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ABSTRACT

Image mosaicing involves splitting an input image into a set
of tiles, then replacing each tile with another image from
a large dataset so that, when viewed from a distance, the
resulting image resembles the original. We present a new
approach for generating image mosaics using variable sized
tiles made up from patches taken from photographs, paint-
ings and texture images. This is different from previous
work, where either simple regular tiling or adaptive tiling
based on variations of RGB color was used. We propose an
adaptive tiling theme by means of region entropy. In order
to avoid the mismatch in roughness between the sub-image
in the tile region of the input image and tile images in the
dataset that may arise in the previous RGB color based im-
age descriptors, we introduce the region entropy into the
image descriptor to achieve better matching in both color
and roughness. We also propose a new metric to measure
the quality of the image mosaic which takes both the sim-
ilarity and the mutual information between the generated
mosaics and input images into account. The final mosaic
images in this work are obtained by optimizing an objective
function based on this metric.
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1. INTRODUCTION

The mosaic is defined as an ancient art form usually made
by arranging small pieces of stone or glass to create a picture
or pattern. Mosaics may use either regular tiles such as cubic
stones, or irregular shapes and sizes of ceramic, porcelain,
glass, and stone for greater design variety. In addition to the
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tile shapes, tile colors are also chosen to depict features in
the picture or structures in the pattern. In computer gener-
ated image mosaics, various elements such as photographic
images, icons, and even a class of objects such as fruits and
flags can be used as tiles. Compared with traditional mosaic
tiles, image mosaic tiles may convey some additional mean-
ingful visual information to the viewers, thus they enrich the
expressive power of mosaics and have many applications for
artistic and commercial purposes.

In this paper we propose a method to generate image mo-
saics with variable sized tiles composed out of photographs,
patches of paintings and texture images. The right two fig-
ures in Fig. 1 are two examples of image mosaics of Beethov-
en’s portrait [25] generated by our system. Here we address
the problem of creating image mosaics as follows: Given a
collection of tile images T and a target image I, construct an
image mosaic M with variable sized tiles containing images
selected from T which will resemble I when viewed from a
distance. The main contributions of our method which dis-
tinguish our work from previous approaches are as follows:

(1) Most image mosaics use equally spaced rectangular
image tiles (Fig. 2 (a) and (b)). A few use rectangular image
tiles which change their sizes adaptively in the salient and
non-salient regions as detected by the variations of RGB
colors in I (Fig. 2 (c)). Instead, we achieve an adaptive
tiling by merging neighboring tiles in the square grid based
on region entropy (Fig. 2 (d)).

(2) Currently, color information is used to match a tile
region in I and tile images in 7' in most image mosaic sys-
tems. However, such color based image descriptors may lead
to a mismatch in roughness between the two (Fig. 5 left),
so we introduce an image descriptor that takes both color
and region entropy into account and use it to match the tile
region in I and tile images in T' (Fig. 5 right three images).

(3) In contrast to current approaches involving the evalu-
ation of the fitness between M and I using distance metrics
which focus on a single perspective only, we propose a metric
in terms of both similarity and mutual information between
M and I to evaluate the image mosaic and use it to optimize
an objective function to obtain the final mosaic image.

2. RELATED WORK

Image mosaicing methods aim at generating artistic mo-
saic images. Battiato et al. presented an overview of mosaic
techniques [3]. The earliest example of making mosaic ef-
fects in which each tile has a single bit of color came from
an artistic filter in Photoshop [1]. Silvers used a large dataset



Figure 1: From left to right: Oil portrait of Beethoven, mosaic with tiles images composed of music instru-
ments and performers and mosaic with tile images of paint brush textures. Readers should note that the
mosaics in this paper are usually best viewed on a color display at 300% zoom at a distance of 1.5 to 2.5

meters.

of images to create photo-mosaics with very impressive re-
sults [23]. Later on, Finkelstein and Range applied simple
color shifting and scaling on the final image mosaic to better
suggest the overall form [9]. Elber et al. tried to simulate
traditional mosaics with cubic tiles of constant colors (8, 4].

In addition to the regular arrangement of tile images, Di
Blasi et al. first introduced adaptive mosaics [6]. A differ-
ent adaptive tiling method called gizmos was presented in
[20]. Several researchers have developed methods to gen-
erate mosaic images with irregular tiles. Hausner arranged
tiles of constant color using a centroidal Voronoi diagram
and a distance field derived from user-specified contours to
simulate decorative mosaics [10]. Kim and Pellacini intro-
duced a general framework for creating so-called Jigsaw im-
age mosaics (JIM) [11]. Battiato et al. rendered different
mosaic styles automatically depending on artistic techniques
considered such as opus musivum or opus vermiculatum, etc.
[2]. Orchard and Kaplan introduced cut-out image mosaics
[16]. Liu et al. formulated the mosaic simulating problem
in a global energy optimization framework [15].

In addition to still mosaic image generation, several re-
searchers focused on animated mosaics [10, 11, 24, 28, 13,
12]. Some others were interested in 3D mosaicing [14, 17,
18, 19, 5].

3. SYSTEM OVERVIEW

In image mosaics the most frequently used tiles are squares.

With equal spacing of regular tiles (Fig. 2 (a) and (b)) one
has to choose much smaller tiles in order to depict features
in I well in M, thus making images in tiles difficult to see
unless they are enlarged many times. Equal spacing of reg-
ular tiles also tends to have visual periodicity. Adaptive
tiling (Fig. 2(c) and (d)) can avoid such periodicity by plac-
ing smaller tiles in the salient regions and larger tiles in
non-salient regions.

In this work we propose a method to achieve adaptive
tiling through bottom-up merging. The basic architecture
of our system is presented in Fig. 3. The input [ is split into
a grid with small tiles which are then merged as guided by
region entropy to obtain the resultant tiling pattern. Once
the tiling pattern is obtained, we match the tile regions in
and tile images in T" using a 28-dimensional image descrip-
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Figure 2: Comparison of our method with (a) a so-
lution created with the Patchworkr tool [31], (b) a
regular solution and (c) an adaptive solution with
gizmos [20], and (d) a solution using our adaptive
method. T=2700 in (a) and (b), T=1180 in (c) and
T=1430 in (d).

tor to generate a temporal mosaic image My, from which
we subsequently calculate the similarity and mutual infor-
mation between M; and I, and use them to optimize an
objective function to determine the final image mosaic M
(cf. Section 5.1) .

4. ADAPTIVE TILING BY BOTTOM-UP
MERGING

Compared with equally-spacing tiling, adaptive tiling has
the following characteristics: the image mosaic can be made
using fewer tiles, smaller tiles are able to preserve features in
M and bigger tiles in the non-salient regions allow a better
perception of the images in the tiles.

Since salient regions in I contain structures and patterns
which transmit more information than those in non-salient
regions, we use Shannon’s information entropy [22] as a met-
ric for evaluating the degree of information transmitted in
the tiles. The concept of information entropy describes how
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Figure 3: System workflow overview.
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much uncertainty (information) there is in a signal or im-
age. In an 8-bit gray-scale image, the intensity entropy can
be calculated as:

255

H=-> pilog,pi (1)
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where p; is the probability that a random pixel chosen from
the image has an intensity ¢. This can be approximated by
use of image’s histogram in the vicinity of the image. That
is, for each grey level or bin in the histogram, we compute
the frequency

number of pixels in bin(i)

Di = (2)

total pizels in image

When [ is a color image, we convert it into a gray-scale
image and calculate its intensity entropy. In our system we
use Eq. 1 to calculate the region entropy of sub-images in
the tiles in I. A larger entropy value corresponds to an
image texture or edge region, while a smaller entropy value
corresponds to smooth image area. We further normalize
all region entropy values so that a parameter h € [0, 1] can
be used as a threshold in the following bottom-up merging,
and h is determined by optimizing an objective function, as
detailed in Section 6.

In our bottom-up merging, the target image I is first split
into a square grid, the size of each square is initially set to
Sy xSy pixels (in the rest of the paper we omit the unit ’pixel’
for image and tile sizes). From experiments we found that,
for images of size (m x n) where 768 < m,n < 1024 (which
are typical of image sizes used in the examples given in this
paper), S, = 15 is adequate for the preservation of target
object features in M. Then, each group of four adjacent tiles
is merged to obtain a bigger tile with size 25, x 25, if their
region intensity entropy is smaller than h. The process is
repeated until no more tiles can be merged. Next, we repeat
the process to each group of four adjacent bigger tiles. We
note that unmerged small tiles in the previous step may be
left alone. Usually two repetitions of merging is enough for
adaptive tiling with a moderate range of tile sizes, because
very large tiles would significantly ruin the visual effects of
M. In Fig. 4 we show the merging process with tile pattern
variations during the objective optimization.

5. TILE IMAGE MATCHING AND COLOR
CORRECTION

In image mosaics there are many possible choices for T,
photographic images, paintings, icons, textures, even ab-
stract patterns. The number of images in T involved in
existing image mosaic systems may range from dozens to a
few thousand, and even to a million [20]. Both larger and
smaller T' datasets have advantages and disadvantages from
different perspectives.

First, a small 7" may be made up so that the content in
T may have some associations with the target image I for
artistic and commercial purposes. For instance, we can se-
lect some segments from Picasso’s paintings [21] as T" to gen-
erate a mosaic showing a portrait of Picasso himself (Fig. 7).
When using a very large T it is almost impossible to make
the content in 7" associate to I in a particularly meaningful
manner.

Secondly, a large T has a sufficient range of luminances
to cover the range of luminances in I, so we do not need to
make color correction on tile images in mosaic generation.
As a smaller T contains a limited range of luminances and
so may not cover the range of luminances in I here, color
correction is then needed for a better visual matching.

Thirdly, a large T requires more time to search and match
than a smaller T" does. For instance, a few minutes are
needed to generate mosaics in gizmos [20] with tile images
near to a million. Whatever kind of T' is used, matching
between tiles in I and images in 7' must be performed during
mosaic generation.

5.1 Matching

When selecting image tiles aesthetic criteria predominate
over technical ones and implementers are free to experiment.
Our particular choice of tile matching mechanism is primar-
ily based on the very practical method given in [6], in which
each tile image is partitioned into a 3 x 3 grid and for each
grid cell the average RGB color is computed. This leads to
a 27-dimensional image descriptor. However this RGB color
based image descriptor does not take the region roughness
into account. As a result, a tile image with a high roughness
value but similar average colors to the tile region in I may be
selected from T to paint a tile region with a high smoothness
value, as indicated by Fig. 5 left, where Beethoven’s smooth
face is covered by a few tile images with distinct variations
in roughness. Such mismatches in roughness between the
tiles in I and images in 7" is visually not desirable in image
mosaics.

Since entropy is the metric which is most helpful in de-
termining the roughness in an image, we introduce an addi-
tional dimension, the tile entropy H, to measure the region
roughness in the image descriptor in order to obtain a better
matching of both color and roughness. The match between
the tile in I and image in T is then achieved by minimiz-
ing the quadratic functional of the following 28-dimensional
image descriptor (ImD):
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where Vinr contains the index pairs of the matched ver-
tices in INT, K(Vinr) is the cardinality of Vinr (=9 here),
Hpazr = 8, Crmax = 255 and the S are the matching vertices



Figure 5: Left:

for I in I NT. Also o and B are factors which weight the
region entropy relative to the 27-dimensional RGB color.

To show the effect of entropy in our image descriptor, we
include some smooth brush stroke texture images in T for
Fig. 5 left and vary the settings for a and S in Eq. 3 to
generate image mosaics, Fig. 5 shows the effect on the im-
age mosaics of increasing o while decreasing [ from left to
right. We can see that decreasing a results in inhibition
of roughness matching in favor of color matching, while in-
creasing (3 leads to the opposite. Consequently, progressively
more smooth textures are selected by our image descriptor
to cover the smooth regions in I, as expected and seen in
the right three images in Fig. 5. Other parameter settings
and effects are possible.

In our system all tile images are square in shape. When
adaptive tiling is used, the tile regions are also square in
shape (although they vary in size). So we can use Eq. 3
directly to match an image from T, resize it to fit the tile
region in I and copy the resized image into the tile region
in M.

Using Eq. 3 our system can select the most suitable tile
images to cover the inhomogenous regions of I. These im-
ages usually vary in content and their overall look is visually
pleasing. Our system may also pick up the same tile image to
cover some bigger homogeneous regions of I in which varia-
tions in color and roughness are naturally very low, but this
is undesirable in image mosaics from the artistic point of
view. We therefore pick up tile images with the three small-
est values of ImD(H,C) from T and then randomly select
between them when tiling such regions in I.

5.2 Color correction

In our system we adopted a small dataset T with tile im-
age numbers ranging from 50 to 100, which allows users to
construct their own dataset to meet their artistic demands
more easily. Although in the matching phase our system can

A mosaic generated using an RGB image descriptor.
generated with our image descriptor of parameter settings on «/3=0.8/0.2, 0.6/0.4 and 0.4/0.6, respectively.
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The remaining three mosaics are

select tile images with a balance of both color and roughness
from T', adoption of a small tile dataset in general could not
ensure a good match between tile images and T in color,
thus color correction on tile images is required after match-
ing. We choose the algorithm given in [9] to correct colors
in tile images because it is sufficient for our purposes and
easy to compute.

6. OBJECTIVE FUNCTION

In this work image mosaics are generated with an objec-
tive function, which is derived from evaluation on the fit-
ness between M and I by taking into account both the root
mean square difference and the mutual information between
M and I. Although many approaches have been proposed
for generating image mosaics, only a few have addressed the
evaluation of mosaic quality with metrics and these normally
focus on a single perspective. D’Souze et al. evaluated their
fitness by summing the differences in pixel grey levels be-
tween M and I in [7].

As the tile images in M do not just depict the target im-
age I, but also convey additional information of themselves
to the viewers on their own, we think that, in addition to the
similarity in terms of RGB color distance between M and
1, it is preferable to take the mutual information between
M and I into account for the evaluation of these image mo-
saics. The mutual information I,,(M;I) between M and I
is defined as follows:

La(M;1) = H(M) + H(I) - H;(M:T)  (4)

where H(M) and H(I) are the entropy of M and I, respec-
tively, and H,;(M;I) is the joint entropy of M and I, which
is calculated by

255 255
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where p; ; is the joint probability of finding the same inten-
sity in both M and I, which we can approximate by using
the joint histogram of M and I, a two dimensional array in
which each entry is the likehood that an intensity ¢ in M
corresponds to an intensity j in I.

As mentioned already in Section 4, the choice of entropy
parameter h for merging tiles will affect the results of adap-
tive tiling, which in turn also affects the final visual effects
in M in terms of the information in 7' being transmitted to
M. Intuitively, if fewer tiles are merged when A is small,
more tiles with smaller sizes are left in M so that M would
look visually more similar to I and, correspondingly, the
mutual information shared by M and I would be bigger.
Alternatively if more tiles are merged when h is larger, the
mutual information reduces because more additional infor-
mation from T is transmitted with bigger tiles, correspond-
ingly the resultant M would become more dissimilar to I.

In order to confirm our intuition, we generated a series of
mosaic images for Beethoven’s portrait with A varying from
small to large values. Fig. 4 shows five images taken from
the generated mosaics with tile images related to musical
instruments and performers. We constructed a number of
datasets T for the different examples as described in Section
7, as presented here, and corresponding tiling patterns are
drawn on them. Next, we calculated the root mean square
difference D(M; I) between M and I for varying h values in
terms of RGB colors as follows:

DM; 1) =| M —1I'||=
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Figure 6: Left: Curves of D(M;I) and I,,(M;I) cal-
culated using Beethoven’s portrait and a different
set of tile images. Right: Curves of D(M;I) and
I,(M;I) calculated using Monroe’s portrait and a
different set of tile images.

We likewise calculated the values of Ip,(M;I) for corre-
sponding values of h for different sets of T'. Fig. 6 left plots
two sets of normalized D(M;I) and I, (M; I) curves against
h. We note that, although two curves show high frequency
decorrelations, the general trends of D(M;I) and I, (M; 1)
increases or decreases monotonically with h, which agrees
with our intuition. When the target image was replaced
with Marilyn Monroe’s portrait [27], we got similar results
of D(M; I) and I, (M;I) calculated with different set of tile
images, as shown in Fig. 6 right.

We can now see from Fig. 6 that both D(M; I) and I, (M; 1)

are functions of h. To balance the similarity and the mutual
information between M and I in the final image mosaics,
we seek to optimize the objective function by minimizing
the distance between D(M;I) and I, (M;I):

Hy = argmin [[D(M(h); I(h)) = Im (M (R); I(R))]] - (7)
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where arg(-) returns to H,, the value of h which gives the
minimum distance between D(M;I) and I,,(M;1).

The use of the minimization function in Eq. 7 requires the
normalization of values for these functions. Since D(M;I) is
calculated using the differences in the RGB colors between
M and I, it can be normalized easily by dividing through the
maximum values of RGB. As for normalizing I,,(M;I), we
calculate the maximum value Inaz of I, (M; I) for the case
of no tiles being merged and the minimum value I,,,;, for the
case of all 4 x 4 tiles with size S, being merged, and then
normalize all I,,,(M; I) values obtained for the minimization
iterations using (I (M; ) — Imin)/(Imaz — Imin)-

In our implementation, the iteration step is taken equal
to 0.005 to ensure the minimum difference between D(M; I)
and I, (M;I) is covered, and thus 200 iterations in total are
needed for the variable h to cover the range [0,1]. Our ex-
periments show that, for different input target images and
T datasets, the minimum difference between D(M; 1) and
I,(M;1I) can be captured after 120 iterations. So, on av-
erage, it may take 115 seconds to complete the incremental
optimization stage in our system, which is implemented with
Visual C++ 2005 and run on a PC with Pentium 2.8GHz
CPU and 2GB memory. The incremental iteration is shown
dynamically in the accompanying video.

7. RESULTS

We present several results of image mosaics using this ob-
jective function. The datasets of tile images we constructed
can be roughly divided into two categories, the relatively
rough’ ones composed of photographs or painting patches
collected in some association with the input I, and ’smooth’
ones composed of paint brush strokes and stone textures that
can be used without specific association with I, as demon-
strated in the examples given below.

In the first example we took Beethoven’s oil painting por-
trait as I and collected some photos of musical instruments
and performers from the internet to construct the dataset T,
as shown in Fig. 1 middle. With this dataset we are convey-
ing the idea that Beethoven’s music is always with us, and
will endure for generations. Fig. 1 right shows a mosaic im-
age with tiles composed of patches of brush stroke textures
taken from oil paintings.

In the second example we took Picasso’s self portrait as I,
and patches from Picasso’s paintings and stone textures as
the dataset 7', as shown by the right two images in Fig. 7.

In Fig. 8 we show our third example in which the input is
Marilyn Monroe’s portrait in gray-scale, while the dataset
T is constructed form a collection of her color photographs
on the internet. In this example we convert color photo-
graphic tile images into gray-scale ones for the matching
functions, while retaining the colors for tiling. Using color
photographic tile images to depict a gray-scale input image
brings a unique quality to the resultant image mosaics.

Fig. 9 shows the fourth example in which the target image
is a photograph of the Japanese outdoor bronze statue, the
Great Buddha of Kamakura [30]. We construct the dataset
T by taking patches from Thang-ka [29], a unique style of
religious scroll painting developed in the 7th century in the
Tibetan area. By this example we can see that image mosaic
is an exciting art form to integrate other art forms together,
and many more combinations of different kind of art forms
can be explored to produce image mosaics with a variety of
new looks.



Figure 7: From left to right: the input image of Picasso’s self portrait, mosaic with tiles of painting patches
taken from Picasso’s paintings, and mosaic with tiles of stone textures.

Figure 8: From left to right: the input photograph of Marilyn Monroe, mosaic with tiles of photographic
patches of Monroe, and mosaic with tiles of paint brush stroke textures.
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Figure 9: From left to right: the input photograph of Great Buddha, mosaic with tiles of patches taken from
Thang-Ka paintings,and mosaic with tiles of stone textures.

Table 1 presents the image size, tile number (TN), nor- paintings and SmoothT from painting stroke or stone tex-
malized D(M;I) and I,(M;I) as denoted by TN/D/I, tures.
in the table for the dataset Roughl taken from photos or On the bottom row of the table we show the averages of
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Table 1: Summary of image size, tile number,
D(M;I) and I,,(M;I) for previous examples.

RoughT SmoothT

Image size TN/D/I,, TN/D/I,
Beethoven 912 x 960  1583/.257/.555 1502/.143/.876
Picasso 768 x 960 1922/.328/.287 1679/.137/.939
Monroe 768 x 960 1781/.206/.431 1886/.207/.584
Buddha 768 x 960 1139/.293/.356 1146/.143/.876
Average 1606/.294/.407 1553/.157/.819

the tile number, average D(M;I) and I(M;I) measures for
different tile images. Where relatively smooth tile images
such as painting brush stroke or stone textures are used, the
average RGB distance between M and [ is less than that
for tile images composed of patches taken from photos and
paintings. This is because smooth tile images tend to depict
smooth areas on faces better than the relatively rough tile
images composed of photos and paintings. Also, the average
of the mutual information measure is maximized because
smooth tile images contain less information than those taken
from photos and paintings.

Finally we compare our method with other previous solu-
tions by using two examples with RGB distance D(M; I) and
mutual information I,(M;I). The first example is Mona
Lisa (Fig. 2) [26] and the second is the Chinese Yinyang
Taji pattern (Fig. 11). We have not included the original
input images of Mona Lisa and the Taiji pattern because
they are well known.

1
g D)
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0.5

@ ® © @
Figure 10: The mutual information and RGB dis-
tance measures between (a),(b),(c) and (d) in Fig.

2.

Fig. 10 plots D(M;I) and I,,,(M;I) corresponding to mo-
saics of Mona Lisa generated with different methods. We
note that both regular and adaptive tiling (Fig. 10 (b) and
(¢)) in gizmos have smaller RGB distances than that in
Patchworkr [31] (Fig. 10 (a)), which indicate that the poly-
nomial descriptors in gizmos achieve better matching than
the Patchworkr tool does. The smaller RGB distance from
our method (Fig. 10 (d)) indicates our color and region en-
tropy based image descriptor is able to match more widely
than the other methods we have compared. We note also,
that the image mosaics generated with polynomial descrip-
tors in gizmos have almost the same measures of mutual
information, and these are slightly bigger than the corre-
sponding measures for the Patchworkr tool, but smaller than
for our method.

Fig. 12 plots D(M;I) and I,(M; I) corresponding to mo-
saics of the Taiji pattern generated by different methods. We
note that the RGB distances corresponding to mosaics gen-
erated with feature and non-feature descriptors (d), adaptive
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Figure 11: Comparison with (a) decorative mosaic
[10] , (b) JIM [11],(c)-(e) with average color match-
ing, feature and non-feature descriptors, and adap-
tive mosaicing in gizmos [20], and (f) using our
method. For all results roughly 400 tiles were used.
The images (a)-(b) were taken from [11], and (c)-(e)
from [20].

1
/ In(M:1)
B

(®)

D(M:])

(;) (AC) (:d) (;) (:f)
Figure 12: The mutual information and RGB dis-
tance measures between (a),(b),(c), (d), (e) and (f)

in Fig. 11.

mosaicing in gizmos (e) and our color and region entropy de-
scriptor (f) are smaller than that in the decorative mosaic
(a), JIM (b) and average color match in gizmos (c). While
the mutual information measure reaches its smallest value
in JIM due to the different set of tile images used (mosaic
tiles are not square in JIM). It is also interesting to note
that, although the same tile images are used in (c),(d),(e)
and (f), the image mosaics generated with our method have
the biggest mutual information value among these four ex-
amples, and has nearly the same measure of RGB distance
with adaptive mosaicing in gizmos.

8. CONCLUSIONS AND FUTURE WORK

Image mosaics are a digital age refinement on traditional
mosaics and have many interesting applications. We have
presented a system capable of generating image mosaics with
adaptive tiling based on region entropy. A key issue asso-
ciated with image mosaic generation using small datasets is
the feature size matching between the tile images and input
images. In our current work, a minimum tile size is sug-
gested from experiments. A topic for future work is thus
to find a method to measure the feature size for images of
arbitrary objects, so that the minimum tile size can be de-
termined automatically.

In our current image mosaic system, the tile image datasets
are constructed manually, according to the associations that
are intended to be built between the tile images and input
images. It would be desirable for the tile image datasets to
be constructed automatically or semi-automatically. This



requires semantic recognition of classes of objects in the
given images, which is another topic for future research.
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