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Abstract

We present an approach for generating image mosaics
with irregular tiles made up from patches taken from
photographs, paintings and texture images. We propose a
method to generate irregular tiling patterns using polygon
tessellation in conjunction with a feature-based segmenta-
tion scheme, so that features in the input image can be better
preserved in the generated mosaics. In order to avoid the
mismatch in roughness between the sub-image in the tile
region of the input image and tile images in the tile dataset
that may arise in the previous RGB color based image
descriptors, we introduce the concept of region entropy into
the image descriptor to achieve better match in both color
and roughness. A few mosaic images generated by our
system are presented, some of which have effects of Chinese
characteristics.

1. Introduction

Mosaics, as an ancient art form, is usually made by
arranging small pieces of stone or glass to create a picture or
pattern. Mosaics may use either regular tiles such as cubic
stones, or irregular shapes and sizes of ceramic, porcelain
and glass for greater design variety. In computer gener-
ated image mosaics, various elements such as photographic
images and icons can be used as tiles. Compared with
traditional mosaics, image mosaic tiles may convey some
additional visual information to the viewers, thus they enrich
the expressive power of mosaics and have many interesting
applications.

In this paper we address the problem of creating image
mosaics as follows: given a collection of tile images T and a
target image I, construct an image mosaic M with irregular
tiles containing images selected from T which will resemble
I. Fig.1 shows three examples of image mosaics of a picture
of panda generated by our system. The main contributions
of our work are:

(1) Most image mosaics use equally spaced rectangular
(including square) image tiles, a few use rectangular image
tiles which change their sizes adaptively in the salient
and non-salient regions as detected by the variations of

RGB colors in I. Inspired by hand-made glass mosaics
(Fig.2 right), we propose an irregular tiling scheme using
a polygonal tessellation which is then modified by use of
edge information obtained from image segmentation.

(2) Currently color information is used to match a tile
region in I and tile images in T in most image mosaic
systems. However, such color based image descriptors may
lead to a mismatch in roughness between the two, so we
introduce an image descriptor that takes both color and
region entropy into account and use it to match the tile region
in I and tile images in T.

2. Related work

During the past one and a half decades a large amount
of work has been applied to digital mosaicing. A nice
overview of mosaicing methods was recently presented by
Battiato et al. [1]. Haeberli [2] first used Voronoi diagrams
to tessellate the image with tiles of variable shapes and it
did not attempt to follow edge features. Then Dobashi et al.
[3] extended the original idea of Haeberli [2] and generated
aesthetically more pleasant results because they integrated
edge information with Voronoi tessellation. Faustino and
Figueiredo [4] presented a technique similar to Dobashi’s,
but the sizes of tiles were smaller near image details and
larger otherwise. Hausner [5] obtained very good results of
ancient mosaics using Centroidal Voronoi Diagrams. A very
advanced approach to the rendering of traditional mosaics
was presented by Elber et al. [6]. This technique was based
on offset curves that got trimmed-off the self intersecting
segments with the guidance of Voronoi diagrams. Fritzsche
et al. [7] presented a new and efficient method which was
based again on the Lloyd’s method for Centroidal Voronoi
Tessellation computation.

In addition to Voronoi diagrams based mosaicing
schemes, there are still some other approaches. Kim and Pel-
lacini [8] have introduced a general framework for creating
so-called Jigsaw image mosaics by minimizing an appropri-
ate mosaicing energy function. Another technique for stroke-
based rendering that exploits multi-agent systems has been
presented by Schlechtweg et al. [9]. The algorithm presented
in [10] and [11] was based on directional guidelines and



Figure 1. Image mosaics of a picture of panda. Our irregular tiling with photographic tile images composed of
patches taken from Chinese ink and wash paintings(left), with patches from Monet’s paintings(middle) and irregular
tiling result with tile images of stone textures(right).

distance transform and used some known image processing
techniques in order to obtain a precise tile placing. Kim
et al. [12] used mosaic representation for video navigation
and they were mainly addressing the problem of packing
and appropriate labeling of the given video frames in pre-
segmented input images. Recently, Orchard and Kaplan [13]
introduced Cut-Out Image Mosaics where arbitrarily shaped
image parts were chosen to assemble the final mosaic. As for
photo-mosaics, McKean began to create the earliest example
of mosaics using photographs in 1994. Silvers [14] worked
on the photo-mosaic by matching the target image in tone,
texture, shape and color with small photographic images.
Finkelstein et al. [15] proposed an extension of Silvers’
idea which first placed the tile images and then altered their
colors to better match the target image. Then Klein et al.
[16] extended Silver’s original idea to videos obtaining a
video mosaic which was a two dimensional arrangement of
small source video-tiles that suggested a larger video.

Very recently, 3D mosaicing has become a topic of
interest. Lai et al. [17] showed how to create decorative
mosaics on 3D surfaces . Dos Passos and Walter presented
a technique to simulate 3D mosaics where the sizes of the
individual pieces varied according to the local geometry
[18]. They also proposed a method to simulate the Opus
Palladium effect of 3D mosaic by representing tiles as
Voronoi polygons computed from a distribution of points
on the surface of the 3D object [19], [20].

The most frequently used regular tiles in image mosaics
are rectangles including squares. With equal spacing of
regular tiles (Fig.2 left) one has to choose much smaller tiles
in order to depict features in I well in M, thus making images
in tiles difficult to see unless they are enlarged many times.
Equal spacing of regular tiles also have the visual periodicity.
To avoid such visual periodicity, Pavic et al. [21] presented
an adaptive tiling method for image mosaics where a bottom-
up merging is applied to neighboring non-feature tiles (Fig.2

Figure 2. Mosaics with different tiling patterns. Image
mosaic with equal spacing tiling (left) and adaptive tiling
(middle) [21]. A hand-made glass mosaic (local) by
Ulmann (right).

middle). In Fig.2 right we include a hand-made glass mosaic
by Ulmann, in which the glass is cut into irregular shapes
to fit corners in features. There is no literature evidence
that such irregular tiling has been simulated in digital image
mosaics.

3. System overview

In this work we propose a method to generate image
mosaics with irregular tiles that mimic the irregular tiling
pattern in Fig.2 right using polygon tessellation. Our method
introduces images into irregular tiles which distinguishes
our work different either from previous irregular tiling
approaches in which each tile has just a single bit of color, or
from previous image mosaics using just regular rectangles
as tiles. The basic architecture of our system is presented
in Fig.3. We tessellate the entire image region of I with
polygons and then modify the tessellation by the use of
the edge points obtained from a feature-based segmentation
(Section 4). The tile size in the tessellation can be further
altered by users to meet their artistic demands. Once the
tiling pattern is obtained, we match the tile regions in I and
tile images in T using a 28-dimensional image descriptor to
generate the final image mosaic M.

In the following two sections we proceed to detail our
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Figure 3. System workflow overview.

method. Section 5 presents some image mosaics generated
by our method. We conclude our work in section 6.

4. Irregular tiling by polygon tessellation

This section describes our irregular tiling strategy which
involves three steps: (1) tessellating the entire image region
of I with polygons, (2) segmenting I into regions depicting
object features with the EDISON algorithm [22], and (3)
moving some vertices in the polygon tessellation toward the
nearest points of region edges.

4.1. Tessellation of polygons

Tessellations in mathematics mean that shapes which tes-
sellate cover the plane without gaps and without overlapping.
Tessellations using single triangles or quadrilaterals are not
desirable in image mosaics because the resultant tessellation
has noticeable repetitions as shown in Fig.4.

Figure 4. Left: tessellation by triangles. Middle and
right: tessellation by quadrilaterals.

We therefore tessellate with five sided polygons (pentagons),
because the pentagon can be further divided into a triangle
and a quadrilateral, two quadrilaterals, or three triangles, and
in these ways the visual periodicity appearing in the triangle
and quadrilateral tessellation can be negated.

Unfortunately, not all pentagons tessellate naturally. Since
the sum of the interior angles of an n-sided polygon is given
by 180◦ × (n − 2), the sum of all the pentagon’s interior
angles is therefore 540◦. However, this sum of 540◦ is not
helpful when trying to fit a number of pentagons around
a vertex. In 1918 Reinhardt found five types of pentagon
which tessellated properly [23]. Fifty years later Kershner

gave three more new types [24]. In 2000 Sugimoto and
Ogawa proposed a method for classifying convex pentagons
suitable for tessellations and discussed 11 types of pentagon
tessellation that was reported in the literature [25]. We
choose type 4 (as shown in Fig.5 I) in their classification
as a candidate for our initial tessellation because it produces
more irregular looking tessellation than others.

Fig.5 left shows the process of tessellation with the chosen
pentagon. We initially set a=b=2Sr, and c=d=Sr, where
Sr controls pentagon’s size which can be adjusted through
user’s intervention.

Although a tessellation using this pentagon looks more
irregular visually than the tessellations using triangles and
quadrilaterals (Fig.4), the visual periodicity induced by
repetitions of hexagons is still noticeable in the result (Fig.5
III). To avoid this visual periodicity, we first add small
perturbations to the vertices of the pentagon tessellation,
then pick up deformed pentagons resulted from addition of
perturbations at random and divide them into two or three
patches (Fig.5 IV). The resultant tiling pattern has a hand
crafted look, as expected.

Figure 5. I: Indication of arrangement of angles A, B, C,
D and E and edges a, b, c, d and e for the pentagon,
where A = C =90◦, a = b, c = d. II: Tessellation of four
pentagons to form a hexagon. III: Tessellating a large
region with hexagons through a series of simple trans-
lations. IV: The tiling pattern after adding perturbations
and performing subdivision.

In the feature regions of the hand-made glass mosaic
(Fig.2 right), edges of irregular tiles are made to coincide
with those of feature regions so that target object features
can be better preserved. As our tessellation proceeds inde-
pendently of target features in I, there is a tendency for the
final positions of polygon edges to be drawn away from
edges of object features in I, as shown in Fig.6 left. If
we are to depict feature regions effectively, we need to
match polygons vertices in the tessellation more closely
with feature edges in I. This requires the segmentation of
I into salient feature regions from which feature edges can
be obtained, as described next.



4.2. Image segmentation and tessellation modifica-
tion

Image segmentation is a process in which regions or
features sharing similar characteristics are identified and
grouped together. Chabrier et al. evaluated four major seg-
mentation algorithms and they concluded that the Edison
segmentation seemed to be visually the best one [26].
Following Chabrier et al. we favor the EDISON algorithm
here, and use the code available from [22] to perform our
segmentations.

After the EDISON algorithm is applied to I, a set of points
Pi which describes the edge points of segmented regions, is
obtained from the edge results provided by EDISON. We
then sample every 10th point in the ordered set Pi to get a
smaller set of edge points Pj, as this is sufficient to preserve
edge features. This also enables a quicker search between Pj
and vertices Vi in the polygon tessellation. Next, we take a
vertex Vi’ in Vi as the center of circle of radius Sr and search
for all vertices in Pj within that circle region, and choose the
point Pj’ in Pj nearest to Vi’ in that circle. Finally we replace
the point in Vi by the point selected from Pj. The process
continues until all the entries have been examined. Fig.6
right illustrates typical results of tessellation modification.

Vi

Pj

'

'

Figure 6. Left: Edges in black of segmented regions
of the picture of panda and irregular tiling in blue and
modified tessellation in red. Right: the local of tessella-
tion modification with Pj’ and Vi’ indicated.

5. Tile matching and color correction

In image mosaics there are many possible choices for T,
photographic images, paintings, icons, textures, and even
abstract patterns. The number of images in T involved in
existing image mosaic systems may range from dozens to a
few thousand, and even to a million [21]. Both larger and
smaller T datasets have advantages and disadvantages from
different perspectives. A small T may be made up so that
the content in T may have some associations with the target
image I for artistic and commercial purposes. But for a very
large T it is almost impossible. Then a smaller T contains a
limited range of luminance and so may not cover the range
of luminance in I. So color correction is needed for a better

visual matching. Thirdly, a large T requires more time to
search and match than a smaller T does. Whatever kind of
T is used, matching between tiles in I and images in T must
be performed during mosaic generation.

5.1. Matching

In regard to matching, any method proposed in the field
of image retrieval can be utilized in mosaic generation. It
is beyond the scope of this paper to review all techniques
for image retrieval. Our matching mechanism is primarily
based on a very practical method given in [27], in which
each tile image is partitioned into a 3× 3 grid and for each
grid cell the average RGB color is computed. This leads to
a 27-dimensional image descriptor. However this RGB color
based image descriptor does not take the region roughness
into account. For instance, a tile image with a low roughness
value but similar average colors to the tile region in I may be
selected from T to paint a tile region with a high roughness
value. Such mismatches is visually not desirable in image
mosaics.

Since entropy is the metric which is most helpful in
determining the roughness of an image, we introduce
an additional dimension, the tile entropy H, to measure
the region roughness in the image descriptor in order to
obtain a better matching of both color and roughness. The
matching between the tile in I and image in T is then
achieved by minimizing the quadratic functional of the
following 28-dimensional image descriptor (ImD):

ImD(C, H) = α(
HS −HT

Hmax
)2

+β





1
3×K(VI∩T )

∑

C∈{R,G,B}

∑

i ∈VI∩T

(
CS,i − CT,i

Cmax
)2





(1)
where HS and HT are the entropies of source and target
images, respectively. Hmax = 8 is the maximum entropy
value we may obtain from ordinary images. VI∩T contains
the index pairs of the matched vertices in I ∩ T , K(VI∩T )
is the cardinality of VI∩T (=9 here), and Cmax = 255 is
the maximum value for each RGB component. α and β are
factors which weight the region entropy relative to the 27-
dimensional RGB color. From experiments we set α = 0.4
and β = 0.6 as default to keep a balance between the RGB
color and the region roughness for matching. Users may
further tune them via our system’s interface to explore other
possibilities. To show the effectiveness of entropy in the
descriptor, we include some images with pure green colors
and pure black colors into T. And we can see the result using
only RGB image descriptor in Fig.7 middle, where the green
background with grasses and bamboos is covered by the tile
images with plain color variations and low roughness and the
body is covered by pure black tiles. These smooth images



are selected because of similarity between the average color
of them and the green background. In contrast, our image
descriptor takes roughness into account and then picks up the
images with higher roughness instead of those smooth green
images and black images to cover the green background and
the body in I, as shown in Fig.7 right.
In our system all tile images are square in shape. However

Figure 7. Source image(left), a mosaic image gener-
ated with RGB image descriptor (middle) and a mosaic
generated with our image descriptor (right).

the irregular tile region and square tile image create a
mismatch condition. Our solution is first to calculate the
bounding box for each irregular tile and then use the sub-
image of I to match the tile image in T. In order to preserve
the aspect ratio when copied into the tile region in M, we
first place a virtual square (tile) over the irregular tile in I,
the length of the square being equal to the maxima between
the width and height of the bounding box. Next, we scale the
matched tile image to fit the virtual square and copy the tile
image onto the virtual square. Finally, we take the irregular
region in I as a binary mask and copy pixels in the virtual
square in I into the tile region in M. We note that parts of the
tile images on the outsides of irregular tiles are cut out, thus
parts of the tile images are missing in the resultant mosaics.
However this is not a serious problem because the salient
information is often in the central area on the tile image and
our irregular tiling scheme retains that.

5.2. Color correction

In our system we adopt a small T which contains 50-100
images. Adoption of a small tile dataset on the other hand
requires color correction on tile images after matching. We
choose the algorithm given in [15] to correct colors in tile
images because it is sufficient for our purposes and easy to
compute. The correction rule is given in the pseudocode be-
low but more detail is given in [15]. The function position()
transforms the position indices or coordinates of Ty ∈ T to
the same index space I uses around Vx ∈ V , the common
vertices in I∩T , where Ty is the current tile and Vx a vertex
in I to which Ty is aligned. We include functions Γ1, Γ2

to vary the input colors off I and the tile respectively, non-
linearly, e.g by brightness or position relative to the center
of Ty .

A = {(i,j)|Xi,j ∈ ( position(Ty , Vx)) ∧ Ty ∈ T ∧ Vx ∈ V }
for all indices k∈ A do a = a + Γ1(I[k])
for all colors C ∈ Ty do {C average = C average + Γ2(C) }
f = a / C average
for all colors C ∈ Ty do { C = C * f }

Table 1. Color correction model.

6. Results

We present some results generated by our irregular tiling
scheme and small T datasets. In the first example we take
a picture of panda as I and collect patches from Chinese
paintings and Monet’s paintings to construct the relevant
datasets, and generate two image mosaics as shown in Fig.1
left and middle. While Fig. 1 right shows a mosaic image
with irregular tiles composed of stone textures. The gaps
between tiles are rendered with lines of varying width to
make the grout look more natural. The color of the grout is
gray which is adaptively varied in brightness inversely with
the average luminance of its neighboring tiles.

In Fig.8 we include two previous digital mosaics with
irregular tiling for comparison. First, the Voronoi diagram
based approaches produce tiles with similar shapes, while
our method generates tiles with shapes that change adap-
tively according to features of the target image. Also our
method use less tiles in the resultant mosaics than those
used in previous mosaics of irregular tiles.

Fig.9 shows the mosaic effects of two hands in Michelan-
gelo’s painting, from which we can see that Voronoi
cells tend to produce zigzag boundaries along the hand
contour(Fig.9 middle), while our feature based segmentation
scheme tends to preserve the boundary shapes of the two
hands (Fig. 9 right). In the following figures we show
some examples of portrait image mosaics generated by our
method. Such portrait mosaics, to our knowledge, are not
presented with previous irregular tiling schemes including
both Vornoi diagram based methods or the Jigsaw image
mosaics in which the tiles are some chosen objects. Also we
introduce patches taken from paintings and texture images
into our tiles to produce varying mosaic effects that are
different from those produced by Voronoi diagrams.

Fig.10 left is a Buddha statue which is used as I, the
dataset is composed of patches from line drawings of
Buddhism mdra (mystic positions of the hand), as shown
in Fig.10 middle. Fig.10 right shows the generated mosaic
with stone texture patches.

In Fig.11 we present another example in which the target
image is Marilyn Monroe’s portrait in gray-scale, while
the datasets are constructed by patches taken from Monet’s
paintings (Fig.11 middle and ceramic textures in Fig. 11
right. In this example, we use color tile images to depict a
gray-scale input image which brings a unique quality to the
resultant image mosaics.



Figure 8. From left to right: Examples of digital mosaics with irregular tiling by the method given in [2], [4] and ours.

Figure 9. Left: the input image, middle: result given in [4], right: our result.

Figure 10. Image mosaics of Buddha

Fig.12 takes Barack Hussein Obama’s portrait as input.
We use patches taken from oil paintings and glass textures
to generate two image mosaics, as shown in Fig.12 middle
and right.

In Fig.13 we show the last example of our image mosaics,
Venus. Fig.13 middle is generated with a dataset T con-
structed by collecting Chinese fine flower-and-bird paintings
and Fig.13 right with stone textures.

Table.2 shows the summary of image size, tile number
and running time required for previous examples.

Image size Tile number Running time
Panda 780× 768 558 4141ms

Buddha 800× 974 731 4032ms
Monroe 600× 670 367 2603ms
Obama 800× 924 846 4265ms
Venus 700× 812 534 3980ms

Table 2. Summary of image size, tile number and
running time required for previous examples.

7. Conclusion

In this paper we have presented a system capable of
generating image mosaics with irregular tiling based on



Figure 11. Image mosaics of Marilyn Monroe

Figure 12. Image mosaics of Obama

Figure 13. Image mosaics of Venus

polygon tessellation, using the smaller tile image datasets.
The key issue associated with image mosaic generation using
small T dataset is the feature size match between the tile
images and input images. In our current work, the minimal
tile size is decided by user interaction. A future work is
to find a method to measure the feature size for images

of arbitrary objects, so that the tile size can be determined
automatically.

In our current image mosaic system, the tile image
datasets are constructed manually according to the associ-
ations between the input images and tile images. It would
be desirable that the tile image dataset can be constructed



automatically or semi-automatically. This requires semantic
recognition of some fixed class of objects in the given
images, which is also a topic for future research.
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