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ABSTRACT
Typical image composition harmonizes regions from different im-
ages to a single plausible image. We extend the idea of image com-
position by introducing the content-style decomposition and com-
bination to form the concept of image re-composition. In other
words, our image re-composition could arbitrarily combine those
contents and styles decomposed from different images to generate
more diverse images in a unified framework. In the decomposition
stage, we incorporate the whitening normalization to obtain a more
thorough content-style decoupling, which substantially improves
the re-composition results. Moreover, to handle the variation of
structure and texture of different objects in an image, we design
the network to support regional feature representation and achieve
region-aware content-style decomposition. Regarding the compo-
sition stage, we propose a cycle consistency loss to constrain the
network preserving the content and style information during the
composition. Our method can produce diverse re-composition re-
sults, including content-content, content-style and style-style. Our
experimental results demonstrate a large improvement over the
current state-of-the-art methods.
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1 INTRODUCTION
Image composition is a long-lasting topic in image editing [4, 30,
33, 34]. A typical example is to crop a foreground region from
a source image and paste it into the target image to generate a
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Figure 1: Image re-composition of CelebAMask-HQ (left)
and LSUN Church (right). Top two rows show content
sources. The input contents are shown in blue boxes with
red boundaries represent the composite masks. (a)-(e) are
our re-composition results generated from input contents
and corresponding styles (1)-(5) in previous columns. (a):
content-content re-composition with composite contents
and target styles (1); (b)/(e): content-style re-composition
with composite contents and new styles (2)/(5); (c)/(d): style-
style re-composition with composite contents and styles
(3)/(4) composited from (2) and (5) region by region.
harmonic image. It is necessary to convert the local appearance of
the cropped region to the pixel-level statics of the target so that the
region can be compatible with the target. Traditional algorithms
accomplish the conversion with color distribution matching [31]
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or gradient domain optimization [17, 30]. Recently, learning-based
researches [24, 38, 40] utilize convolution neural networks (CNNs)
to generate harmonized images directly. However, the scope of
composition is still limited to composite regions from different
images mostly.

In this paper, we further extend the concept of image compo-
sition to the harmonization of contents and styles decomposed
from different images, which we call image re-composition. Our
image re-composition is a unified solution to composite the con-
tent/style arbitrarily to generate realistic images. Here, content
represents the overall spatial structure like edges, shapes, etc., while
style represents an image’s local appearance such as color, texture,
brightness, etc. Depending on the contents’ or styles’ sources, image
re-composition can be divided into three categories (Fig. 1):

• content-content re-composition, e.g., classical image compo-
sition (or image-guided inpainting), which copies the content
of a source image to a target image while preserving the tar-
get style;

• content-style re-composition, e.g., image style transfer, which
composites the source image’s style to the target content;

• style-style re-composition, e.g., regional style transfer, which
combines part of source style with the target style.

Image re-composition has the chance to step into a more prominent
stage of augmenting the limited amount of labeled images since it
can generate more diversified images.

To achieve all the above categories of applications in one unified
framework, we propose an end-to-end image re-composition net-
work from the perspective of content-style decomposition. Given
an image, the network decouples contents from highly twining
styles so that the content and style could be composited arbitrarily
as individual components. A primary challenge is how to decom-
pose an image to content and style. The most recent work swapping
AutoEncoder (AE) [28] produces very compelling results by decom-
posing two images to contents and styles implicitly and generating
hybrid images after swapping their styles. Nevertheless, swapping
AE suffers from artifacts when content and style are highly coupled.
Instead of implicitly decomposing content and style, we revisit the
definition of style and design an enhanced region-based content
decompositor with whitening normalization to explicitly distill
clean content from texture-rich images. On the other hand, almost
every real-world image has different types of elements or textures
in different regions. Mixing them would cause undesired effects in
the re-composition result. We use regional style representation to
keep the uniqueness of different elements.

After the decomposition, how to bond styles back with their
corresponding locations is another critical problem. An alternative
choice is using Semantic Region-Adaptive Normalization (SEAN)
block [42] to restore the regional styles to contents in semantic
regions. But since the input content of [42] is semantic segmentation
labels, it is not able to precisely control structures of different images
and composite them to a new image like image composition. Besides,
the SEAN block extracts the modulation parameters from both the
style matrix and the segmentation mask, making it rely on the
fine-scale segmentation map. In our approach, the contents supply
detailed structure information, and our regional re-composition
content-style composition layer extracts modulation parameters

only based on the styles so that our network is compatible with
coarse labels.

In summary, we propose a well-designed architecture that can
blend content and style arbitrarily to support seamless regional
image composition. Our contribution is as follows:

• We introduce an end-to-end framework to re-composite two
or more images to generate new images with desired styles
while preserving corresponding content information.

• We introduce a region-based content decompositor with
whitening normalization to further decompose the content&
style and redesign the training scheme to cooperate with it.

• Our network is able to achieve three kinds of re-composition
of content and style in a unified framework. We design some
metrics to evaluate the results. The experiments demonstrate
a significant improvement over state-of-the-art methods.

2 RELATEDWORK
Image-to-Image Translation. is the task of translating an image

into another with different styles. Early work utilized convolution
neural networks (CNN) to map images between two predefined
domains [16, 41]. However, these methods are hard to synthesize im-
ages with a large number of styles in the dataset. Recently, with the
help of feature modulation technique called Adaptive Instance Nor-
malization (AdaIN) [14], the style based models are able to generate
high quality photo-realistic images regardless of the resolution.
Nevertheless, this family of methods is limited to the randomly
generated images, unable to tackle with specific real images. To ad-
dress this issue, Abdal et al. [1, 2] proposed to map the real images
back into the latent space, and then edit the images by manipulat-
ing the latent codes. However, this approach suffers from both a
slow optimization process and low reconstruction quality. Recent
work [7, 8, 15] has shown that the performance of image translation
can be improved by decomposing the images into content and style.
Park et al. [28] designed an autoencoder network and introduced a
co-occurrence patch discriminator to enforce the disentanglement
of the two independent components.

Almost all the above methods focus on the full image-to-image
translation. The other line of research explores methods to enable
semantic image synthesis. SPADE [27] adopted the segmentation
mask to manipulate the labeled regions. However, the full image is
edited by one style, which is insufficient for precise control. Later,
Zhu et al. [42] introduced the SEAN module to improve the per-
region style encoding, which harvests the style of semantic regions.
Chen et al. [5] proposed Semantic Instance Wised StyleGAN to
translate free-viewpoint semantic maps to images.

Image Composition. is also called image harmonization, aiming
at generating a synthesized image hybrid by pasting the foreground
of the guided image into the background of the target image. There-
fore, the main challenge is to make the foreground part compatible
with the background, especially for the boundary region. Tradi-
tional image composition models focus on match the pixel-level sta-
tistics of the two images, such as image blending [12], matching the
color distribution [31], utilizing gradient-domain composition [17],
and matching images into the carefully crafted color templates [9].
Considering both the low-level statistics and the image content,
many works around visual realism are proposed [22, 34]. Recently,
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Figure 2: Our network structure for image re-composition. Given a source image 𝐼𝑠 and a target image 𝐼𝑡 , The feature extractor
encodes them into 𝐹𝑠 and 𝐹𝑡 . Thenwe use a content extractor and a regional content decompositor to distill clean content codes
𝐶𝑠 ,𝐶𝑡 without style information. The content codes are masked summed to the composited content 𝐶com. In the meantime,
the regional style extractor and style decompositor use a composited region map R extract the regional style codes 𝑅𝑆𝑠 and
𝑅𝑆𝑡 for both images. The decoder with region re-composition block can recompose𝐶com and any of the style code to generate
composited images 𝐼𝑡com with target image’s style and 𝐼𝑠com with source image’s style.

several works [3, 33, 40] proposed to use CNN to directly produce
the composited images, boosting the image quality to a new level.
Other work further explored novel network architecture techniques
like attention module [10] to improve the performance.

Style Transfer. Our work is also related to style transfer explored
in [6, 26, 36], in which the style information is strictly injected into
the content of the given image. [32] achieves regional style transfer
between different classes using spatial conditional batch normal-
ization conditioned on predefined classes. But the reconstructed
content is not accurate. Besides stressing the content maintaining
and the style formulation, our model could incorporate the high-
level semantic features into the given image. With the whitening
technique in style transfer, our model improves image composition
by encouraging the disentanglement of content and style.

3 FORMULA DEFINITION OF IMAGE
RE-COMPOSITION

In image composition, the images’ styles may vary in color, illumi-
nation, brightness, etc. Compositing the images’ contents together
and seamlessly blending their styles is quite challenging. We use
image re-composition to reduce the influence of the style. It has
three steps: decomposition, manipulation, and re-composition. The
decomposition module 𝐸 extracts a feature map 𝐹 from a given im-
age 𝐼 and encodes it to a content code 𝐶 and a style code 𝑆 , which
can be represented as𝐶, 𝑆 = 𝐸 (𝐼 ). The re-composition is the reverse
process of decomposition. The re-composition decoder/generator
reconstructs a realistic image 𝐼 ′ by composing the content code
and style code 𝐼 ′ = 𝐺 (𝐶, 𝑆).

The manipulation involves the composition of two or more im-
ages’ contents or styles. Considering a two-image situation with a
source image 𝐼𝑠 and a target image 𝐼𝑡 , we can combine the source
content 𝐶𝑠 with the target content 𝐶𝑡 or the source style 𝑆𝑠 with
the target style 𝑆𝑡 .𝐶com = 𝐶𝑡 ⊙𝑀 +𝐶𝑠 ⊙ (1−𝑀) is the manipulated

content code under the control of mask𝑀 . ⊙ represents element-
wise multiplication. Similarly, a composited style code 𝑆com can be
generated from 𝑆𝑠 and 𝑆𝑡 .

Regrading the re-composition module, 𝐺 should be able to gen-
erate realistic images from the manipulated content 𝐶com or style
𝑆com. For example:

𝐼𝑡com = 𝐺 (𝐶com, 𝑆𝑡 ), content-content re-composition
𝐼𝑠com = 𝐺 (𝐶com, 𝑆𝑠 ), +content-style re-composition

𝐼 comcom = 𝐺 (𝐶com, 𝑆com), +style-style re-composition
(1)

The fake image 𝐼𝑡com represents a fake hybrid image with the
same style of 𝐼𝑡 and composited content of 𝐼𝑠 and 𝐼𝑡 . The subscript
of 𝐼𝑡com shows where the content comes from, while the superscript
shows the style’s source.

4 APPROACH
Based on the above section’s objectives, the recent deep image
manipulation algorithm swapping AE is the most related research.
In the following, we revisit the concept of content-style separa-
tion/aggregation in Swapping AE and describe the main compo-
nents in our network, including how to disentangle the style infor-
mation from the image contents Sec. 4.1, how to recompose them
together Sec. 4.2, and how to train the network Sec. 4.3.

Swapping AE decomposes an image to content and style with a
feature swapping training strategy. Then they use a co-occurrence
patch discriminator to enforce 𝐼𝑠𝑡 and 𝐼𝑠 with the same low-level
patch distribution to constrain them to have the same style. This
is an implicit decomposition in terms of content and style. Based
on features from such decomposition, we suppose to get a realistic
composited image 𝐼𝑠com. However, in our experiments, swapping
AE may yield artifacts on the image composition task (Fig. 7). The
reasons can be in two-folds: 1). The content code is still mixed with



Figure 3: Visualization of the whitening operation. From
left to right: the input image, features before and after the
whitening.
style information so that 𝐼𝑠com preserves the partial style of 𝐼𝑠 . 2).𝐺
mapped the same object with a different local style.

To fix these issues, we decompose the content & style in the
region-level with a regional content decompositor (RCD) and a
regional style decompositor (RSD). Then the content and style are
recomposed together by regional re-composition layers. We also
redesign the training scheme to cooperate the new modules.

4.1 Regional Content Decompositor with
Whitening Normalization

To further disentangle the content code, we intend to transform
the𝐶 to𝐶 ′ so that𝐶 ′ only contains the content information. In the
meanwhile, other information Δ(𝐶,𝐶 ′) is transferred to 𝑆 :

𝐶 ′, 𝑆 + Δ(𝐶,𝐶 ′) = 𝐸 (𝐼 ) (2)

There are two ways to achieve this objective: finding content
𝐶 ′ directly or removing style information Δ(𝐶,𝐶 ′) from 𝐶 . How
to define the content and style? In [35], Yang et al. used the high-
frequency features such as edges as the content. However, the
"high frequency" is hard to define to get 𝐶 ′ directly. In the style
transfer area, the researchers [11, 18] use the correlation between
features (covariance matrix) to represent the style information.
A feature map with normalized covariance has similar styles in
different spatial locations. Based on that, we can eliminate styles
from contents via constraining the content features’ covariance
matrix to be identity, a.k.a. a whitening normalization operation.
The content decomposition operation can be defined as follows:

U,Λ,V = 𝑆𝑉𝐷 (𝑓 𝑓 T)

𝑓 ′ = UΛ− 1
2 UT 𝑓 ,

(3)

where 𝑓 is the centralized extracted feature map, 𝑓 𝑓 T is the covari-
ance matrix. 𝑆𝑉𝐷 is a singular value decomposition operator. U and
Λ are the orthogonal eigenvectors matrix and diagonal eigenvalues
matrix of the covariance matrix respectively. 𝑓 ′ is the feature map
after whitening which satisfying 𝑓 ′𝑓 ′T = 𝐼 , 𝐼 is an identity matrix.
Furthermore, to normalize the covariance in individual regions, the
RCD can be defined as:

U𝑛,Λ𝑛,V = 𝑆𝑉𝐷 (𝑓 𝑛 𝑓 𝑛T)

𝑓 ′ =
𝑁−1∑
𝑛=0

(U𝑛Λ𝑛
− 1
2 U𝑛T 𝑓 𝑛) ⊙ 𝑅𝑛,

(4)

where 𝑅 is a segmentation mask with 𝑁 classes, 𝑓 𝑛 is the feature
map of the 𝑛th class. After the whitening normalization operation,
high-frequency edges are preserved to represent the contents. Fig. 3
shows the visualized feature maps before/after whitening. The
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Content Codes
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Figure 4: The illustration shows the difference between the
content codes and style codes decomposed by the swapping
AE and our method. The content code of swapping AE (the
top row of the middle column) still contains some style in-
formation (the color is not removed thoroughly), while our
method can get clean content codes. Besides, the style code
of the swapping AE (the top row of the right column) is en-
tangled together to encode the whole image’s style. On the
contrary, our style codes are decomposed into regional ones.
Each of them encodes a class of styles in the same region.

mean/covariance statistics of the features are removed from the
content branch and can be re-learned in the style branch in training.

4.2 Regional Content-Style Composition
Swapping AE [28] extracts a global style code by a global aver-
age pooling and injects the style to the content using the weight
modulation layer from StyleGANv2 [20]. Due to the global style
encodes all information in the whole image, this modulation is
not semantic-aware. However, almost every real-world image is
with different styles in different regions. Mixing them would cause
undesired effects in the composition results (Fig. 5).

To deal with this issue, the RSD locates the regional styles 𝑅𝑆
with a semantic segmentation map by regional average pooling.
Then each image can be reconstructed with the regional content
code 𝐶 ′ and 𝑅𝑆 .

𝑅𝑆 = 𝑅𝑆𝐷 (𝐹𝑠 , 𝑅)
𝐼 ′ = 𝐺 (𝐶 ′, 𝑅𝑆, 𝑅) (5)

where 𝐹𝑠 is the feature map in the style branch.
With the regional content code and style code, we need to recom-

pose them to a new image. In [42], the authors use region-based
mean and variance codes and instance normalization to achieve

Image Style [Swapping AE] Ours

Figure 5: Swapping AE failure cases.
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Figure 6: Details of the regional re-composition layer. It ex-
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ulate original weights 𝑊 ′ to regional weights 𝑊 . Then all
convoluted feature maps are merged region by region.

region editing. Since the SEAN block extracts the modulation pa-
rameters from both the style matrix and the segmentation mask, the
composited image is bonded too tightly with the segmentation map
to hallucinate realistic boundary areas along with the composted
masks (col #6 of Fig. 7). Different from them, we directly extend
the weight modulation layer to a region-based modulation layer to
avoid this issue. With input features 𝐹𝑖𝑛 , original weights𝑊 ′, the
regional re-composition layer is defined as the following equations:

𝑤𝑛
𝑖 𝑗𝑘

=
𝑟𝑠𝑛

′
𝑖

·𝑤 ′
𝑖 𝑗𝑘√∑

𝑖,𝑘
𝑤 ′
𝑖 𝑗𝑘

2 + 𝜖

,𝑤 ′
𝑖 𝑗𝑘

∈𝑊 ′ (6)

𝐹𝑜𝑢𝑡 =

𝑁−1∑
𝑛=0

(𝐹𝑖𝑛 ⊙ 𝑅𝑛) ⊗𝑊 𝑛 ⊙ 𝑅𝑛 (7)

where 𝑖, 𝑗, 𝑘 are the indexes corresponding to the input channel,
output channel, and spatial dimension respectively.𝑤 ∈𝑊 is the
weight after modulation. 𝑟𝑠𝑛

′
𝑖

is the 𝑖th extracted modulation pa-
rameter from the 𝑛th style code. 𝐹𝑜𝑢𝑡 is the output features. ⊗ and
⊙ are convolution operator and element-wise multiplication. Fig. 6
shows the details of the regional re-composition layer.

4.3 Loss Function and Training Scheme
Our network consists of four parts: a feature extractor 𝐸𝐹 , a con-
tent code extractor 𝐸𝐶 , a regional style code extractor 𝐸𝑆 , and a
decoder/generator 𝐺 . Fig. 2 shows the overall structure of the pro-
posed network.

Given the input images 𝐼𝑠 , 𝐼𝑡 , the content extractor 𝐸𝐶 and 𝐸𝑆
extract their content code 𝐶𝑠 ,𝐶𝑡 and regional style code 𝑅𝑆𝑠 , 𝑅𝑆𝑡
respectively. Then the decoder generates a reconstructed image
𝐼𝑡𝑡 = 𝐺 (𝐶𝑡 , 𝑅𝑆𝑡 , 𝑅𝑡 ) and a fake hybrid (style-swapped) image 𝐼𝑠𝑡 =

𝐺 (𝐶𝑡 , 𝑅𝑆𝑠 , 𝑅𝑡 ). The training loss of the generator 𝐿𝑔 consists of
three parts: a reconstruction loss 𝐿rec, an adversarial loss 𝐿adv and
a cycle consistency loss 𝐿cycle.

𝐿𝑔 = 𝐿rec + 𝛼𝐿adv + 𝛽𝐿cycle

𝐿rec = | |𝐼𝑡 −𝐺 (𝐶𝑡 , 𝑅𝑆𝑡 , 𝑅𝑡 ) | |
𝐿adv =𝐿GAN, rec + 𝐿GAN, swap + 𝐿CooccurGAN

(8)

where 𝛼 and 𝛽 are the weights of the losses. A global discriminator
𝐷 and a co-occurrence discriminator 𝐷𝑝𝑎𝑡𝑐ℎ are used to training
the network. We adopt the same adversarial loss and discriminator
loss following [28].

Cycle consistency losses. Our cycle consistency loss aims to en-
force the generated fake hybrid image to preserve the target image’s
exact content and the source image’s same regional styles. 𝐿cycle is
defined as:

𝐿cycle = 𝐿cycle, content + 𝐿cycle, styles (9)
𝐿cycle, content is the 𝐿1 loss between 𝐶𝑡 and the content of 𝐼𝑠𝑡 .

𝐿cycle, content = |𝐶𝑡 − 𝐸𝐶 (𝐸𝐹 (𝐼𝑠𝑡 )) | + |𝐶𝑡 − 𝐸𝐶 (𝐸𝐹 (𝐼𝑡𝑡 )) | (10)

For 𝐿cycle, styles, we use the cosine distance to measure the similarity
of 𝑅𝑆𝑠 and 𝐼𝑠𝑡 ’s regional styles 𝑅𝑆ℎ𝑦𝑏 = 𝐸𝑆 (𝐸𝐹 (𝐼𝑠𝑡 , 𝑅𝑡 ).

𝐿cycle, styles = E[1 −
𝑅𝑆𝑛𝑠 · 𝑅𝑆𝑛hyb

| |𝑅𝑆𝑛𝑠 | |2 · | |𝑅𝑆𝑛ℎ𝑦𝑏 | |2
] (11)

E is a mean operator.

Training Scheme. In style transfer, the whitening operation is
often used in the inference process and does not influence the
network training. In our method, with the embedded whitening
operation, the information related to the style in the content branch
will be abandoned. We need to force the style branch to pick up
the missing information to reconstruct the image. We design a two-
stage training scheme to incorporate the regional modules and the
whitening normalization operator.

In the first stage, we train our model with the regional modules
from scratch to enhance the regional style representation. The net-
work is trained with the swapping strategy in [28]. This stage helps
to locate a proper initialization for the whitening normalization.

In the second stage, the RCD is plugged in. We fix the feature
extractor and only optimize the style extractor, content extractor
and other modules to force the network to transform the residual
style information in the content to the style code.

5 EXPERIMENTS
5.1 Implementation Details
We implement the network with PyTorch [29] and train it on two
NVIDIA V100 GPUs. The weights of adversarial loss and cycle
consistency loss are all 1.0. The learning rates for the generator
and discriminators are 0.002. We use the ADAM optimizer with
𝛽1 = 0, 𝛽2 = 0.99. The experiments are conducted on CelebAMask-
HQ [19, 23, 25], LSUN Church[37] and Cars[21]. More details can
be referred to in the supplementary materials.

5.2 Comparisons
Metrics. The proposed approach aims to re-compose input im-

ages’ contents and styles to generate a new image close to the
desired style. Obviously, there is no ground truth for the generated
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Figure 7: Comparison with baselines: CelebAMask-HQ dataset. Copy-paste indicates that RGB values of the source in the
masked region are directly copied into the target. Poisson has artifacts along the boundary. GIP fails to reconstruct the details.
SEAN is not able to preserve the center content of the source image. The style inconsistency occurs in Swapping AE.
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Figure 8: Evaluation metrics.
image. So we introduce a set of metrics for evaluation. Given two
images 𝐼𝑠 , 𝐼𝑡 , we combine their contents with masked-sum and gen-
erate the composition results in source style 𝐼𝑠com and target style
𝐼𝑡com respectively. 𝐼𝑡com and 𝐼𝑡 have the same style but different con-
tent in the mask. We can calculate the style error (SE) [18] between
them to measure whether the desired style is well-preserved. 𝐼𝑠com
and 𝐼𝑠 have the same style and content in the mask region. We can
use common supervised metrics such as peak signal-to-noise ratio
(PSNR), structural similarity (SSIM) and mean squared error (MSE)
as well as transferred style error (TSE) to evaluate their distance.
We also use the Fréchet Inception Distance (FID) [13] to measure
the image quality and diversity. The metrics are shown in Fig. 8.

Baselines.

• Poisson Blending (Poisson) [30] is a classic image composi-
tion algorithm with gradient domain fusion.

• SEAN [42] uses GANs to generate synthetic images by "adding"
realistic styles to semanticmasks. To do image re-composition,
we first combine the semantic masks together and transfer
the target image style to the mask.

• Guided Inpainting (GIP) [39] achieves image inpainting by
pulling content from one image to another and regenerat-
ing boundary regions. To calculate the evaluation metrics,
we apply the SOTA photo-realistic style transfer algorithm
WCT2 [36] to generate 𝐼𝑠𝑐𝑜𝑚 .

• Swapping AE [28] implicitly maps the image feature to
structure space and texture space. It can generate image

(b) Comparison with SEAN+Swapping

Source Target Copy-paste Ours19 classes
[SEAN+Swapping]

4 classes
[SEAN+Swapping]

Label Ground truth OursSEAN

(a) Comparison with SEAN

Figure 9: Comparison with SEAN and SEAN+Swapping.

re-composition results similar to our method except for re-
gional manipulations.

Results and Analysis. Fig. 7 and Fig. 11 show visual comparisons
on image re-composition between the baseline methods and our
approach. Poisson Blending may fail to preserve the morphological
appearance of the image, especially on the boundary, as it only
considers the smoothness of the gradient domain. It is not capa-
ble of fixing the inconsistency along the boundary. In contrast,
GAN models have the generative ability to correct the mismatched
boundaries to some extent.

GIP can locate the boundary area which is unmatched with
the surrounding context and generate new content in this area
to synthesize different images. But it fails to preserve details and
keeping the image style consistent.

Swapping AE can composite the contents of input images as
it extracts content and style code separately. Although injecting
the target style to the composited content code, the source image’s
style still can be found in the second to the last column of Fig. 7.
It proves that the content code in swapping AE mixes with style
information.

As an image-to-image translation algorithm, SEAN is good at
maintaining the image style. However, the contents from different



Method SSIM PSNR MSE TSE SE FID
Poisson - - - - 1.174 10.27
SEAN 0.654 20.97 0.0093 0.489 0.723 17.43

GIP-WCT2 0.624 14.827 0.042 1.1108 1.1881 19.21
Swapping AE 0.590 20.908 0.0094 0.497 1.0274 11.63

SEAN+Swapping 0.590 20.067 0.0114 0.5871 0.81 14.27
Ours 0.6431 21.773 0.0075 0.3639 0.7105 10.16

Table 1: Quantitative comparison with different methods.
For SSIM and PSNR, higher is better. For MSE, SE, TSE and
FID, lower is better. SE and TSE are in the range of 10−4.

Data Our Swapping AE Poisson GIP SEAN
CelebA 34.5% 12.1% 11.4% 17.8% 24.2%
Church 61.4% 17.2% 12.7% 8.7% -

Table 2: Human perceptual study result.
images can not be preserved simultaneously since it uses semantic
labels as contents. In the case of Fig. 7 (col #6), a good compos-
ited image should make users identify the face as the person in the
source image while SEAN results are always with the target image’s
characteristics. On the other hand, the SEAN block heavily relies
on fine-scale semantic segmentation as it extracts modulation pa-
rameters from two branches: the style matrix and the segmentation
mask. In the Church dataset, the main buildings have many details
and no fine-scale semantic labels, making SEAN fail to reconstruct
the building Fig. 9 (a). Therefore, we do not present SEAN results
of the Church dataset in Fig. 11.

Considering the SEAN module is also a regional re-composition
block, we conduct an experiment to compare it with our block. We
replace our regional re-composition layer with SEAN block and
train the network with the swapping strategy to composite the con-
tents. We represent it as SEAN+Swapping. However, when we use
semantic labels of 19 classes, the outputs strictly follow the segmen-
tation masks, making the composted boundary areas not realistic.
When we use four-category labels (same as ours), the reconstruc-
tion is not accurate for a smaller nose and missing eyebrow Fig. 9
(b). Our regional re-composition is superior to SEAN+Swapping for
fewer artifacts, better details and better boundary hallucination.

In summary, comparing to the baseline methods, our method
achieves better results in three aspects:

• Content preserving. Our method can composite the source
image’s content to the target image by manipulating the
separated content code.

• Style consistency. We propose the whitening normalization,
regional representation and cycle consistency loss to ensure
the whole generated image keeps a similar style to the target
image.

• Natural boundary. As a generative model, our network can
process misaligned regions and hallucinate realistic bound-
aries.

Tab. 1 can verify that our method outperforms others on most
metrics.

We also conduct a human perceptual study to evaluate the
realism of results further. We randomly select 40 images from
CelebAMask-HQ and Church. The source, target, and composite
images of different methods are presented simultaneously. 63 peo-
ple from Amazon Mechanical Turkers and Tencent are recruited
to choose the most realistic result. More than 2400 samples are

Method SSIM PSNR MSE TSE SE
Swapping AE 0.590 20.908 0.0094 0.497 1.0274
+cycle loss 0.603 21.142 0.0090 0.4843 0.9942
+whitening 0.618 21.339 0.0082 0.4639 0.815

+regional style 0.637 21.767 0.0077 0.3529 0.7986
Ours 0.6431 21.773 0.0075 0.3639 0.7105

Table 3: Ablation study metrics. For SSIM and PSNR, higher
is better. For MSE, SE, and TSE, lower is better. SE and TSE
are in the range of 10−4.

collected. Tab. 2 shows our method is superior to others, especially
on the Church dataset of high diversity.

5.3 Ablation Study
To explore the effects of our algorithm’s different parts, we con-
duct several ablation experiments about cycle consistency loss,
the whitening normalization operator, and regional style swap-
ping. Tab. 3 shows the evaluation metrics of the ablation study.

All our modules can improve most metrics. Adding the cycle
consistency loss can improve the SSIM and reduce the TSE as it
can constrain the network to preserve the content and style during
the style transfer process. Adding whitening normalization in the
global region can improve SSIM from 0.603 to0.618 and reduce
SE from 0.994 to 0.815. With the help of feature whitening, the
content codes contain less style-related information. The content
composition will cause minor style inconsistency, especially when
the input images’ styles differ significantly. Fig. 10 (a) shows some
composition results with/without whitening operation. It can be
seen that adding whitening can process more challenging cases
with very different input images and generate results with fewer
artifacts.

Besides, adding the regional style swapping can also gain further
promotion of the metrics. It can utilize the semantic information to
locate different objects to extract regional styles and guide the style
code injecting process explicitly to ensure similar contents have

TargetSource Copy-paste [Swapping AE] + Whitening

Copy-paste [Swapping AE] + Regional Style Ours

Ours

TargetSource

(b) Ablation study: regional representation

(a) Ablation study: whitening normalization

Figure 10: Ablation study. “+Whitening”: results with
whitening only. “+Regional Style”: results with regional rep-
resentation only. “Ours”: results with all modules.



Copy-paste Ours[Poisson] [GIP+WCT2] [Swapping AE]TargetSource

Figure 11: Comparison with baselines: Church dataset. The last row shows the re-composited result in the source style.

similar styles. In this way, even if the content code has changed after
the content composition, the network still knows where to inject
the style code. Fig. 10 (b) shows the comparison results of baseline,
adding regional style swapping, and our entire algorithm. In this
figure, due to the input images having quite diverse skins, Swapping
AE’s results suffer severe inconsistency. Introducing regional style
swapping reduces the artifacts by transferring the same regional
style code to the same content region.

5.4 Additional Results
As we state in Sec. 1, we decompose every image into region-based
contents and styles so that we can randomly or artificially com-
bine them to achieve more diverse re-composition images, such as
content + content/ content + style or style + style. We will show
additional image re-composition results in the following.

Results with non-central masks. Our network can achieve content-
content re-composition while preserving the image style, which is
similar to the classic image composition. Furthermore, the styles
also can be composited simultaneously. Fig. 12 (a) shows the com-
position results with non-central masks. We composite the source
image’s content and style to the target image region by region.

Results with style interpolation. Regarding the content-style re-
composition, our network can composite any style code to the con-
tent code, just like the traditional style transfer. The style code also
can be linearly interpolated with the source and target style. Fig. 12
(b) shows some results with interpolated styles.

Failure cases. Our method may be influenced when the objects
of the input images are in significantly different poses or when a
semantic class in the source does not exist in the target. Details can
be referred to in the Supplementary Materials.

6 CONCLUSION
Wehave developed an enhanced content-style decompositionmethod
for regional image re-composition. It incorporates the regional

Image re-composition with non-central masks.

Source Target Mouth&Eye Hair Background

Source Target Center River Sky

(a) Image re-composition with non-central masks

(b) Image re-composition with interpolated styles

Style1 Interpolation1 Interpolation2 Interpolation3 Style2

Figure 12: Additional re-composition results. (a). Compose
regional content and style to the target region by region. (b).
Recompose a composite content with interpolated styles.

whitening operation to obtain a more thorough content-style de-
composition which substantially improves the re-composition re-
sults. To handle the variation of structure and texture of different
objects in an image, we design our pipeline to support regional
feature swapping and achieve region-aware content-style decom-
position. Experimental results verify that our method can produce
diverse seamless re-composition results in a unified framework,
including content-content, content-style and style-style.
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