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Figure 1: The proposed RT-VENet can perform high-quality and temporal-consistent video enhancement in real-time (77 FPS
with anNVidia Tesla P40GPUor 45 FPSwith a CPU on 1080p videos), significantly outperforming the state-of-the-artmethods,
UPE [52], HDRNet [17], Fast blind [29] and Vid2vid [53] in terms of quality and speed. FPS of other methods on the same GPU.

ABSTRACT
Real-time video enhancement is in great demand due to the ex-
tensive usage of live video applications, but existing approaches
are far from satisfying the strict requirements of speed and stabil-
ity. We present a novel convolutional network that can perform
high-quality enhancement on 1080p videos at 45 FPS with a single
CPU, which has high potential for real-world deployment. The pro-
posed network is designed based on a light-weight image network
and further consolidated for temporal consistency with a temporal
feature aggregation (TFA) module. Unlike most image translation
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networks [24, 35] that use decoders to generate target images, our
network discards decoders and employs only an encoder and a
small head. The network predicts color mapping functions instead
of pixel values in a grid-like container which fits the CNN struc-
ture well and also advances the enhancement to be scalable to
any video resolution. Furthermore, the temporal consistency of
the output will be enforced by the TFA module which utilizes the
learned temporal coherence of semantics across frames. We also
demonstrate that the mapping representation is general to various
enhancement tasks, such as relighting, retouching and dehazing,
on benchmark datasets. Our approach achieves the state-of-the-art
performance and performs about 10 times faster than the current
real-time method [17, 52] on high-resolution videos.

CCS CONCEPTS
• Computing methodologies → Computer vision; Computa-
tional photography.
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1 INTRODUCTION
Real-time video enhancement, targeting at improving visual quali-
ties of live videos, can be applied practically into video communica-
tion, augmented reality and robotics.While image enhancement has
already been extensively studied and even deployed in the industry,
there is still a considerable gap between existing video approaches
and the real-world deployment due to two key challenges, i.e., 1)
how to reduce the computational complexity and 2) how to enforce
the temporal stability.

Recent deep image-to-image translation methods [5, 7, 14, 24,
33, 34, 56–58] can generate high-quality enhanced images. All of
them employ generative convolutional neural networks (CNN) with
widely used encoder-decoder structures. However, the approaches
of generating a high-resolution image with a decoder, which con-
sists of a deep stack of upsampling and conv layers, are quite com-
putationally expensive. Some methods [17, 52] are designed to
accelerate the process by dealing with a downsampled image and
then recovering the full-resolution output with the edge-aware
upsampling [13], but the computation time (about 8 FPS for 1080p
videos) is still not satisfactory. Intuitively, enhancement is an easier
task than style transfer, because it is supposed to preserve struc-
tures of input images, only some of color-related attributes need to
be adjusted, such as lighting, tone, and white-balance. Some tradi-
tional enhancement methods [25, 36, 44, 44, 59] imitate the means
of human retouching, which simply adjust color curves. They are
of linear time complexity in image processing but require sophis-
ticated and heuristic algorithms to estimate the curve parameters.
Fortunately, deep networks excelling in image analysis could fulfill
this mission.

Another main challenge is to preserve temporal consistency in
videos, which attracts a lot attention in research areas such as video
segmentation [49], style transfer [12], and colorization [61]. Most
methods [12, 61] enforce temporal consistency by recovering dense
motion [39, 41], i.e., optical flow, between frames, which are of high
complexity. Other methods exploit recurrent network structures,
such as long short-term memory (LSTM) networks [20, 27, 55].
Although there are some dense prediction works [8, 23, 47, 48]
for videos, they are limited to offline scenarios, and their network
structures are tailored for specific tasks.

We propose the novel RT-VENet, which can enhance high-resolution
videos in real-time. Inspired by the efficient representation of tra-
ditional tone-mapping methods [44, 59], we predict similar input-
output mapping using a light-weight network without a decoder.
The mapping prediction is performed using low-resolution im-
ages since only scale-invariant features, such as color distributions
and high-level semantics, are considered. Different from the meth-
ods [21, 37] adopting a single global mapping with limited capacity
of fitting to the whole image, our representation contains multi-
ple tiles of mapping functions, capturing both local variances and
global contexts. Each tile contains a piece-wise linear function for

mapping the corresponding input patch to the target patch. The
mapping functions belonging to such grid-like tiles are constrained
in terms of the smoothness of the target image. The task of the
network is to predict all the parameters of mapping functions. Even-
tually, the full-resolution target is reconstructed by applying the
predicted mapping functions to the input image. Temporal consis-
tency is enforced by introducing a feature aggregation scheme, by
which the extracted features from neighboring frames are fused
with respect to spacial feature coherence.

The proposed method can not only produce high-quality results
compared with the state-of-the-art methods on the image bench-
marks [7, 32], but also outperform existing methods with a large
margin on the constructed video dataset. The contributions of this
paper are three-fold.

• A novel framework for real-time video/image enhancement
benefits from a light-weight CNNmodel. The proposedmethod
performs about 10 times faster than the existing real-time
image methods [17, 52] on 1080p videos, as illustrated in
Fig. 1.

• A general representation applicable for various image en-
hancement tasks, which effectively incorporates global con-
text and local variance into the pixel value mapping. The
experiments demonstrate the superior performance of our
method on under-/over-exposure correction, retouching, and
dehazing datasets.

• A deep feature aggregation scheme for enforcing video tem-
poral consistency and even improving stability in training.

2 RELATEDWORK
Automatic image adjustment. Image enhancement has been ex-
plored for a long time. Photographers adjusted images by many
operations and filters such as highlight, contrast, saturation and hue.
Hence, based on supervised learning from paired images, which
are obtained before and after editing by an expert photographer,
many works aimed at approximating photographers’ adjustment
skills. They extracted handcrafted features from input images and
learned to determine editing parameters with different types of
post-processing operations, including global tone adjustment [7],
propagating editing[18], color adjustment [57], tone style [51] and
tone mapping [2]. More recently, reinforcement learning was also
employed to this area [21, 37], which proposed the step-wise inter-
pretable action sequences for the image enhancement.
Image-to-image transformations. Recently, the generative ad-
versarial network [35] showed impressive performance on many
challenging tasks. By using the network, Pix2Pix[24] translated an
image to another image based on paired images and has shown
vigorous potentials to the color enhancement application. For Cycle-
GAN [62] with unpaired training data, the translations were en-
couraged to be cycle consistent, which could also be applied in
the same way to different image-to-image translation tasks. The
Adversarial Inverse Graphics Network [50], by utilizing a problem
specific renderer, can make use of unpaired data for image-to-image
translation as well. Apart from that, the works of [56] [33] and [58]
proposed architectures to learn recursive filters for edge-aware
smoothing, denoising, and color interpolation. Nevertheless, most
of these works incur a heavy computational cost that scales linearly
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Figure 2: Problem formulation. (a) An example pair of input and user retouched output images. The input-output intensity
mappings are plotted on the right, with red curves trying to fit the mappings. We can observe that the global curve (top) is
difficult to describe the mapping of all pixels, while curves in the grid tiles (bottom) are more likely to fit to the local mapping
in patches. (b) The piece-wise linear function is employed to fit the regional input-output mapping.

with the size of the input image, usually while the large number of
stacked convolutions and non-linearities that must be evaluated at
full resolution.
Transformation acceleration. Many works were also aimed at
accelerating the transformation by applying low resolution and up-
sampling the result. By using a bilateral filter on a high-resolution
guidance map, Kopf et al. [28] produced a piecewise-smooth edge-
aware upsampling. Furthermore, Gharbi et al. [17] introduced a neu-
ral network architecture that can perform image enhancement on
full-resolution images inspired by bilateral grid processing. On the
basis of [17], Wang et al. [52] presented intermediate illumination
in the network to associate the input with expected enhancement
result, instead of directly learning an image-to-image mapping as
previous work.
Video enhancement.While image-based CNNs focus on 2D im-
age content, they can not directly adapt to video sequences, suf-
fering from flickering artifacts. A lot methods [12, 30] enforced
temporal consistency by employing high-cost estimated dense cor-
respondences between frames. Eilertsen et al.[16] introduced a
temporal-aware regularization loss function, but only considering
the loss function without network structure is not sufficient to
model the consistency in the time dimension. Leveraging recurrent
network structure for video data has recently been demonstrated
to be powerful in video classification [60] and parsing [49]. There
were also a few methods introduced for image-to-image translation,
such as video deblurring [47], super-resolution [8, 23]. Recently,
some works about video temporal consistency [6, 29, 53] showed
impressive performance on many challenging tasks. Methods of
[6, 29] could produce the temporally consistent video by taking
the original and per-frame processed videos as inputs, while [53]
by learning a mapping function from an input source video to a
target video. Wang et al. [54] proposed a low light video enhancing
method by exploring the high sensitivity camera noise in low light
imaging. Chen et al. [10] trained a siamese network on static raw
videos, but it does not support other camera data or images after
camera IPS i.e., the JPG or PNG data, while our task is training a
universal network for any kind of data format. Anyway, all these
methods posed the video enhancement problem as dense prediction

with the constraints in the spatial and temporal dimension, while
inherent lighting mechanism is neglected.

3 APPROACH
We propose the RT-VENet, an end-to-end light-weight CNN, for
real-time video enhancement. In this section, we first introduce the
formulation of our enhancement problem in Section 3.1, and then
present the video network in Section 3.2. Finally, the loss functions
for global and local constraints are elaborated in Section 3.3.

3.1 Problem Formulation
Since methods of dense pixel-wise prediction [24, 33, 34, 56] cannot
discard the high-cost decoders, estimating color mapping func-
tions [7, 21, 57] is an attractive direction for real-time applications.
Nevertheless, employing color mapping functions introduces two
challenges. First, a single function applied to the whole image scope
is difficult to describe complex image processing operations with
local variances. Second, methods of adopting mapping functions
are usually based on user assessment [21] or reference images [22],
while automatic correction without reference can be ambiguous.

Inspired by classic scale-aware image filters [13, 19], we construct
the mapping functions on grid-like tiles, which not only capture
finer details in the local region but also fit the structures of stacked
convolutional and pooling layers in an encoder. After feeding an
image 𝐼 into the CNN encoder, we obtain a feature map of size
𝑆𝑥 × 𝑆𝑦 . Each pixel in the feature map corresponds to a tile 𝑔 ∈ G
in the grid, and predicts a color mapping function 𝜙𝑔 (𝑥) for all the
input pixels 𝑥 ∈ 𝑔, as illustrated in Fig. 2(b). The mapping function
is defined as a piece-wise linear function:

𝜙𝑔 (𝑥) =

𝐿−1∑
𝑙=0

𝑘
𝑔

𝑙
𝛿𝑙 (𝑥), (1)
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𝐿
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Figure 3: Overview. The proposed RT-VENet is built on a baseline image network (bottom row) and then consolidated with a
temporal feature aggregation module. The light-weighted network contains only an encoder and a small head to reduce high
cost of conventional decoders. Taking a downsampled image as input, the network predicts input-outputmapping coefficients
located in grid-like tiles. Each tile outputs a piece-wise linear function (green box on the right). The final full-resolution output
is reconstructed by mapping the input using the predicted functions in tiles to preserve high-resolution details.

where 𝐿 is the number of pieces in the function, 𝑙 = 0, ..., 𝐿 − 1 is
the index of each piece, and 𝑘𝑔

𝑙
is the slope of each linear function.

Thus, the target of the network is to regress a set of coefficients of
the mapping functions Φ = {𝜙𝑔 |𝑔 ∈ G}, 𝜙𝑔 = [𝑘𝑔0 , ..., 𝑘

𝑔

𝑙
, 𝑙
𝑔

𝐿−1].

3.2 Video Enhancement Network
In the following, we will detail the video enhancement network,
which is built on a baseline image network and consolidated with
a temporal feature aggregation module, as is illustrated in Fig. 3.
Baseline image network. The bottom row of Fig. 3 shows the
architecture of the baseline image network. The suffix 𝑡 or 𝑡 − 1
denoting the time stamp in video sequences is omitted in the follow-
ing description for clarity. The input image 𝐼 is first downsampled
into a small resolution one 𝐼𝑠𝑚𝑎𝑙𝑙 and then fed into the baseline
image network to regress the mapping coefficient set Φ. The image
network architecture is light-weighted, containing only an encoder
similar to MobileNetV2 [42] and a small head. The encoder learns
to map the image 𝐼𝑠𝑚𝑎𝑙𝑙 to an embedding space to obtain a latent
feature 𝐹 of shape 𝑆𝑥 × 𝑆𝑦 × 𝑐 in terms of image context and color
variance. The encoder is followed by a head containing three 1 × 1
conv layers, which aim to transfer the latent feature to color map-
ping coefficients Φ. The output is of shape 𝑆𝑥 ×𝑆𝑦 × (𝑐𝑖𝑛×𝐿), where
𝑐𝑖𝑛 is the number of input image channels. Finally, the target image
𝐼 is reconstructed by mapping 𝐼 using the functions Φ.
Temporal feature aggregation.The video network is constructed
by inserting a temporal feature aggregation (TFA) module into the
baseline image network. The TFA module aims to enforce the tem-
poral stability of the output across frames. To alleviate the flickering
artifacts, we embrace the observation that given two continuous
frames, the still regions should be paid attention from both frames
and output similarly, while the moving regions should be deter-
mined by the current frame. The regional stillness is measured by
the coherence between frames.

Thus, the temporal aggregation is a form of feature modulation
in terms of feature similarities. Recalling that the 1

16 feature map
𝐹 of the size 2𝑆𝑥 × 2𝑆𝑦 , we use 𝑔 to indicate the pixel index of the
feature map. Let 𝑀𝑔 be the matching score of two features, and
𝑓 = 𝐹𝑔 be the 1 × 1 × 𝑐 feature of feature map 𝐹 at position 𝑔.

The current feature map 𝐹𝑡 can be modulated at pixel-level by the
previous one 𝐹𝑡−1 using:

𝑓 ∗𝑡 = 𝑤𝑐𝑜 (𝑓𝑡 + 𝑓𝑡−1) ⊙ 𝑀𝑔 + (1 − 2𝑤𝑐𝑜 ) 𝑓𝑡 (2)

where 𝑓 ∗𝑡 is the modulated feature,𝑤𝑐𝑜 the weight controlling the
impact from the previous frame, ⊙ the pixel-wise multiplication.
As for the coherence map𝑀 that measures the confidence of pixel-
level feature matching, we adopt the cosine similarity, taking the
form:

𝑀𝑔 = cos < 𝑓𝑡−1, 𝑓𝑡 >=
𝑓𝑡−1 · 𝑓𝑡

| |𝑓𝑡−1 | | · | |𝑓𝑡 | |
(3)

where cos is the cosine function, · the inner product operation.
Fig. 3 shows an example of the coherence map 𝑀 (gray map

in the center), where the pixel intensity reveals the confidence of
feature matching. The central dark regions represent the moving
person and the around light regions represent the still background.

3.3 Loss Function
Given the predicted mapping coefficients Φ and the full-resolution
input frame 𝐼𝑡 , we can obtain the result 𝐼𝑡 by applying the transfor-
mation. Let 𝐼𝑡 denote the ground truth. We propose a loss function
considering image distance metrics and constraints tailored for the
mapping functions. The loss function is made up of four compo-
nents:

L𝑡 = 𝜆𝑟L𝑟
𝑡 + 𝜆𝑝L𝑝

𝑡 + 𝜆𝑠L𝑠
𝑡 + 𝜆𝑡𝑒𝑚𝑝L𝑡𝑒𝑚𝑝

𝑡 (4)

Reconstruction loss. We employ the L1 loss to measure the re-
construction error.

L𝑟
𝑡 = | |𝐼𝑡 − 𝐼𝑡 | |1 (5)

Perceptual loss. We adopt perceptual loss [26] to measure the
semantic similarity between the output and ground truth.

L𝑝
𝑡 = | |Ω(𝐼𝑡 ) − Ω(𝐼𝑡 ) | | (6)

where Ω represent the feature extractor of VGG-19 [46] at layer
𝑐𝑜𝑛𝑣1_2. We employ shallow features since the enhancement task
focuses more on low-level appearance.
Smooth loss. Since each grid cell predicts mapping coefficients
individually, it may produce grid artifacts which are not expected.
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Figure 4: Qualitative comparison to state-of-the-art methods on MIT-Adobe 5K dataset. The three rows show retouching (1st
row), under-exposed (2nd row) and over-exposed samples (3rd row) respectively.

We therefore introduce a loss to encourage spatial smoothness. For
adjacent pixels that are similar in the input image, they should also
be similar in the target image. Boundary regions between the tiles
should bring more attention. We introduce an edge-aware mask 𝐸

as a weight map, and combine the smoothness prior [3] to calculate
the smooth loss as:

L𝑠
𝑡 =

∑
𝑝

∇𝐼2
𝑡

|∇ log 𝐼𝑡 |𝜃
⊙ 𝐸 (7)

where
∑
𝑝 denotes number of pixels in the mask with value of 1,

⊙ pixel-wise multiplication, and 𝜃 the parameter controlling the
sensitivity to frame gradients (set 𝜃 = 1.2 in experiment).
Temporal-consistency loss. We have already presented the TFA
module to preserve the temporal consistency in terms of the net-
work architecture, explicit constraints defined in loss can directly
guide the learning of the network. We define the loss to penalize the
drastic change in highly matched regions across frames as follows:

L𝑡𝑒𝑚𝑝
𝑡 =

∑
𝑔∈G

| | (𝜙𝑡𝑔 − 𝜙𝑡−1
𝑔 ) ⊙ 𝑀 ′

𝑔 | |1 (8)

where 𝜙𝑡𝑔 and 𝜙𝑡−1
𝑔 are regressed coefficients in grid cell 𝑔 from

the current frame 𝑡 and the previous frame 𝑡 − 1,𝑀 ′ is the resized
coherence map.

4 EXPERIMENT
Implementation. The RT-VENet is built on Tensorflow [1]. The
input image is first downsampled to the size of 160 × 96. The num-
ber of linear segments 𝐿 is set as 16 in our implementation, and
thus the output channel number is 48 for 3 (RGB) channels. As
described in Fig. 3, the backbone contains five stages, where the
first four stages are of the same structure as MobilenetV2 [42] and
the last stage contains 3 layers with kernel size {3, 1, 1} and strides
{2, 1, 1}. Specific channel numbers will be detailed in supplemental
material. The head network is made up of three 1 × 1 layers with
channel numbers {192, 96, 48}. ReLU activation is applied after all
conv layers except the last one which is activated by tanh. The last
layer outputs the logarithmic value of the mapping coefficients. Let

𝜂 denote the output of each channel. Each mapping coefficient is
𝑒𝛽×𝜂−𝛼 , where 𝛼 is set as 1.4 and 𝛽 is set as 2.5 to control the regres-
sion range of mapping functions. With the above representation,
our curve range is limited to the range (𝑒−3.9, 𝑒1.1).

For the hyper-parameters, we set 𝑤𝑐𝑜 = 0.1, 𝜆𝑟 = 100, 𝜆𝑝 = 1,
𝜆𝑠 = 0.1, and 𝜆𝑡𝑒𝑚𝑝 = 100. We use Adam optimizer [15] to train
the model with L2 regularization on a single GPU of NVidia Tesla
P40. The batch size is set as 32 and the learning rate is 0.005 and
decays to 0.001 after 40k iterations.
Metrics. To quantitatively measure the methods, we use PSNR
(Peak Signal to Noise Ratio), SSIM (structural similarity index) and
MSE (Mean Squared Error) in sRGB space as objective metrics and
conduct a user study for subjective measures. Note that we use the
SSIM implementation in Tensorflow [1]. Usually, the algorithms
with higher PSNR/SSIM and lower MSE have better performance.

4.1 Image Enhancement
Image dataset. To evaluate our method on images, we adopt
the benchmark MIT-Adobe 5K dataset [7], which contains 5000
source images, of which each is retouched by five different exports
(A/B/C/D/E). The retouched images from expert C are treated as
ground truth. We use the same train/test split as [37], with 4750
images for training and 250 for evaluation. The test split is named
RANDOM250 following [37].
Quantitative comparison. We compare our method to three rep-
resentative state-of-the-art image enhancement methods, i.e., trans-
formation acceleration method HDRNet [17], image adjustment
method Distort&Recover [37], and image-to-image transformation
method Pix2Pix [24]. To provide a fair comparison, all the results
are run in their publicly available code and checkpoints with default
parameter settings. We use RANDOM250 for image evaluation, and
resize the images to maximum side 500px as set in [37]. As is shown
in Table 1, our method outperforms others in terms of PSNR and
MSE, and is comparable to the best one in terms of SSIM. Fig. 5
(a) shows the PSNR histogram of RANDOM250. Compared with
other methods, our method generates more results of higher PSNR,
especially for PSNR higher than 30.
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Model complexity and running time. Our network is of a light-
weighted structure and contains about 62M floating point opera-
tions (FLOPs), while other networks are of billions of FLOPs. The
model size of Tensorflow checkpoint is only 2MB while others are
hundreds of MB. As for the running time on a Tesla P40 GPU, our
method takes about 7.7 ms per image (the maximum side is 500px),
while others are much slower. Note that our network inference
time takes only 3.4 ms, which takes the same time for a much
higher resolution image, while all the other methods will boost the
computation.

Table 1: Running time analysis and quantitative comparison
to the state-of-the-art methods on MIT-Adobe 5K dataset.

Method Time (ms) PSNR SSIM MSE×103

Input - 17.88 0.764 -
HDRNet [17] 33.2 21.99 0.921 8.79
Distort&Recover [37] 1797.1 21.86 0.892 9.08
Pix2Pix [24] 139.8 22.39 0.881 8.72
Ours 7.7 23.21 0.916 8.08

Qualitative comparison on images. We compare our method
with the state-of-the-art works of image enhancement [17, 24, 37,
52], as shown in Fig. 4 and Fig. 6. Compared with HDRNet [17], our
method presents results with better contrast and color distribution
in both foreground and background. UPE [52] could also recover
plausible colors and contrast, but it can not deal with the overex-
posed images as shown in the 3rd row of Fig. 4. Distort&Recover [37]
is a global adjustment method, which applies a single function to
the whole image, thus limiting the ability of handling more so-
phisticated adjustment. For example, in the 2nd row of Fig. 4 the
foreground and the background should be adjusted with different
brightness. For Pix2Pix [24], it can generate good tone and colors
for low-resolution input, but it leads to edge distortions and quality
degradation when generating high-resolution results as shown in
the close-ups of Fig. 6. In contrast, our approach is generally appro-
priate to various tasks, including relighting and retouching in high
quality, and it also has no limitation to image resolutions.

A user study is conducted to evaluate our enhanced images. We
randomly select 40 images fromMit-Adobe 5k test set, and compare

Input Pix2Pix Ours Close-up

Figure 6: Comparison to Pix2Pix [24]. It can be seen that
Pix2Pix could generate vivid color but lead to distorted
edges and blurred details at the full resolution due to limita-
tion of regressing output from a decoder, while our method
has no distortion and no limitation to image resolutions.
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Figure 7: User study results on (a) image (MIT-Adobe 5K) and
(b) video (Arrow of Time) datasets. Y-axis is the number of
user selections. Ours are more preferred by human subjects.

our result images with UPE [52], HDRNet [17] and the ground truth.
Thirty volunteers who have background knowledge in computer
vision or multimedia are recruited as the subjects for this task. For
each image, the volunteers are asked to give a rank for the presented
results according to the exposure, colors, realistic and details, and
the feedback result is illustrated in Fig. 7 (a). The result shows that
our enhanced images are the closest to the ground truth compared
with UPE and HDRNet.

4.2 Video Enhancement
Video dataset. To evaluate our method on videos, we construct the
dataset by synthesizing (details are in the supplemental material).
We collect 180 video sequences (about 200 frames in each sequence)
from the Arrow of Time dataset [38], which mainly contains people,
animals and landscapes. We generate different degrees of under-
and over-exposed video clips as inputs and original video clips as
ground truth. 31K paired clips (5 frames) from 160 sequences are
used for training and the remaining 20 sequences are for testing.
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Figure 8: Qualitative comparison on video dataset with state-
of-the-art works UPE [52], HDRNet [17], Fast blind [29]
and Vid2Vid [53]. Our network can generatemore temporal-
consistent results.

Quantitative comparison on videos. Considering the real-time
application, we compare our method with two recent imagemethod,
which could extend to video enhancement in terms of computa-
tional time, i.e., UPE [52] and HDRNet [17]. We also compare two
video methods, Fast blind [11], Vid2Vid [53], and a naive extended
method, which applies the estimated color mapping function of
the first frame to all the later frames. Fig. 5 (b) shows the PSNR
curves with frame propagation tested on a video sequence from
the dataset [38]. The naive method provides high PSNR at first but
deteriorates significantly thereafter. The curves obtained from UPE
and HDRNet severely fluctuate, suffering from flickering in videos.
Besides, compared with Fast blind and Vid2Vid, our method attains
the most stable PSNR curve.

We also compare our video enhancement with two methods
[29, 53] that show performance on video enhancement in the user
study. We use 10 videos randomly selected from the Arrow of
Time test set [38]. For each video, we ask the user to rank the
results generated from [53] [29] and our method in terms of visual
effect. Fig. 7 (b) shows the result based on the feedback from 41

Table 2: Running time analysis and quantitative comparison
to the state-of-the-art methods on one test video sequence.

Method Time(ms) PSNR SSIM MSE ×103

Vid2Vid [53] 103,150 19.65 0.730 11.36
Fast blind [11] 3,150 18.30 0.912 15.14
Ours (step=1) 390 25.02 0.930 3.80
Ours (step=2) 195 24.39 0.928 4.44
Ours (step=5) 80 23.66 0.921 5.34

volunteers. The distribution of the result shows that our results are
more preferred by human subjects.

As for the running time on 1080p videos, our method runs at
77 FPS on an NVidia Tesla P40 GPU, while the state-of-the-art
methods UPE [52] , HDRNet [17], Fast blind [11] and Vid2Vid
[53] run at 6, 8, 4 and 0.5 FPS respectively. With a single Intel(R)
Xeon(R) CPU E5-2690 v4 @ 2.60GHz, our network runs at 45 FPS,
satisfying the speed requirement of real-time applications. Last
but not least, one inferred mapping could be applied to multiple
frames. We show the evaluation of applying the same mapping
over 1/2/5 continuous frames in table 2. Our method outperforms
the state-of-the-art methods in terms of running time, PSNR, SSIM
and MSE. Furthermore, the performances do not change too much
with frame step larger than 1, but the efficiency could be improved
significantly.
Qualitative comparison on videos. Fig. 8 shows the qualititaive
comparison with the state-of-the-art methods UPE [52], HDRNet
[17], Fast blind [29] and Vid2Vid [53]. The image enhancement
methods UPE and HDRNet could not inference frames with tem-
poral consistency, thus suffering from flickering. For the video
temporal consistency works, the method of Fast blind takes the
original and per-frame processed videos as inputs to produce a tem-
porally consistent video. However, the frame enhancement baseline
of [29] is HDRNet [17] which is limited to process frames with
different degrees of exposure, thus causing the results as shown in
Fig. 8. To predict the current frame result, the method of Vid2Vid
requires dense correspondences from the optical flow of the previ-
ous frame, thus only enforcing the temporal consistency between
consecutive frames, but not long-term temporal consistency, better
seen in the close-up part of Fig. 8. In contrast, our method could
inference more stable result, even if the input frame interval is more
than 100 frames, better seen in our video material.

4.3 Ablation Study
Ablation study on loss functions. As shown in Table 3, ablation
experiments are performed to analyze the contribution of differ-
ent loss functions. The smooth loss forces the enhancement of
quality around grid boundaries with marginal improvement, while
the perceptual loss pays more attention to tailored features of the
enhancement task.
Ablation study on mapping scope. We conduct the ablation ex-
periment on mapping scope by using different grid sizes, i.e., 1 × 1,
5 × 3, and 10 × 6, which represent a global mapping, and different
levels of local mappings, namely, the local patches being 1/32 and
1/16 of the input size (160 × 96). 1 × 1 grid is constructed with a
global pooling layer after the last layer of current encoder, while



Table 3: Ablation study on loss functions on MIT-Adobe 5K
dataset.

L𝑟 L𝑠 L𝑝 PSNR SSIM MSE ×103

✓ 22.84 0.855 8.57
✓ ✓ 22.88 0.855 8.55
✓ ✓ ✓ 23.21 0.857 8.08

Table 4: Ablation study on mapping scopes on MIT-Adobe
5K dataset.

Grid size PSNR SSIM MSE ×103

1x1 22.94 0.856 8.54
5x3 (ours) 23.21 0.857 8.08

10x6 22.99 0.855 8.32

10 × 6 grid is constructed by discarding stage 4 in the encoder. Ta-
ble 4, where 5 × 3 grid performs best, shows that the network is
not deep enough to capture global context in 10 × 6 grid and local
variances are neglected in 1 × 1 grid.
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Figure 9: Dehazing comparison on RESIDE dataset [32] with
existing methods, MSCNN [40], NLD [4], and AOD-Net [31].

4.4 Extension for Dehazing
The RT-VENet is general formany enhancement tasks, and dehazing
is an extended application. Following the experiment setting in [32],
we train the RT-VENet on RESIDE [32] dataset, which contains
13990 synthetic hazy images from 1399 clear indoor images in
NYU2 [45] and Middlebury stereo [43]. We evaluate our method
on dehazing task on Synthetic Objective Testing Set (SOTS), which
consists of 500 indoor hazy images with 10 different degrees. In
Table 5, we compare PSNR and SSIM of RT-VENet with typical

dehazing works, and the proposed method achieves promising
results in SOTS. We show the visual comparison in Fig. 9 on SOTS,
Hybrid Subjective Testing Set (HSTS) and real hazy images. Our
method provides the most stable results in various scenarios.

Table 5: Quantitative comparison to the state-of-the-art de-
hazing methods.

Method PSNR SSIM

NLD[4] 17.29 0.782
MSCNN[40] 17.13 0.791
AOD-Net[31] 19.07 0.824
DehazeNet[9] 21.34 0.863
Ours 22.02 0.835

5 CONCLUSION
We have presented a novel convolutional network for real-time
video enhancement. The key observation is that although a lot
of generative CNNs with the basic encoder-decoder structure are
demonstrated to produce nice image-to-image translation results,
they are not suitable for the real-time enhancement task. This is
because enhancement limits the output to be more faithful to the
input and requires the inference speed to be super fast regardless
of any resolutions. The proposed RT-VENet utilizes the grid-like
CNN structure and traditional tone-mapping methods to introduce
a grid-like representation to map the input to output. The RT-VENet
discarding the decoder structure performs 10 times faster than the
existing fastest method. We further consolidate the temporal stabil-
ity of the network by enforcing the consistency between matched
semantics across frames. The extensive experiments show that our
network can produce promising results compared to state-of-the-art
methods and save considerable computational cost.

Input Result

Figure 10: Limitation. Our method could not clear the noise
in the enhancment result.

However, our method still has limitation. Our method predicts
region-level color mapping functions, but not pixel-level colors,
and thus our method could not clear pixel-level noise as shown in
Fig. 10. We will target denoising in the future work.
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