,C is a velocity set with size 4krkθ.

Coarse Trajectory prediction. After obtaining the candi-
date velocity space representing multiple motion decisions,
we need to optimize for the best one as the coarse motion

Figure 2: An illustration of the discrete candidate velocity
space V t

i,C in a polar coordination system. The blue point
represents the time extrapolation velocity v̄t+1

i , with rti and
θti denoting the magnitude and angle of v̄t+1

i . The polar
space is discretized into a grid, with a predefined cell side
length ∆r and ∆θ for the magnitude and angle axes. The
velocity candidates in V t

i,C are represented by the intersec-
tion points of the solid lines, centered at v̄t+1

i within kr grid
cells on the magnitude axis and kθ on the angle axis.

tendency for the subsequent time step. We adopt the atten-
tion mechanism (Vaswani et al. 2017) to score the relation
between the trajectories Xt

i,P in the past Tobs time steps and
the velocity candidates from V t

i,C , aggregate the information
from V t

i,C , and then obtain the future trajectory representa-
tion. The attention score matrix Ãt

i is calculated like follows:

F t
i,P = MLP1(X

t
i,P ), F

t
i,C = MLP2(V

t
i,C),

Ãt
i = Softmax

(
ϕ(F t

i,P )ϕ(F
t
i,C)

T

√
dF

)
,

(3)

√
dF is the scaled factor for ensuring numerical stability

(Vaswani et al. 2017). Then the future trajectory represen-
tation F t

i can be obtained:

F t
i = F t

i,P + Ãt
iF

t
i,C , (4)

thus we can predict a preferred velocity ṽt+1
i for each pedes-

trian as a coarse motion decision, followed by predicting the
coarse preferred new position x̃t+1

i , that is

ṽt+1
i = MLP3(F

t
i ),

x̃t+1
i = xt

i + ṽt+1
i ∆t,

(5)

where ∆t is the horizon of a time step.

3.4 Energy-based Interaction Anticipating
As humans anticipate and react to the future trajectories
of their neighbors for collision avoidance, we employ an
energy-based interaction model similar to (Xiang et al.
2023) to calculate the interaction cost (i.e., repulsion inten-
sity) driven by ṽt+1

i . Our interaction model considers het-
erogeneous neighbors within a local neighborhood, which
is a square area centering with the pedestrian (see Fig. 3a),
including pedestrians, static obstacles (e.g., buildings), and
dynamic obstacles (e.g., vehicles).
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Figure 3: An example of a pedestrian’s square-shaped local
interaction area. (a) The focal pedestrian at the center of the
orange square interacts with heterogeneous neighbors within
the square. (b) The interaction energy is recorded at the pre-
dicted local location of each neighbor (The darker color rep-
resents the higher value of interaction energy).

Interaction energy. Given the preferred velocity ṽt+1
i

calculated by Eq. (5), the interaction energy is calculated
based on the predicted distance d̃t+1

ij of pedestrian i to the
neighbor j at the next time step:

etij = e(1−d̃t+1
ij /ds), (6)

the neighbor j is assumed to hold its current velocity vt
j

for moving in the next time step. ds is a hyperparameter as
a scaling factor. Higher interaction energy means that the
pedestrian is more likely to collide with the neighbor and
vice versa. Considering the pedestrian may collide with the
neighbor during a time step, d̃t+1

ij is calculated as:

d̃t+1
ij = ∥xt

ij + ṽt+1
ij · τ̃ t+1

ij ∥2, (7)

where xt
ij = xt

i − xt
j , ṽt+1

ij = ṽt+1
i − vt

j . 0 ≤ τ̃ t+1
ij ≤

∆t is the predicted traveled time in the next time step, and
it is calculated by clamping the solution of the following
quadratic function:

τ t+1
ij = argminτ∥xt

ij + ṽt+1
ij · τ∥2,

τ̃ t+1
ij = clamp(τ t+1

ij , [0,∆t]).
(8)

Socially Explainable Energy Map. After calculating the
interaction energies that anticipate and quantify the repul-
sion intensities from the neighbors, we project the interac-
tion energies onto an energy map M t

i , which has the same
size as the local interaction area, in order to explicitly indi-
cate the socially anticipated occupancy of each point within
the local interaction area.
M t

i is initialized as a zero matrix with size L× L, where
L is the side length of the local interaction area. A zero
value in M t

i means no occupancy, i.e., no risk of collision
at this position during the next time step. The interaction en-
ergy etij calculated by Eq. (6) represents the occupancy of
the neighbor j’s future location x̃t+1

j = xt
j + vt

j τ̃
t+1
ij . Fig.

3b illustrates the interaction energy map. Notably, to avoid
performance degradation caused by the sparse matrix M t

i ,
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Figure 4: The architecture of the interaction-conditioned
CVAE model.

⊕
represents the concatenation operation.

Red dotted lines denote that the layers are only performed
during training. All the components in the CVAE model are
built using MLPs.

our method regards dynamic interaction neighbors as enti-
ties with a specific shape, and the points occupied inside the
entity are allocated with the calculated interaction energy.
A pedestrian neighbor is regarded as a square-shaped en-
tity centered at x̃t+1

j with side length Lped; for other types
of dynamic neighbors (e.g., vehicles and bicycles), as we
don’t specify the accurate type of those neighbors, their oc-
cupied points are those inside the bounding box from the raw
dataset. For the static neighbors (e.g., buildings) from the
scene segmentation, the interaction neighbors are the points
labeled impassable to pedestrians.

For a point p = (xp, yp) in the local interaction area, the
corresponding value in the energy map is calculated as:

M t
i [xp, yp] =

∑
j∈Ω(p)

wR(j) · etij , (9)

where Ω(p) is the set of neighbors who are anticipated to
occupy point p, R(j) is the type of neighbor j ∈ Ω(p), and
wR(j) is the trainable weight of this neighbor type. The en-
ergy map contributes to the model for a better understanding
of the future social relationship with the interaction neigh-
bors.

3.5 Multi-Modal Trajectory prediction.
To capture the uncertainty of human motion, we employ an
interaction-conditioned CVAE model for multimodal trajec-
tory forecasting. The architecture of our CVAE model is il-
lustrated in Fig. 4. Different from the previous models that
learn unexplainable randomness using CVAEs (Zhou et al.
2021; Yue, Manocha, and Wang 2022; Zhou et al. 2023),
our model takes the pedestrian’s past trajectories Xt

i,P and
the socially explainable energy map M t

i as input to recon-
struct the position residual ∆xt+1

i = xt+1
i − x̃t+1

i between
the ground-truth future position xt+1

i and the predicted pre-
ferred position x̃t+1

i calculated by Eq. (5). As a result, the
CVAE can learn socially reasonable randomness from data.

In the training process, the CVAE model firstly obtains
the encodings of motion F t

i,mot and the encodings of the
ground-truth position residual F t+1

i,res:

F t
i,mot = Emot(X

t
i,P )⊕ Emap(M

t
i ),

F t+1
i,res = Eres(∆xt+1

i ),
(10)



where Emot, Emap and Eres are the encoders. Then, a latent
encoder Elatent generates the parameters (µt

i, σ
t
i) of a latent

distribution:

(µt
i, σ

t
i) = Elatent(F

t
i,mot ⊕ F t+1

i,res). (11)

When predicting the future trajectory of a pedestrian, a
latent decoder Dlatent is employed to estimate a position
residual ∆x̃t+1

i :

∆x̃t+1
i = Dlatent(F

t
i,mot ⊕ Zt

i ), (12)

where the latent variable Zt
i is randomly sampled from a

normal Gaussian distribution N (0, I). Finally, the predicted
position is:

x̂t+1
i = x̃t+1

i +∆x̃t+1
i . (13)

3.6 Loss Function
Our model is trained end-by-end by minimizing a multi-task
loss:

L =
1

nTpred

n∑
i=1

Tend∑
t=Tobs+1

(λ1Lcoarse+λ2LKL+λ3Lpred),

(14)
where Tend = Tobs + Tpred is the last time step of the pre-
diction time horizon, λ1, λ2 and λ3 are the loss weights.
Lcoarse is the position loss for training the coarse prediction
model, which measures the distance between each preferred
new position with the ground truth. LKL is the Kullback-
Leibler (KL) divergence loss for training the CVAE model,
which measures the distance between the sampling distribu-
tion of the latent variable learned at the training stage with
the sampling normal Gaussian distribution at the test stage.
Lpred is the predicted position loss for training the CVAE
model, which measures the distance between each predicted
position residual with the ground truth. That is:

Lcoarse = ∥x̃t
i − xt

i∥2,
LKL = DKL(N (µt

i, σ
t
i)||N (0, I)),

Lpred = ∥∆x̃t
i −∆xt

i∥2.
(15)

4 Evaluation
4.1 Experiment Setup
Datasets. To evaluate the effectiveness of our method, we
conduct extensive experiments on two widely used datasets
in pedestrian trajectory prediction tasks: ETH-UCY dataset
(Pellegrini et al. 2009; Lerner, Chrysanthou, and Lischin-
ski 2007) and Stanford Drone Dataset (SDD) (Robicquet
et al. 2016). ETH-UCY includes pedestrians’ trajectories in
5 scenes (ETH, HOTEL UNIV, ZARA1, and ZARA2). We
follow the leave-one-out strategy (Mangalam et al. 2021) for
training and evaluation. SDD contains pedestrians’ trajecto-
ries in 20 scenes. For SDD, we follow the data segmentation
as (Yue, Manocha, and Wang 2022) for training and eval-
uation. Following the common practice (Mangalam et al.
2021; Yue, Manocha, and Wang 2022), the raw trajectories
are segmented into 8-second trajectory segments with time
step ∆t = 0.4s, we train the model to predict the future 4.8s
(12 frames) based on the observed 3.2s (8 frames).

Figure 5: Visualization results of our method. The visual-
ized trajectories are the best predictions sampled from 20
trials. The white, green, and red dots represent the observed,
ground-truth, and predicted trajectories respectively.

Evaluation Metrics. We adopt the two widely used met-
rics, Average Displacement Error (ADE) and Final Dis-
placement Error (FDE), to quantify the performance of our
model. ADE computes the average L2 distance between the
prediction and the ground truth over all predicted time steps.
FDE calculates the L2 distance between the predicted final
location and the ground-truth final location at the end of
the prediction horizon. We follow the previously commonly
used measurement to report the performances of the best of
20 predicted trajectories. Similar to (Zhou et al. 2021; Yue,
Manocha, and Wang 2022; Zhou et al. 2023), we sample 20
future points at each prediction time step and select the best
one as the predicted result.

Environment. Our model was implemented in PyTorch
on a desktop computer running Ubuntu 20.04 containing an
Intel ® CoreTM i7 CPU and an NVIDIA GTX 3090 GPU.
The model is trained end-to-end with an Adam optimizer
with a learning rate 0.0001. We trained the ETH-UCY for
100 epochs and SDD for 150 epochs.

4.2 Quantitative Evaluation.
Quantitative Comparisons. We compare SocialCVAE
with state-of-the-art models in recent years. The exper-
imental results on ADE20/FDE20 are presented in Tab.
1 for ETH-UCY and Tab. 2 for SDD, showing that So-
cialCVAE achieves state-of-the-art performance on both
datasets. Compared with the SOTA baseline methods, our
method achieves performance improvement by 66.67% for
FDE on ETH-UCY and 16.85%/69.18% for ADE/FDE on
SDD. The main difference between SocialCVAE and the
baseline methods is that our interaction-conditioned CVAE
model learns socially reasonable motion randomness. The
quantitative results demonstrate that SocialCVAE works
well for better prediction performance.

Ablation study. We conduct ablative experiments to show
the effectiveness of the key components in our model.



Table 1: Quantitative comparison with state-of-the-art methods on ETH-UCY for ADE20/FDE20. The bold/underlined font
represents the best/second best result. The prediction results are measured in meters. Previous SOTA methods labeled by * also
employ the recursive prediction scheme.

Model ETH Hotel UNIV ZARA1 ZARA2 AVG
S-GAN (Gupta et al. 2018) 0.87/1.62 0.67/1.37 0.76/1.52 0.35/0.68 0.42/0.84 0.61/1.21
Sophie (Sadeghian et al. 2019) 0.70/1.43 0.76/1.67 0.54/1.24 0.30/0.63 0.38/0.78 0.51/1.15

Trajectron++ (Salzmann et al. 2020) 0.39/0.83 0.12/0.21 0.20/0.44 0.15/0.33 0.11/0.25 0.19/0.41
PECNet (Mangalam et al. 2020) 0.54/0.87 0.18/0.24 0.35/0.60 0.22/0.39 0.17/0.30 0.29/0.48
YNET (Mangalam et al. 2021) 0.28/0.33 0.10/0.16 0.24/0.41 0.17/0.27 0.13/0.22 0.18/0.27

Social-VAE (Xu, Hayet, and Karamouzas 2022) 0.41/0.58 0.13/0.19 0.21/0.36 0.17/0.29 0.13/0.22 -
CAGN (Duan et al. 2022) 0.41/0.65 0.13/0.23 0.32/0.54 0.21/0.38 0.16/0.33 0.25/0.43

SIT (Shi et al. 2022) 0.39/0.61 0.13/0.22 0.29/0.49 0.19/0.31 0.15/0.29 0.23/0.38
MSRL (Wu et al. 2023) 0.28/0.47 0.14/0.22 0.24/0.43 0.17/0.30 0.14/0.23 0.19/0.33

S-CSR* (Zhou et al. 2021) 0.19/0.35 0.06/0.07 0.13/0.21 0.06/0.07 0.05/0.08 0.10/0.16
NSP-SFM* (Yue, Manocha, and Wang 2022) 0.07/0.09 0.03/0.07 0.03/0.04 0.02/0.04 0.02/0.04 0.03/0.06

CSR* (Zhou et al. 2023) 0.28/0.53 0.07/0.08 0.24/0.35 0.07/0.09 0.05/0.09 0.14/0.23
Ours* - 0.06/0.04 0.025/0.01 0.03/0.03 0.02/0.01 0.02/0.01 0.03/0.02

Table 2: Quantitative comparison with state-of-the-art meth-
ods on SDD for ADE20/FDE20. The bold/underlined font
represents the best/second best result. The prediction results
are measured in pixels. Previous SOTA methods labeled by
* also employ the recursive prediction scheme.

Model ADE FDE
S-GAN (Gupta et al. 2018) 27.23 41.44
Sophie (Sadeghian et al. 2019) 16.27 29.38

PECNet (Mangalam et al. 2020) 9.96 15.88
YNET (Mangalam et al. 2021) 7.85 11.85

Social-VAE (Xu, Hayet, and Karamouzas 2022) 8.10 11.72
SIT (Shi et al. 2022) 8.59 15.27

MSRL (Wu et al. 2023) 8.22 13.39
S-CSR* (Zhou et al. 2021) 2.77 3.45

NSP-SFM* (Yue, Manocha, and Wang 2022) 1.78 3.44
CSR* (Zhou et al. 2023) 4.87 6.32
Ours* - 1.48 1.06

Ablating the interaction-conditioned CVAE. In this ex-
periment (named Ours/wo), we connect the coarse predic-
tion model in SocialCVAE with the same CVAE model as
(Zhou et al. 2021; Yue, Manocha, and Wang 2022; Zhou
et al. 2023), which is only conditioned on the past trajecto-
ries, to learn the random residuals for the predicted preferred
position from the coarse prediction model. Tab. 3 shows the
quantitative results on SDD. Because the model doesn’t con-
sider pedestrian interactions and learns unexplainable mo-
tion randomness, compared with our full model, significant
performance degradation occurs on both ADE and FDE,
demonstrating the importance of our interaction-conditioned
CVAE model for achieving better performance.

Ablating the attention model. In this experiment, we use
the temporal extrapolation velocity generated by the tem-
poral encoder as the output coarse preferred velocity of the
coarse prediction model. The prediction results on SDD in
Tab. 3 show performance degradation compared to our full
model. However, when compared with the SOTA baselines,
it still achieves better prediction accuracy, demonstrating the
importance of our proposed interaction-conditioned CVAE

Table 3: Ablation study of different components of our
method on the SDD dataset. Fgoal denotes the goal-
attraction model proposed by NSP-SFM.

Components ADE/FDE

Fgoal Attention model Interaction
-conditioned CVAE

- ✓ % 8.64/13.72
- % ✓ 1.76/1.57
✓ % ✓ 1.56/2.71
- ✓ ✓ 1.48/1.06

model which learns the uncertainty of human motions.
Ablating the coarse prediction model. We also conduct

another ablation experiment, named GSocialCVAE, by re-
placing the coarse motion prediction model in Sec. 3.3 with
the goal-attraction model from the SOTA NSP-SFM method
(Yue, Manocha, and Wang 2022), to further demonstrate the
importance of the interaction-conditioned multimodal learn-
ing scheme employed in SocialCVAE. Tab. 3 gives the quan-
titative results of GSocialCVAE on SDD, showing perfor-
mance degradation compared with our full model. However,
when compared with NSP-SFM, GSocialCVAE achieves
better performance with 11.80% improvement on ADE and
20.35% improvement on FDE, demonstrating the better
prediction capability of our energy interaction-conditioned
CVAE model for human motion uncertainty learning.

4.3 Qualitative Evaluation
We first visualize the predicted trajectories in several scenar-
ios to illustrate the effectiveness of our method. The visual-
ization results are shown in Fig. 5.

Predicted trajectory comparison. To further validate the
better performance of our model, in Fig. 6, we compare our
visualization results with the SOTA NSP-SFM model (Yue,
Manocha, and Wang 2022). NSP-SFM may predict trajec-
tories that obviously deviate from the ground-truth final po-
sitions. This is because NSP-SFM learns force-driven steer-
ing behaviors plus with unexplainable motion randomness;



(a) NSP-SFM-1 (b) NSP-SFM-2 (c) NSP-SFM-3

(d) GSocialCVAE-1 (e) GSocialCVAE-2 (f) GSocialCVAE-3

(g) Ours-1 (h) Ours-2 (i) Ours-3

Figure 6: Visualization comparisons with NSP-SFM and
GSocialCVAE. The visualized trajectories are the best pre-
dictions sampled from 20 trials. Our method predicts future
trajectories closer to the ground truth than compared meth-
ods. The purple dots in the visualization results of NSP-SFM
and GSocialCVAE represent the sampled goals.

the predicted results show strong determinism in reaching a
sampled final goal. In contrast, SocialCVAE employs an en-
ergy interaction-conditioned CVAE model for learning so-
cially reasonable human motion uncertainty, thus achieving
better prediction performance.

In Fig. 6, we also compare with the visualization results
of the aforementioned ablation model GSocialCVAE. Due
to the determinism nature of the goal-attraction model (Yue,
Manocha, and Wang 2022), compared with our full model’s
result (Figs. 6g-6i), the predicted trajectories of GSocial-
CVAE show slight deviation from the ground-truth trajec-
tories because the predicted goal is far from the ground
truth. However, GSocialCVAE shows better visual results
than NSP-SFM, demonstrating the proposed method’s pre-
diction capability to achieve better performance.

Interaction-conditioned multimodal prediction. As
shown in Fig. 7, we compare the multiple predicted tra-
jectories of the NSP-SFM, the ablation experiment of
SocialCVAE without the interaction-conditioned CVAE
(Ours/wo), and our full model (Ours). Our full model’s re-
sults in Figs. 7g-7i demonstrate that by conditioning on the
socially explainable interaction energy map, SocialCVAE
learns better human motion uncertainty than the model with-

(a) NSP-SFM-1 (b) NSP-SFM-2 (c) NSP-SFM-3

(d) Ours/wo-1 (e) Ours/wo-2 (f) Ours/wo-3

(g) Ours-1 (h) Ours-2 (i) Ours-3

Figure 7: Visualization comparisons of the multiple pre-
dicted trajectories with NSP-SFM and SocialCVAE without
the interaction-conditioned CVAE (Ours/wo). Our method
predicts more socially reasonable future trajectories than the
compared methods. The white and green lines are the ob-
served and ground-truth trajectories. The yellow lines for
each pedestrian are the 20 predicted trajectories.

out conditioned on interaction. Figs. 7h and 7i also demon-
strate that SocialCVAE can predict socially reasonable tra-
jectories for avoiding potential collisions than the models
without conditioned on interaction.

5 Conclusion
In this work, we present SocialCVAE, a novel multimodal
pedestrian trajectory prediction method with an interaction-
conditioned CVAE model for learning socially reasonable
human motion randomness. SocialCVAE explicitly models
the anticipated social relationships of pedestrians and their
neighbors by using an interaction energy map generated
based on an energy-based interaction model. Taking the in-
teraction energy map as a condition, the CVAE model can
learn the uncertainty of human motions while maintaining
social awareness. The proposed method outperforms exist-
ing state-of-the-art methods in achieving higher prediction
accuracy. One limitation is that our method is computation-
ally inefficient as we sequentially predict the energy map for
each pedestrian. In the future, we will improve the computa-
tion performance by exploring other formulations of energy-
based interaction.
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