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Abstract: There is a tradeoff between generalization capability and computational overhead in multi-class learning.
We propose a generative probabilistic multi-class classifier, considering both the generalization capability and the
learning/prediction rate. We show that the classifier has a max-margin property. Thus, prediction on future unseen
data can nearly achieve the same performance as in the training stage. In addition, local variables are eliminated,
which greatly simplifies the optimization problem. By convex and probabilistic analysis, an efficient online learning
algorithm is developed. The algorithm aggregates rather than averages dualities, which is different from the classical
situations. Empirical results indicate that our method has a good generalization capability and coverage rate.
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1 Introduction

For a set of training instances (xt, yt) ∈ X ×Y,
t = 1, 2, · · · , T , from a sample space X and label
space Y, multi-class classification tries to learn a
classifier h from a domain X to a label space Y,
where |Y| ≥ 2, and the performance of a pre-
diction is measured by the probability that h(x)
is not the correct label. It is a basic problem
in machine learning, surfacing a variety of do-
mains, including object recognition, speech recog-
nition, document categorization, and many more
(Daniely and Shalev-Shwartz, 2014).

Over the years, multi-class classification has
been subject to intense study, both theoretical and
practical. Numerous methods have been developed
to tackle this problem. One of the most popular
techniques consists of dividing the multi-class prob-
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lem into the binary-class problem, which is intended
to lever well-studied consequences of the binary clas-
sifier, such as the estimation of the generalization
bound. Then ensemble methods play important roles
in connecting binary classifiers and multi-class classi-
fiers (Galar et al., 2011; Cai et al., 2013; Ramaswamy
et al., 2014).

Both one-vs-one and one-vs-all (also known as
one-vs-rest) are strategies building a multi-class clas-
sifier with binary ones. Different from the one-vs-one
strategy, which needs |Y|(|Y| − 1)/2 binary classi-
fiers and thus suffers from a large overhead in both
training and prediction, the one-vs-all strategy in-
volves training a single classifier per class, with sam-
ples of that class as positive and others as negative.
This strategy requires base classifiers produce a real-
valued confidence score for the decision, rather than
just a class label. However, due to the lack of a
unified measure, the scale of confidence values may
differ between binary classifiers, and the binary clas-
sifiers see an unbalanced distribution because class
distribution is unbalanced, or typically the set of neg-
atives they see is much larger than that of positives
(Bishop, 2006).
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Maximum entropy discrimination (MED) has
been proposed to combine strongly complemen-
tary properties of the discriminative estimation with
Bayesian statistics and graphical models. Compared
with classical discrimination frameworks, MED has
a distribution on classifiers instead of a single op-
timal setting (Jebara, 2004). Although MED has
shown superior success in diverse domains (Zhu and
Xing, 2009; Zhu et al., 2011; Zhu, 2012), its inference
algorithm requires careful design (Zhu et al., 2013).

Seeking to fill the gap of the generalization ca-
pability and the reasonable computation cost, we
propose a generative probabilistic multi-class classi-
fier, with both the efficient learning algorithm and
prediction method.

2 Preliminaries

We use symbol X to represent the sample space,
and Y = [k] � {1, 2, · · · , k} to correspond to the la-
bel space which has k classes. The standard basis
{e1, e2, · · · , ek} is introduced to transform a label
instance to a vector representation. For convenience,
we denote the sample variable by x, and sample in-
stances by {xt} with a subscript. Similarly, the label
variable is denoted by y, while label instances are
denoted by {yt}.

In classification, a parametric family of decision
functions H : X ×W �→ Y is also called classifiers.
The classifier (attached with a specific parameter
w ∈ W) works in the following way: given a sam-
ple x ∈ X as the input, the classifier produces an
output y ∈ Y to indicate to which class the sample
x belongs. More specifically, in the binary situation
whereW is dual to X , a popular linear classifier can
be formulated as follows:

h(x;w) = sign(〈w, x〉). (1)

To obtain the optimal classifier, we are given
a training dataset consisting of T pairs D =

{(x1, y1), (x2, y2), · · · , (xT , yT )}. We wish to find a
classifier with the parameter setting w that mini-
mizes some forms of classification errors. Once we
have found the best parameter setting ŵ, we use the
classifier to predict the label of a future sample by

ŷ = h(x; ŵ). (2)

Formally, we use a loss function �(·) to measure
the classification error. The loss function takes the

data point as an input, and the output value is small
when label yt agrees with prediction h(w; x). The
loss function depends on parameter w only through
the classification margin. Usually, loss function � is
non-decreasing and convex on the margin. A reg-
ularization penalty R(w) is also introduced in the
objective function:

min
w,γ1:T

[
R(w) +

1

T

T∑
t=1

�(γt)

]
(3)

s.t. eyt · h(xt;w)− γt ≥ 0, ∀ {xt, yt} ∈ D,

which favors certain parameters over others (like
prior), where ‘·’ denotes the Hadamard product (also
known as the Schur product or the entry-wise prod-
uct), used throughout the paper unless otherwise
stated, eyt ·h(xt;w) denotes the margin, and γt works
as the slack variable in optimization, representing
the minimum margin that eyt · h(xt;w) must satisfy
(Jebara, 2004).

3 Probabilistic model for multi-
classification

In this section, we start by introducing our
Bayesian multi-class classifier model, then give the
likelihood-based objective function for optimization,
and end up with the analysis of the max-margin
property.

3.1 Probabilistic graph

We try to correlate sample variable x and label
variable y in a probability model. The core elements
of the model are a topic space and its related embed-
dingEmb. The embedding Emb is used to coordinate
different dimensions of the input sample. It produces
a probability simplex q ∈ Pk, which aims to correlate
the target label variable y with high confidence.

The probabilistic multi-class classifier assumes
Algorithm 1 for the sample and label pairs, and the
probabilistic graph is shown in Fig. 1.

The embedding Emb is specified by a tensor con-
structed by the direct product of the k-dimensional
real vector space and the dual feature space w ∈
R

d ⊗ X ∗. When X ∈ R
d, Emb could be represented

by a k×d matrix. Then the embedding Emb working
on a sample variable can be formulated as

Emb(x;w) = φ(wx) � q, (4)
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Algorithm 1 Generative correlation multi-class
classifier
1: Choose embedding w ∼ N (μ = 0, σ2 = 1)

2: for each independent and identically distributed
pair (x, y) do

3: q← Emb(x;w)

4: Choose y ∼ Multinomial(q)
5: end for

Emb

x y T

Fig. 1 Probabilistic graph of the generative correla-
tion multi-class classifier (GCMC)

where function φ(·) denotes the probability assign-
ment, defined as

φ(u ∈ R
k) =

exp(u)∑k
j=1 exp(uj)

. (5)

We denote the output value by q, while those of
sample instances are denoted by {qt}Tt=1 as before.

3.2 Log-likelihood based objective function

Suppose we are given a set of paired in-
stances {(xt, yt)}Tt=1. The joint distribution of the
probabilistic graph could be formulated as

p({(xt, yt)}Tt=1,w)

=p(Emb = w)×
T∏

t=1

p(qt|w, xt)p(yt|qt). (6)

Taking the log operator on the joint distribution, we
have the following log-likelihood objective function:

max
w
L(w; {xt, yt}Tt=1)

=− 1

2
‖w‖2F +

T∑
t=1

〈eyt , logφ(wxt)〉, (7)

where ‖ · ‖F denotes the Frobenius norm of the
matrix.

3.3 On the max-margin property of the prob-
abilistic multi-class classifier

As demonstrated in the previous section, the
margin and the loss function play critical roles
in the context of max-margin learning. Now,
we try to build these concepts for our probabilis-
tic graph model. Noting that the inner product
〈yt, logφ(wxt)〉 does not exceed zero, (1) we denote
its Hadamard product form as the margin, and (2)
we can define the loss function �(γ) = −γ, which is
obviously convex. With the given notations, Eq. (7)
can be expressed as

max
w

⎡
⎢⎣1

2
‖w‖2F +

T∑
t=1

�(

margin︷ ︸︸ ︷
eyt · logφ(wxt))

⎤
⎥⎦ . (8)

Then, we show the following theorem:
Theorem 1 (Max-margin) Our proposed model is
a max-margin machine.
Proof It is known that a machine is said to be max-
margin if and only if its learning objective function
has the following form:

min
w

[
1

2
‖w‖2F + λ

∑
t

�(γt)

]
(9)

s.t. eyt · h(wxt) ≥ γt, ∀t ∈ {1, 2, ..., T }.

It is sufficient to show that Eq. (9) holds by
introducing lower bound variables {γt}Tt=1 and re-
placing the margins {eyt · logφ(wxt)}Tt=1 in Eq. (8).

Before moving a step further, we need to intro-
duce one more definition for the Fenchel conjugate
function from convex analysis. Given a real named
vector space S and its dual space S∗, the Fenchel
conjugate of a function f : S �→ R is defined as

f∗(x∗ ∈ S∗) = sup
x∈S

[〈x∗, x〉 − f(x)] , (10)

which corresponds to an optimization problem.
The Fenchel conjugate has many useful proper-

ties, one of which we will use soon is called bijection:
if f is closed and convex, then the Fenchel conjugate
of f∗ is f itself (a function is closed if for all α > 0,
the level set {x : f(x) ≤ α} is a closed set) (Boyd and
Vandenberghe, 2004; Shalev-Shwartz, 2007).

We turn back to the proof of the necessary
condition. For the optimization problem (9), we
say the inequality constraints should be equalities;
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otherwise, the objective function is not optimal for
the non-decreasing property of �. The optimization
problem (9) turns into

min
w

R(w) +
∑
t

�(γt), (11)

s.t. eyt · h(xt;w) = γt, ∀{(xt, yt)} ∈ D,
where we introduce T vectors {λ1,λ2, · · · ,λT }, and
each λt is the Lagrangian multiplier of the equal-
ity 〈yt, h(xt;w)〉 = γt. We obtain the following La-
grangian function:

L(w, γ1, γ2, · · · , γT ,λ1,λ2, · · · ,λT )

=R(w)+
∑
t

[�(γt)+〈λt, eyt ·h(xt;w)−γt〉] . (12)

Applying the Fenchel duality theorem (Boyd
and Vandenberghe, 2004) on γ and λ in turn, we
have

min
w,γ1,γ2,···,γT

max
λ1,λ2,···,λT

L(w,γ1,γ2,· · ·,γT,λ1,λ2,· · ·,λT )

=min
w

max
λ1,λ2,···,λT

{R(w)+
∑
t

[〈λt,eyt · h(xt;w)〉−�∗(λt)]}

=min
w
{R(w) +

∑
t

�(eyt · h(xt;w))}, (13)

where �∗ is the Fenchel conjugate function of �.
We execute maximization and minimization oper-
ations on {γ1, γ2, · · · , γT } and {λ1,λ2, · · · ,λT } se-
quentially. As a result, an unconstrained optimiza-
tion problem is again obtained.

The proposition leads to a direct conclusion
that our model has a similar generalization bound
to the support vector machine (SVM) based multi-
class classifiers. Moreover, as local variables {γt}Tt=1

have been eliminated, there is only one optimization
variable w left in objective function (7), and this
makes the optimization problem much simpler than
the one with constraints, i.e., optimization problem
(9).

4 Inference methods

In this section, we seek to develop efficient algo-
rithms for learning and prediction based on analysis
of related optimization problems.

4.1 Online learning algorithm with logarith-
mic regret

To meet the requirement of the online algorithm
with logarithmic regret, we need the following con-

vex analysis: given an objective function of a convex
optimization problem consisting of two parts, the
regularization term and the data term, an online al-
gorithm with logarithmic regret will be proposed if
we can prove the convexity of the data term (Shalev-
Shwartz and Kakade, 2009; Srebro et al., 2011).

For convenience of analysis, we list a minimiza-
tion optimization problem which is equivalent to
Eq. (7):

min
w

⎡
⎢⎢⎣

regularization term︷ ︸︸ ︷
1

2
‖w‖2F −

T∑
t=1

data term︷ ︸︸ ︷
〈eyt , logφ(wxt)〉

⎤
⎥⎥⎦ , (14)

where ‖w‖2F acts as the regularization term, and
−〈eyt , logφ(wxt)〉 acts as the data term. We need
to prove the convexity of −〈eyt , logφ(wxt)〉:
Theorem 2 (Concavity) 〈ey, logφ(wx)〉 is con-
cave on w.
Proof We start by noting that logφ can be de-
composed into two parts:

logφ(u) = u− log
∑
k

exp(uk). (15)

There is a common factor log
∑

k exp(uk) for all di-
mensions of the vector. Taking the partial derivative
on log

∑
k exp(uk) with respect to u, we can obtain

the following equation for the first-order derivative:

d log
∑
k

exp(uk) = 〈φ, du〉. (16)

The second-order derivative is derived using analogy
calculus:

d2 log
∑
k

exp(uk) = φi(1 − φj)duiduj . (17)

The Hessian matrix is the sum of two positive
rank-one matrices, φ(1 − φ)T + (1 − φ)φT. Thus,
log

∑
k exp(uk) is convex. It is obvious that the other

part is linear and that ey is not less than zero. We
obtain the conclusion that 〈ey, logφ(wx)〉 is concave.

Given this proposition, we design an online
learning algorithm with logarithmic regret (Shalev-
Shwartz and Kakade, 2009; Srebro et al., 2011), as
shown by Algorithm 2.

As the embedding Emb assigns a probability
measure for each sample instance, the embedding
acts as the prior of probabilities, which corresponds
to the Dirichlet parameter in the exponential family
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Algorithm 2 Training the generative correlation
multi-class classifier with duality averaging
Input: training data D = {(xt, yt)}Tt=1

Output: embedding Emb∗ with parameter w∗

1: w0 ← 0

2: for t = 1 to T do
3: wt ← wt−1 +

1
t (eyt − φ(wT

t−1xt))xT
t

4: end for
5: w∗ ← wT

(Blei et al., 2003). Moreover, there is a translation
invariance property of φ:

φ(u) = φ(u+ s), u ∈ R
k, s ∈ R. (18)

In addition, if we define functions {gt}Tt=1 on w as

gt(w) = −〈eyt , logφ(wxt)〉, (19)

we obtain the following dual form of optimization
problem (14):

max
μ1,μ2,··· ,μT

−
{
1

2
‖
∑
t

μt‖2F +
∑
t

g∗t (μt)

}
. (20)

Given that w∗ is the solution of Eq. (14), and that
{μ∗

t }Tt=1 is the solution of its dual problem (19), we
know there is a relationship between w∗ and {μt},
described as

w∗ = −
T∑

t=1

μ∗
t . (21)

Consequently, we propose another online learning
algorithm, and empirical study will show that the
new algorithm performs better than duality aver-
aging (Algorithm 2). As the algorithm aggregates
rather than averages dualities, we term the algo-
rithm ‘duality aggregation’. Details are shown in
Algorithm 3.

Algorithm 3 Training the generative correlation
multi-class classifier with duality aggregation
Input: training data D = {(xt, yt)}Tt=1.
Output: embedding Emb∗ with parameter w∗.
1: w0 ← 0

2: for t = 1 to T do
3: wt ← wt−1 + (eyt − φ(wT

t−1xt))xT
t

4: end for
5: w∗ ← wT

4.2 Prediction method

After learning, the optimal embedding Emb∗

is specified by learned w∗. Embedding Emb∗ as-
signs a probability measure for a sample input xt

by qt = φ(wxt). Label prediction is based on the
max-entropy principle according to the following op-
timization problem:

max
yt∈Y

[〈eyt , log qt〉 − 〈eyt , log eyt〉] . (22)

The objective function consists of two parts, cross
entropy 〈eyt , log qt〉 and entropy of eyt : 〈eyt , log eyt〉,
both representing the confidence of eyt given qt. The
solution is y∗t = 1(· = argmax(qt)), where 1(· =
argmax(qt)) is the indicator function, which means
the dimension with the maximum value of qt would
be labeled 1, and others would be labeled 0.

5 Experiments

We present empirical results to demonstrate the
prediction accuracy and generalization capability of
our model. Since relevant datasets are balanced,
here we do not use other performance indicators,
by which we mean that the numbers of elements in
each class are almost equal. The results demonstrate
the merits inherited from both online convex opti-
mization and max-margin learning. The data set
is divided into training and test samples. We feed
the model h with training samples in the format
(x, y). After training, we feed the model with the
sample instance xt of the test sample set, and the
model returns ŷt = h(xt). Then we can compare
the prediction and the true label with the expression

evidence(h;D) =

∑
t 1(ŷt = yt)

‖Test Samples‖ , which represents

the probability of prediction label ŷt equaling true
label yt.

Considering the dynamic evolutional perfor-
mance of algorithms, the prediction accuracy of the
two proposed algorithms, duality averaging and du-
ality aggregation, versus the iteration number is eval-
uated, respectively. Note that our algorithm is very
fast—it takes only 3 s to train 10 000 samples with
a 1024-dimensional representation on an Intel i5-760
(2.8 GHz)+4 GB machine using Python.

To estimate the generalized capability, we need
to estimate the true risk of our model. An incre-
mental procedure training with the whole samples
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(including not only the training data, but also the
test data) is introduced. We take the prediction ac-
curacy of the whole run procedure as a benchmark,
considering that the online algorithm with logarith-
mic regret produces a nearly optimal model.

In all experiments, duality averaging and du-
ality aggregation execute on training samples with
20 rounds, to obtain an incremental improvement in
performance.

For comparison, three popular multi-
classification strategies, one-vs-one, one-vs-rest,
and error-correcting-output-codes (ECOC) with
linear SVM estimators, are introduced. All these
multi-classification schemes are simple, robust, and
efficient, and can attach an online algorithm for
training. We are concerned with the issue of how a
mechanism integrates ingredients into a multi-class
classifier, while kernel-based SVM and deep neural
networks can be seen as one of the strategies which
are very similar to our framework, but coming with
a complicated hypothesis. We also seek a tradeoff
between prediction accuracy and computational
overhead, while kernel-based SVM and deep neural
networks can have better prediction accuracy, but
the computational overhead is huge.

Regarding ECOC, we set the code size with an
integer rounding log(‖label space‖). These methods
are contained in the Scikit-Learn package, providing
users with Python interfaces. For a fair comparison,
we attach these methods with a stochastic gradient
descent (SGD) learning algorithm. We evaluate the
performances of three indices, learning/prediction
time, and prediction accuracy. The performances are
evaluated on three datasets, MNIST (LeCun et al.,
1998), COIL-20 (Nene et al., 1996a), and COIL-100
(Nene et al., 1996b), which have been extensively as-
sessed in the context of multi-class learning, and are
sufficient to cover the issue whose factors affect the
classification results.

5.1 On the effect of data representations

The MNIST database, which has handwritten
digits ranging from 0 to 9, consists of 60 000 training
examples and 10 000 test examples. The size of each
image is 28×28 pixels, with 256 gray levels per pixel;
i.e., each image is represented by a 784-dimensional
vector.

The relationship between prediction accuracy
and the iteration number is shown in Fig. 2, and the

performances of different multi-classification meth-
ods are shown in the top panel of Table 1. We
can see that duality averaging achieves 85.53% ±
0.62% prediction accuracy after 20 iterations, du-
ality aggregation achieves 92.55% ± 0.12%, while
the true risk is 93.18% ± 0.05%, and one-vs-one
achieves 91.24% ± 0.82%. So, we conclude that
duality aggregation achieves the best generalization
capability.
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Fig. 2 Evolutions of classification accuracy versus the
iteration number on the MNIST dataset

There are studies aimed to show that simple fea-
ture learning, such as K-means clustering, can im-
prove the classification accuracy (Rahimi and Recht,
2007; Coates et al., 2011; Agarwal et al., 2014). We
extract features on MNIST with principal compo-
nent analysis (PCA) + radial basis function (RBF)
preprocessing (Rahimi and Recht, 2007) to touch
on the issue. While the extracted feature has 2048
dimensions after preprocessing, PCA + RBF pre-
processing is proposed to map the input data to a
randomized feature space, where the inner products
of the transformed data are approximately equal to
those in the feature space of a user-specified shift-
invariant kernel. The related performance is shown
in the bottom panel of Table 1, where we can see that
due to the PCA + RBF preprocessing, prediction ac-
curacies of all mechanisms are greatly improved. The
two controlled experiments clearly show that differ-
ent representations of features have a huge impact
on the classification performance, and this reminds
us to choose an appropriate data representation to
obtain good performance.



Hu et al. / Front Inform Technol Electron Eng 2016 17(10):973-981 979

5.2 On the effect of class numbers

The COIL-20 contains 20 objects. The images of
each object were taken 5 degrees apart as the object
is rotated on a turntable, and each object has 72

images. The size of each image is 32 × 32 pixels,
with 256 gray levels per pixel. Thus, each image
is represented by a 1024-dimensional vector. The
COIL-100 contains 100 objects. Additional settings
are similar to the COIL-20.

As the dataset is not divided into training and
test samples, we divide the dataset into training test
samples randomly at a ratio 7 : 3. Incremental per-
formance is shown in Fig. 3. Fig. 3a shows that:
duality averaging achieves 88.85% ± 2.29% predic-
tion accuracy after 20 iterations; duality aggregation
achieves 98.00% ± 0.66% while the risk is 100% af-
ter 5–8 iterations; in COIL-100, duality averaging
achieves 55.28% ± 1.77% prediction accuracy, and
91.62% ± 0.59% while the risk is 98.10% ± 0.25%.
In both COIL-20 and COIL-100, duality aggrega-
tion works better than duality averaging. Compared
with true risk, duality aggregation has 1.24% more
errors in COIL-20, and 6.25% more errors in COIL-
100, which may be caused by inadequate learning of
some classes since there are 100 classes in COIL-100
and randomized construction of training samples.

We are interested in what will happen when
the class number increases. We can see from Ta-
ble 2 that prediction accuracy decreases as the
training time and prediction time increase in all
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Fig. 3 Evolutions of classification accuracy versus the
iteration number on datasets COIL-20 (a) and COIL-
100 (b)

Table 1 Performances of various multi-classification schemes on the MNIST dataset with different data
representations

Data set Scheme Accuracy (%)
Time (s)

Training Prediction

one-vs-one 91.35 ± 0.35 11.65 4.09
one-vs-rest 86.57 ± 1.26 15.30 0.47

MNIST ECOC3 84.57 ± 0.61 48.90 1.30
(raw) ECOC4 85.14 ± 1.00 63.27 1.72

DAve 85.53 ± 0.62 12.87 0.14
DAgg 92.55± 0.12 12.87 0.14

one-vs-one 97.07 ± 0.13 16.40 6.65
one-vs-rest 95.53 ± 0.08 23.07 0.75

MNIST ECOC3 94.66 ± 0.15 66.93 2.08
(PCA+RBF) ECOC4 94.89 ± 0.20 97.37 2.08

DAve 87.58 ± 0.67 16.93 0.15
DAgg 97.09± 0.09 12.08 0.11

Bold numbers denote the best performances of the related indicators. ECOCn: ECOC whose code size equals n; DAve:
duality averaging; DAgg: duality aggregation
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Table 2 Performances of various multi-classification schemes on the COIL dataset with different class numbers

Data set Scheme Accuracy (%)
Time (s)

Training Prediction

COIL-20

one-vs-one 98.89± 0.50 0.72 0.18
one-vs-rest 98.08± 2.02 0.59 0.01

ECOC4 97.97± 0.97 2.83 0.04
ECOC5 97.74± 0.91 1.16 0.05
DAve 88.85± 2.29 8.54 0.03
DAgg 98.00± 0.66 0.68 0.01

COIL-100

one-vs-one 93.33± 0.80 41.42 79.89
one-vs-rest 87.67± 1.77 34.87 0.80
ECOC6 78.02± 1.19 352.31 4.92
ECOC7 77.86± 0.97 410.98 5.58
DAve 55.28± 1.77 14.31 0.03

DAgg 91.62± 0.59 14.92 0.03

Bold numbers denote the best performances of the related indicators. ECOCn: ECOC whose code size equals n; DAve:
duality averaging; DAgg: duality aggregation

multi-classification schemes. For vertical compari-
son, one-vs-one outperforms the other two strategies
in prediction accuracy, but its prediction overhead
becomes considerable when the label space is large,
as its overhead does not vary linearly with the class
number. Compared with the introduced schemas,
our proposed method has a smooth overhead with
the increase of the class number. Duality aggre-
gation achieves the most accurate prediction in the
two datasets while the training speed and predic-
tion speed are both quite high. The experiments
show that our proposed multi-classification method
has a great flexibility under the change of the class
number.

6 Conclusions

In this paper, we propose a multi-class learning
method, which is aimed to cover the gap between
generalization capability and computation overhead.
The highlights of our work are concluded as follows:

1. We propose a Bayesian model named the gen-
erative correlation multi-class classifier (GCMC) for
classification, where a Bayesian network and classifi-
cation are well integrated as we assign each element
with probabilistic semantics.

2. We prove that our model has a max-margin
property, obtaining a generalization guarantee like
those of other max-margin machines (e.g., SVMs),
which means prediction on future unseen data can
achieve nearly the same performance as in the train-
ing stage.

3. As local variables associated with sample
margins are eliminated, there is only one variable w
left in the objective function, making the optimiza-
tion problem much easier.

4. We propose an online learning algorithm
termed ‘duality aggregation’, where the coefficient
of the regularization term is derived from the rela-
tionship between the data term and the regularized
term in the probabilistic graph model. We design
experiments to examine which factors affect classifi-
cation performance, and empirical studies show that
our algorithm outperforms many multi-classification
frameworks (which also have online algorithm) on
many popular datasets.

For further work, we are interested in extending
the algorithm with an adaptive learning rate to cap-
ture the tradeoff between the regularization term and
data term of the objective function in a data-driven
manner (Hazan et al., 2007; Duchi et al., 2011). We
are also interested in extending the model by, for ex-
ample, integrating semi-supervised learning (Hu and
Yu, 2015; 2016) and feature learning (Coates et al.,
2011; Agarwal et al., 2014), to handle data in a large
label space.
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