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Computational aesthetics has become an active research field in recent years, but there have been few attempts in computational
aesthetic evaluation of logos. In this article, we restrict our study on black-and-white logos, which are professionally designed
for name-brand companies with similar properties, and apply perceptual models of standard design principles in computational
aesthetic evaluation of logos. We define a group of metrics to evaluate some aspects in design principles such as balance, contrast,
and harmony of logos. We also collect human ratings of balance, contrast, harmony, and aesthetics of 60 logos from 60 volunteers.
Statistical linear regression models are trained on this database using a supervised machine-learning method. Experimental
results show that our model-evaluated balance, contrast, and harmony have highly significant correlation of over 0.87 with
human evaluations on the same dimensions. Finally, we regress human-evaluated aesthetics scores on model-evaluated balance,
contrast, and harmony. The resulted regression model of aesthetics can predict human judgments on perceived aesthetics with a
high correlation of 0.85. Our work provides a machine-learning-based reference framework for quantitative aesthetic evaluation
of graphic design patterns and also the research of exploring the relationship between aesthetic perceptions of human and
computational evaluation of design principles extracted from graphic designs.
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1. INTRODUCTION

Graphic design is the art of communication, stylizing, and problem-solving through the use of graphics.
Common uses of graphic design include identity, logos, publications, print advertisements, posters,
billboards, website graphics and elements, signs, and product packaging. Graphic design contains at
least two parts: the composing elements and the spatial arrangement of those elements. The second
part is usually guided by design principles, in which balance, contrast, harmony, variety, rhythm,
movement, proportion, and emphasis [White 2011] are commonly acknowledged.

In the past, aesthetic evaluation of graphic design was done by human experts qualitatively in words
in an ad hoc fashion. Without quantitative evaluation tools, designers may take years to master design
principles through painful design practice, and novices may face difficulties trying to tap into design
aesthetics. Besides, it is practically impossible to ask experts to evaluate every new logo design or
exhaustively compare similar designs.

Computational aesthetics is the research of computational methods that can make applicable aes-
thetic decisions in a similar fashion as humans can [Hoenig 2005; Fishwick 2008] and has become an
active research field in recent years. The automated and quantitative evaluation capability of graphic
designs would not only benefit to designers during their learning phase but also to the target audience
or customers who have little knowledge of graphic design. It has a profound impact on the computer-
aided study of design aesthetics, advanced search for design patterns guided by design principles, and
identification of design styles.

A logo (abbreviation of logotype) is a graphic mark, emblem, or symbol commonly used by commercial
enterprises, organizations, and even individuals to aid and promote instant public recognition. Logos
are either purely graphic (symbols/icons) or are composed of the name of the organization (a logotype or
wordmark), and here we show some examples of black-and-white graphic logos in Figure 1. The logos
selected in our study given in Figure 8 include monochrome and color type; to rule out the influence of
the color factor, we convert all these logos into black and white. This makes it easier to evaluate a few
important aspects of logos, such as balance, contrast, and harmony.

Logo design is an important area of graphic design, and one of the most difficult to perfect. On
one hand, design artists may use all design principles with varying degrees to organize individual
elements into a workable, aesthetic design space in logos. On the other hand, common audiences know
much less about design principles than design artists do and might be just aware of a few familiar
aspects in logos, say, balance, contrast, and harmony.

Computational aesthetic evaluation of logos is challenging, and there have been few attempts in this
area, and also there have been few attempts in applying standard design principles in computational
aesthetic evaluation [Galanter 2012]. The challenges include the following aspects:

� Design principles itself is a big concept instead of simple visual features. Many factors influence
each design principle. Previous works in evaluating design principles such as subject-background
contrast in photographs [Wong and Low 2009] and color harmony in paintings [Li and Chen 2009]
cannot be used in aesthetic evaluation of logos, since they do not consider the shape factor in aes-
thetic evaluation. Although we define each design principle in logos in a specific aspect, it is difficult
to quantitatively measure such a design principle in terms of a human’s judgment.

� Frameworks of computational aesthetic evaluation of web pages, photographs, and painting [Li and
Chen 2009; Dhar et al. 2011; Obrador et al. 2012; Reinecke et al. 2013] are not entirely suitable for
aesthetic evaluation of logos that follow different design principles.

In this study, we focus on developing quantitative models for measuring aesthetics of logos. We define a
group of metrics to evaluate some aspects in design principles such as balance, contrast, and harmony
ACM Transactions on Applied Perception, Vol. 14, No. 3, Article 20, Publication date: June 2017.
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Fig. 1. Examples of black-and-white logos.

of logos. We also conduct a survey to collect human ratings of balance, contrast, harmony, and aes-
thetics of 60 logos from 60 volunteers. Utilizing these data, we develop regression models of balance,
contrast, and harmony that have a highly significant correlation of over 0.87 with human evaluations
on the same dimensions. Finally, we regress human-evaluated aesthetics scores on model-evaluated
balance, contrast, and harmony. The resulted regression model of aesthetics can predict human judg-
ments on perceived aesthetics with a high correlation of 0.85. To the best of our knowledge, our study
is the first attempt in applying perceptual models of standard design principles in computational aes-
thetic evaluation of logos. This work provides a machine-learning scheme for quantitative aesthetic
evaluation of graphic design patterns and also enhances understanding of aesthetic perception of logos.

The rest of this article is organized as follows. Section 2 summarizes related work on computational
aesthetics. Section 3 introduces the framework of computational aesthetic evaluation of logos. We then
evaluate logos on balance (Section 4), contrast (Section 5), and harmony (Section 6) computationally.
Section 7 introduces human evaluation survey from which scores given by subjects are used for re-
gression modeling in our experiment. Section 8 presents machine-learning-based regression modeling,
and associated model performance analysis is introduced in Section 9, which verify our computational
evaluation metrics. Finally, we conclude and discuss our future work in Section 10.

2. RELATED WORK

Computational aesthetics has become an active research field in recent years. Many works mainly
focus on data-driven approaches for aesthetic evaluation of artworks, especially paintings and pho-
tographs. Several works are focus on aesthetics of web pages. Such works have focused on designing
appropriate visual features or rules that attempt to capture specific aesthetic principles and use stan-
dard machine-learning techniques such as linear classifiers or regressors to predict aesthetic percep-
tion of humans.

There has been research on estimating the aesthetic quality of photographs, including methods to
differentiate between photos captured by professional photographers versus amateurs [Dhar et al.
2011; Ke et al. 2006; Obrador et al. 2012; Wong and Low 2009]. Ke et al. [2006] evaluated the aes-
thetic value of any photo through visual features capturing the spatial distribution of edges, color,
blur, and brightness. Wong and Low [2009] used a visual saliency model to classify each image as pro-
fessional or snapshots. Dhar et al. [2011] used the human-describable attributes, such as composition,
illumination, and the image content in the aesthetic model of photos. Obrador et al. [2012] proposed a
category-based approach to judge the aesthetic appeal of photographs, in which they computed several
features such as simplicity, rule-of-thirds, visual balance, and region contrast. Obrador et al. [2012]
also calculated the contrast in sharpness, exposure, saturation, hue, blurring, texture, and edge spa-
tial distribution between contrasting regions. Most visual features abstracted from photographs are
related to texture, colorfulness, and brightness, which are absent in black-and-white logos. Most of the
composition rules in photographs also differ from the design principles in logos.
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For paintings, we mainly refer to the work of Li and Chen [2009], where the authors evaluated
the aesthetic quality of paintings by detecting global color distribution, brightness, blur effects, and
edge distribution, together with local features such as color, brightness, and blurring contrast in the
segmented regions and also the colors of focused regions based on the rule of thirds. Additionally,
they calculated color harmony by fitting the hue and saturation-lightness models for oil paintings. A
state-of-the-art recognition system to learn the emotional of abstract paintings was proposed in Sartori
et al. [2015] based on statistical analysis and art theory. Since logos are usually designed with simple
forms with just a few colors or even a single color [Wang 2009], we focus on shape-related features in
logos.

On web page aesthetics, the closest related representative works are those of Zheng et al. [2009]
and Reinecke et al. [2013]. Zheng et al. [2009] used low-level image statistics, such as symmetry, bal-
ance, and equilibrium, to analyze the layout structure of a website. Reinecke et al. [2013] extended
Zheng’s work by providing the first perceptual models of visual complexity and colorfulness in web-
sites and used these two models to predict user’s first aesthetic impressions of websites. The aesthetic
factors in web pages, including colorfulness, space-based decomposition, symmetry, and balance based
on quad-tree decomposition are closely related to web page layout characteristics. Since logos differ
considerably from websites, the evaluation frameworks of web page aesthetics are also unsuited to
logos.

Liao and Chen [2014] incorporated visual feature extraction and analysis algorithms commonly uti-
lized in computer vision to compute proper indices and investigate key visual elements in logo designs,
including complexity, balance, and repetition. They performed statistical analysis on the distribution
of computed indices of complexity, balance, and repetition but did not conduct human evaluation to
validate their metrics. Wang [2009] found out the color regularity in enterprise logos by calculat-
ing the number of colors and hues, as well as the relevance of Hue, Saturation, Brightness (HSB)
data. Rauschenberger et al. [2009] used the predominant spatial frequency of icons for efficient subset
search. Li et al. [2014] proposed the automatic generation of logo designs by extracting the shape and
color grammar in a logo’s visual structure. With crowdsourced data on the human perception of similar-
ity, O’Donovan et al. [2014] proposed interfaces for font selection based on estimating attribute values
and similarity of visual fonts. Garces et al. [2014] presented a style distance function for measuring
style similarity for vector art. Saleh et al. [2015] modeled stylistic similarity for infographics using
low-level visual features. Recently, a new method was presented by Laursen et al. [2016] that selects
a complete icon set optimized for comprehensibility and identifiability, given several icon candidates
representing functionality.

Although unrelated with computational aesthetic evaluation of logo designs, other works build a
bridge between aesthetic perception of human and computer vision. Thumfart et al. [2011] modeled
the hierarchical relationship between human aesthetic texture perception and computational texture
features by building a layered model. Wallraven et al. [2009] used an eye tracer to investigate eye
movements when people appreciate artworks, in an attempt to build a model of human aesthetics.
Henderson and Cote [1998] proposed guidelines and related characteristics to select or modify logos
including activity, balance, symmetry, harmony, proportion, repetition, and so on. The beauty of visual
objects had been shown to be affected by factors such as symmetry, contrast, complexity, and perceptual
fluency in Reber et al. [2004]. Although these works appear not directly related to our study, they
provide inspirations on selecting important visual features and aesthetic rules that closely related
to aesthetic perception of human and also towards logo designs. Our framework of computational
aesthetic evaluation of logos builds relationship between design principles and aesthetic perception of
logos, as detailed in the following sections.
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Fig. 2. Overview of the framework of our computational aesthetic evaluation of logos. The input logo image dataset (yellow box)
is first used for extracting feature variables (green and blue boxes) on the one hand and then collecting human evaluation scores
of balance, contrast, harmony, and aesthetics (pink box) on the other hand. Then we regress human-evaluated scores on those
feature variables to obtain linear regression models of balance, contrast, and harmony (orange box), which are finally used as
new input variables to obtain linear regression model of aesthetics (red box).

3. A FRAMEWORK OF COMPUTATIONAL AESTHETIC EVALUATION OF LOGOS

Figure 2 shows our framework of computational aesthetic evaluation of logos. For each logo image
in the image dataset (yellow box), we proceed in four steps. First, we detect regions and associated
boundaries of each logo (green box). Second, we construct several feature variables and use them to
evaluate the balance, contrast, and harmony of each logo (blue box). To validate the effectiveness of
our computer evaluation metrics, we conduct human evaluations of balance, contrast, harmony, and
aesthetics (pink box). Third, we regress human-evaluated balance, contrast, and harmony scores on
those feature variables to obtain corresponding linear regression models (orange box). Finally, we
regress human-evaluated aesthetics scores on model-evaluated balance, contrast, and harmony to ob-
tain the final linear regression model of aesthetics (red box).

A logo, denoted as G, may have one or more regions. These regions are jointed and organized by
design principles such as balance, contrast, harmony, variety, and rhythm to form a complete logo,
thus, they may exhibit some “holes” of varying shapes inside G, as shown in Figure 1. We call each
region of G a visual element. Here we use the regionprops function in Matlab to detect the regions in G
and denote each region as Ek, (k = 1, 2, . . . , N, where N is the number of regions detected in G). Then
we detect the boundary Bk of Ek using the Canny edge detection algorithm, and the corresponding
boundary points are put into a set denoted as BPk. Note that Bk may represent both the exterior
boundaries of G and the boundaries of interior holes inside G.

The following three sections proceed to detail the computational aesthetic evaluation of logos on
balance, contrast, and harmony. For each dimension, we will present the metrics of feature variable
extraction and evaluation.

4. BALANCE

Balance refers to the equal distribution of visual weight in a work of art; it strives for a state of equi-
librium to create a sense of tranquility. The most commonly used balance in logos is the left-right
balance, and logos with left-right symmetrical balance [Liao and Chen 2014] appear stable (the left-
most column in Figure 1), while those logos appearing more dynamic are designed with asymmetrical
balance (the rightmost column in Figure 1). Thus, it is desirable to measure the degree of left-right
balance in G, which is more challenging than simply detecting left-right symmetry. Here we construct
a weight difference curve to measure the degree of left-right balance in G.

We denote the height and width of G as H and W , respectively, the vertical symmetric axis of G is
denoted as XV . Consider that the white regions reflect the space left by the black regions that together
form the logo’s shape (see Figure 1), and G is balanced if the total weight of black regions on the left
side and right side of XV are equal. Thus, we scan G from top to bottom and line by line. On each line
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Fig. 3. Weight difference curves D (in red) associated with two logos. The horizontal axis (blue dashed lines) represents the
index of the scanned line, and the vertical axis represents the weight difference on the corresponding scanned line. S is calculated
as the square root of the absolute difference between the area covered by D above (positive) and below (negative) the horizontal
axis. The top logo has smaller S (close to zero) and higher degree of left-right balance than the bottom logo.

scanned, we first pick a pixel Pi, j falling into the black regions in G from left to right (i = 1, 2, . . . H;
j = 1, 2, . . . Wi, where i is the index of the scanned lines, j is the index of pixels picked on the ith
scanned line, and Wi is the number of pixels picked on the ith scanned line).

We define dli and dri as the weight set of the black regions on the left side and right side of XV on
the ith scanned line, respectively. Then we calculate the absolute distance di, j between Pi, j and XV and
put its normalized form (dividing di, j by 0.5 · W) into dli if Pi, j is on the left side of XV and otherwise
dri if Pi, j is on the right side of XV . The weight difference between dli and dri on the ith scanned line is
measured by Di defined as

Di = 1
Mli

Mli∑

j=1

dli, j − 1
Mri

Mri∑

k=1

dri,k, (1)

where Mli and Mri are the number of elements in dli and dri, respectively, dli, j is the jth element
in dli, as the same for dri,k in dri. We calculate Di of all the scanned line for i ∈ [1, H] and obtain
the weight difference curve D. Two examples of D associated with two logos are shown in Figure 3,
where the horizontal axis (blue dashed lines in Figure 3) represents ith scanned line and the vertical
axis represents Di. Obviously, the whole G is recognized as being left-right symmetrical balanced if
Di = 0 for i ∈ [1, H]. Otherwise, the logo G must contains some tilt components with varying zigzag
tendencies from top to bottom. Here we denote S as the square root of the absolute difference between
the area covered by D above (positive) and below (negative) the horizontal axis and use it to measure
the degree of left-right balance in G. The smaller the S the higher degree of left-right balance in G.
We will validate S through regression analysis in Section 8 and obtain the final prediction model for
perceived balance.

5. CONTRAST

Contrast refers to differences in values (light and dark values), colors, textures, shapes, and other
elements. Contrast creates visual excitement and adds interest to the design. Since existing logos
could have multiple colors of multiple values, a single color of a single value (such as MacDonald), or
ACM Transactions on Applied Perception, Vol. 14, No. 3, Article 20, Publication date: June 2017.
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Fig. 4. Von Mises distribution. The expected change in tangent direction α is distributed as a von Mises distribution centered
on 0 (straight).

no color (such as those metal auto logos), we converted all the collected logo images into black and
white ones so we can focus on the shape contrast in this study.

Bar and Neta [2006] found that the sharp corners on objects seen in our environment activate fear
processing in the brain amygdala area. Thus shapes with corners draw more attention than rounded
shapes. They further indicated that humans are born with a deeply rooted preference for curves and
prejudice against sharp angles. In design, corners help attract visual attention and curved items help
create a positive mood and aesthetic impression. We therefore propose hard-soft contrast to evaluate
the shape contrast in logos.

In an experiment, Attneave found that information is concentrated along contours of shapes and is
further concentrated at those points on a contour at which its direction changes most rapidly [Attneave
1954]. Motivated by this finding, we adopt Shannon’s information theory [Shannon 1948] to evaluate
the degree of hard-soft contrast. Our idea is to choose the curvature of BPk (Section 3) as a random vari-
able and calculate the information associated with corner points (hard parts) as well as sampled points
(soft parts) in G; the strength of the hard-soft contrast is then measured by the ratio of information
associated with hard parts to that associated with both hard and soft parts, as detailed next.

It has been shown [Page et al. 2003] that, in the discrete case, when a curve is uniformly sampled,
the curvature is directly proportional to the turning angle α (i.e., change of tangent direction from
point to point along the shape contour). We assume that it follows a von Mises distribution centered
on “straight” α = 0 [Feldman and Singh 2005],

p(α) = A exp [bcos(α)], (2)

where b is a parameter modulating the spread of the distribution and A is a normalizing constant
(depending on b but not α) and positive values of α correspond to clockwise turns and negative values
to counterclockwise turns (see Figure 4). We select A = 0.36 and b = 1 in our experiment.

We define �c and �s as the corner points set and sampled points set of G, respectively. Since the
turning angle α and the vertex angle θ satisfy α + θ = π , we can obtain α with α = π − θ if θ is esti-
mated. To obtain more appropriate values of vertex angles, for each visual element Ek (Section 3) in G,
we first detect its corner points using the CSS corner detector [He and Yung 2004] and put them into
�c, as indicated by the red points in Figure 5. Those corner points correspond to the sharp vertices in
BPk and divide BPk into several pieces, and those pieces correspond to the rounded or straight parts
in BPk. Next, on each piece with two corner points on its two ends, we start from one corner point and
sample the piece every three points along BPk as break points. Finally, we take the corner points and
break points as control points and apply the arc length parametrization on the chosen piece so uniform
sampling can be achieved [Feldman and Singh 2005]. The sampled points are put into �s (except the
corner points), as indicated by the green points in Figure 5. Besides, the sampled points (including the

ACM Transactions on Applied Perception, Vol. 14, No. 3, Article 20, Publication date: June 2017.



20:8 • J. Zhang et al.

Fig. 5. Some corner (in red) and sampled points (in green) detected in logos. The corner points correspond to the sharp vertices
(hard parts), which divide each boundary into several round or straight pieces. The sample points are taken on each piece, which
represent the soft parts in logos. The logos on the top row (blue dashed box) have both exterior and interior boundaries, and
those on the bottom row have no closed exterior boundaries.

corner points) are put into a feature points set denoted as FPk, which is used in Section 6. We continue
this procedure until all pieces in BPk are sampled.

Shannon defined the information as the negative of the logarithm of the probability distribution
[Shannon 1948]. Thus, the information Iα associated with a vertex (chosen from either �c or �s) having
a turning angle α (denoted as vertex(α)) is calculated by

Iα = − log2 p(α). (3)

The information associated with hard parts (corner points) and soft parts (sampled points) in G are
calculated by

Ih = −
∑

vertex(α)∈ �c

log2 p(α) (4)

and

Is = −
∑

vertex(α)∈ �s

log2 p(α), (5)

respectively. Finally, the strength of the hard-soft contrast Chs in G is measured by

Chs = Is

Ih + Is
, (6)

where Chs is in the interval [0, 1]. The logo G appears softer when Chs is close to 1 and sharper if it
is close to 0. Initially, we obtain values of Chs for the given logo samples by Equation (6). Some of the
values, however, differ significantly from those -evaluated by humans (Section 7), especially for those
logos encircled by one or more closed exterior boundaries, as indicated by those logos on the upper row
in Figure 5. We speculate that both exterior boundaries and other interior boundaries (the boundaries
of “holes” inside G) contribute independently to the overall strength of the hard-soft contrast in those
logos. Thus, we calculate the strength of the hard-soft contrast for both exterior boundaries (if it exists
in G) and other interior boundaries, denoted as Cout and Cin, which are measured by

Cout = Isout

Ihout + Isout
(7)

and

Cin = Isin

Ihin + Isin
, (8)
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Fig. 6. Harmony in graphic design. The graphic designs on the left are more harmonic than those on the right.

Fig. 7. Illustration of normal tracking distance for a visual element Ek in a logo. We start from each selected point sp (in
red) and move the point in the outer normal direction (yellow arrow) until it reaches the boundary of another adjoining visual
element at the destination point dp (in green), the distance between sp and dp is called normal tracking distance.

respectively. Here Ihout and Isout represent the information associated with hard parts and soft parts in
exterior boundaries, as for Ihin and Isin in interior boundaries. For those logos without closed exterior
boundaries, as indicated by those on the bottom row in Figure 5, we simply calculate Chs in G to obtain
the overall strength of the hard-soft contrast in G, where Cout and Cin are equal to Chs. We will regress
the human-evaluated hard-soft contrast on Cout and Cin to obtain the final prediction model for the
perceived contrast, to be described in Section 8.

6. HARMONY

Harmony is a measure on how the visual elements in an art work fit together or how they belong
together. It provides the cohesive quality that makes an art work complete. For visual elements in a
logo design, harmony implies that the shape of one visual element should fit the shape of its adjoining
visual elements, as illustrated in Figure 6. In addition to individual visual elements, many logos may
exhibit “holes” (the white regions in Figure 7) of varying shapes inside the exterior boundaries. Those
holes thus become individual visual elements and the region between adjoining holes (the black region
in Figure 7) would also contribute to the overall harmony of logos, as shown in Figure 7. In this sec-
tion, we define normal tracking distance to calculate the goodness of fit between each adjoining visual
elements in a logo, as detailed next.

Since we have detected the boundary Bk of each visual element Ek (Section 3) in G, as well as its
feature points set FPk (Section 5), we connect every two feature points by a line segment so Bk can be
approximated by the line segments. Next, we select a point on Bk that is nearest to the middle point of
a segment, indicated as the red points in Figure 7. Denoting this point as sp, we start from sp and move
a destination point in the outer normal direction of the line segment until it reaches the boundary of
another adjoining visual element, the reached point is denoted as dp, indicated as the green points in
Figure 7. We then connect from sp to dp to form an arrow (yellow in Figure 7). We call the distance
between sp and dp as normal tracking distance (denoted as ntd). The distance is put into a distance
set denoted as ntdk. When all feature points in FPk are visited, we calculate the variance vk of all the
distances in ntdk to measure the goodness of fit between Ek and its adjoining visual elements.

ACM Transactions on Applied Perception, Vol. 14, No. 3, Article 20, Publication date: June 2017.
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Fig. 8. Experimental image dataset. All logo images are selected from the famous autos and computer brands, as well as
aviation companies.

Note that vk is in the interval [0, 1], a value of vk close to 0 indicates that Ek is separated from
its adjoining visual elements with nearly equidistance, and thus Ek and its adjoining visual elements
together look more harmonic. While a value of vk close to 1 indicates that there are mutations between
Ek and its adjoining visual elements, as a result, they look less harmonic. We use the average value
of vk over all visual elements in G, denoted as Fit, to measure the overall harmony of a logo. We
will validate Fit in Section 8 through regression analysis and get the final prediction model for the
perceived harmony.

7. HUMAN EVALUATION

Being treated as a data-based learning problem, the validation of our aforementioned computational
evaluation metrics highly rely on the training data used for learning. Unlike those works on pho-
tographs, it is hard to find a website of logos with ratings by a large community. The prevalence of logo
designs raises the need of evaluation. Therefore we conduct human ratings on the balance, contrast,
harmony, as well as aesthetics of 60 logo images selected from well-known auto, computer, and aviation
companies, as shown in Figure 8. The logo images are downloaded as JPEG files through “Google im-
age search” with careful selection on size and definition. We convert the original logo images into black
and white, so we are able to concentrate ratings on a few important concepts of logo design, which are
also relatively easy to be evaluated computationally.

7.1 Process of Human Evaluation

60 subjects (30 male and 30 female, aged 18–27, including undergraduate and graduate students from
the Faculties of Science, Engineering, Medicine and Art) volunteered to participate in rating each
aspect of the 60 logos. They are psychologically mature enough to have common aesthetic experiences
learned eithr in school or at universities or from their parents, relatives, and friends, so they are
qualified to evaluate logos selected from well-known auto, computer, and aviation companies.
ACM Transactions on Applied Perception, Vol. 14, No. 3, Article 20, Publication date: June 2017.
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Fig. 9. An example page of the survey. Each logo image is displayed in a window above, the subject is required to rating the 4
concepts: “Aesthetics,” “Balance,” “Contrast,” and “Harmony.” Each concept has 5 rating options ranging from 1 (leftmost) to 5
(rightmost). After rating the current logo image, the subject clicks on the “Next” button and continues ratings on the next logo
image or the “Previous” button to redo the ratings of the previous logo image.

Each logo image has an independent rating page, as shown in Figure 9, where the logo image is
displayed in a window of 700×900 pixels. Each subject is required to give four ratings for evaluating
the following four concepts of each logo image: “Aesthetics,” “Balance,” “Contrast,” and “Harmony,”
which are described as below:

Aesthetics Your overall impression on the displayed logo at the first sight.
Balance Your feeling on the distribution of left-right visual weight in the displayed logo.
Contrast Your feeling on the hard-soft contrast in the displayed logo.
Harmony Your feeling on the goodness of fit between adjoining visual elements in the displayed

logo.

Here we adopt the most widely used and well-established 5-point Likert scale for rating, ranging
from 1 to 5, where 5 (rightmost) means the most positive value and 1 (leftmost) means the the most
negative value. Before starting the rating, we explained the meaning of the four concepts to all subjects,
so they could focus more on the measurement of the four concepts defined in our work. All subjects re-
ceived clear instructions about the rating dimensions and tasks. They were also given practice trials to
ensure they had a clear understanding before starting the actual experiment. After rating the current
logo image, the subject clicked on the “Next” button and continued ratings on the next logo image. If
the subject hesitated about the decision made, then he/she could click on the “Previous” button, and
the page redisplayed the previous logo image and the subject could redo the ratings. The rating survey
terminated when all 60 logo images had been rated. After rating all subjects were asked whether they
understood the meaning of each concept to check if they had any further comments or questions. None
of the 60 subjects had any trouble in providing their evaluation scores, which ensures that there is no
random answer or uniformly neutral rating.
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Fig. 10. Distribution of mean ratings across 60 logos on balance, contrast, harmony, and aesthetics. Each central blue rectangle
spanned from the first to third quartile indicates the likely range of variation, the red segment inside the rectangle shows the
median, and the “whiskers” above and below the rectangle show the minimum and maximum.

7.2 Statistical Analysis of Human Ratings

We show the mean (denoted as μ) and standard deviation (denoted as σ ) of ratings across all subjects
for each logo on balance, contrast, harmony, and aesthetics in Table VI. The standard deviations in
Table VI show that the rating variances across all subjects are quite small (most of them are less than
0.7). The highly reliable and consistent ratings across all subjects for the 60 logos demonstrates that
they all understood the tasks, so they gave their ratings reliably rather than randomly.

We also show the distribution of mean ratings across 60 logos on balance, contrast, harmony, and
aesthetics in Figure 10 by using boxplot, which is a standardized way of displaying the distribution
of data based on the five number summaries: minimum, first quartile, median, third quartile, and
maximum. Each central blue rectangle spans from the first to third quartile (the IQR). A segment (red
line) inside the rectangle shows the median, and the “whiskers” above and below the rectangle show the
minimum and maximum. The figure displays the full range of variation (from minimum to maximum),
the likely range of variation (the IQR), and a typical value (the median). The mean ratings of 60 logos
are used as the manually evaluated scores for regression modeling of balance, contrast, harmony, and
aesthetics in Section 8.

8. REGRESSION MODELING

In this section, we use a machine-learning-based linear regression model to analyze the relation-
ship between manually judged balance, hard-soft contrast, harmony, and various feature variables
extracted from geometric properties of logo images in the previous sections. We also analyze the rela-
tionship between manually judged aesthetics and balance, hard-soft contrast, and harmony evaluated
by our regression models. Here we adopt statistical analysis software SPSS [Bryman and Cramer
2011] to perform the regression on balance, hard-soft contrast, harmony, and aesthetics, because it
offers a full package of statistics used in regression analysis. Regression analysis allows us to assess
the validity of our regression models in terms of goodness of fit, check statistical significance by F-test
of the overall fit, and use t-test to select predictor variables that are significant.

To simplify comparison of the relative importance of each variable, we normalize each variable by
feature scaling. Then, for each dimension of balance, hard-soft contrast, and harmony, we adopt the
method of Monte Carlo cross-validation [Dubitzky et al. 2007] during the model training. This is an
effective and well-accepted model validation technique in machine learning to avoid overfitting by
determining how well our model generalizes to an independent dataset. The method randomly splits
ACM Transactions on Applied Perception, Vol. 14, No. 3, Article 20, Publication date: June 2017.
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Table I. Statistics of Regression Model for Perceived Balance Cb

R2=.943 Adj.R2=.941 Std.Er=.267 F=470.736 Sig.=.000
Var Reg.Coef Std.Er Std.Coef t Sig.

S .996 .051 .971 13.908 .000
(Const.) −.155 .042 −3.548 .003

Table II. Statistics of Regression Model for Perceived Hard-Soft Contrast Cc

R2=.935 Adj.R2=.930 Std.Er=.257 F=226.206 Sig.=.000
Var Reg.Coef Std.Er Std.Coef t Sig.

Cout .299 .038 .451 7.914 .000
Cin .527 .047 .648 10.862 .000

(Const.) .388 .098 3.968 .000

Table III. Statistics of Regression Model for Perceived Harmony Ch

R2=.866 Adj.R2=.863 Std.Er=.301 F=176.968 Sig.=.000
Var Reg.Coef Std.Er Std.Coef t Sig.

Fit .824 .055 .945 14.266 .000
(Const.) .437 .148 2.872 .006

the dataset into the training set and testing set (each set contains 30 logo images). For each split, the
model is fit to the training set and validated using the testing set. We repeat this process for eight runs
for each dimension, and the results are then averaged over eight splits to get the final regression model
of each dimension, as shown in Tables I (Section 8.1), II (Section 8.2), and III (Section 8.3), respectively.
Next, we take these three models as predictors to obtain the regression model of aesthetics based on the
method proposed in Reinecke et al. [2013], and Table IV (Section 8.4) shows statistics of our regression
model for perceived aesthetics of logos. The statistical meanings associated with Tables I– IV are briefly
explained in Section 8.5.

8.1 Computer-Evaluated Balance

The statistics of the regression model for perceived balance is shown in Table I. S is the square root of
the absolute area covered by D (obtained with Equation (1)) and the horizontal axis. Table I indicates
that our model is able to explain 94.1% of the variance in human-perceived balance and is statistically
significant (Sig. = .000). S makes a significant contribution to our model, since its associated p-value
is less than 0.05. These show that the weight difference curve D calculated in Section 4 can properly
describes the distribution of left-right visual weight in logos and S can efficiently describe the degree
of perceived balance. Our equation of regression model for perceived balance is

Cb = −.155 + .996 · S. (9)

8.2 Computer-Evaluated Hard-Soft Contrast

The statistics of regression model for perceived contrast is shown in Table II. Cout and Cin describe the
strength of the hard-soft contrast for the exterior and interior boundaries in logos with Equations (7)
and (8), respectively. Table II indicates that our model is able to explain 93% of the variance in human-
perceived hard-soft contrast and is statistically significant (Sig. = .000). Cout and Cin make significant
contributions to our model, since their associated p-values are less than 0.05. The coefficients of Cout
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Table IV. Statistics of Regression Model for Perceived Aesthetics Ca

R2=.985 Adj.R2=.983 Std.Er=.321 F=998.256 Sig.=.000
Var Reg.Coef Std.Er Std.Coef t Sig.

Ch .771 .045 .788 16.102 .000
Cc .172 .055 .146 5.807 .000
Cb .086 .046 .073 2.903 .000

and Cin (Reg.Coef column) indicate that Cin contributes slightly more than Cout in the human-perceived
hard-soft contrast of logos. Our equation of regression model for perceived hard-soft contrast is

Cc = .388 + .299 · Cout + .527 · Cin. (10)

8.3 Computer-Evaluated Harmony

The statistics of regression model for perceived harmony is shown in Table III, and Fit measures the
average goodness of fit between all adjoining visual elements in logos. The model is able to explain
86.3% of the variance in human-perceived harmony and is statistically significant (Sig. = .000). Fit
makes a significant contribution to our model, since its associated p-value is less than 0.05. These
show that the normal tracking distance calculated in Section 6 can properly describe the goodness of
fit between all adjoining elements of a logo and Fit can efficiently describes the degree of perceived
harmony. Our equation of regression model for perceived harmony is

Ch = .437 + .824 · Fit. (11)

8.4 Computer-Evaluated Aesthetics of Logos

We also build a regression model for human-perceived aesthetics of logos by taking Cb, Cc, and Ch as
predictor variables, and the overall statistics of the regression model is shown in Table IV. The model
measured by Ch, Cc, and Cb is able to explain 98.3% of the variance in human-perceived aesthetics
of logos and is statistically significant (Sig. = .000). Here Ch, Cc, and Cb all make significant positive
effects on our model, since their associated p-values are less than 0.05. The coefficients of Ch, Cc, and
Cb (Reg.Coef column) indicate that the harmony Ch plays a more important role than the hard-soft
contrast Cc and balance Cb in predicting the human-perceived aesthetics of logos. Our equation of
regression model for perceived aesthetics is

Ca = .771 · Ch + .172 · Cc + .086 · Cb. (12)

8.5 Regression Statistics

The statistics of overall model fit are given on the first row of Tables I–IV.
� The coefficient of determination, R2, is the proportion of variance in the dependent variable that

can be explained by the independent variables. Statistically, any regressor with R2 larger than 0.8
is regarded as strong and less than 0.5 as weak.

� The adjusted R2 (Adj.R2) is an adjustment of R2 that penalizes the addition of extraneous predictors
to the model.

� Standard Error (Std.Er) of the estimate is the average distance between observed values and re-
gression line. The smaller the value is, the more accurate the predictions are.

� F and Sig. are, respectively, the F-statistic and associated p-value. F is the mean square of regres-
sion divided by the mean square of residual, and Sig. indicates the statistical significance of the
regression model. If the p-value is less than or equal to 0.05, then the regression model statistically
significantly predicts the outcome variable.
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Fig. 11. Ranking scores of 60 logos evaluated by subjects (in blue) and regression models (in red) in the image dataset.

The remaining rows in Tables I– IV are parameter estimates.
� The Var column shows predictor variables (where Const. stands for Constant).
� Regression Coefficients (Reg.Coef) are the coefficients for the regression equation.
� Standard Error (Std.Er) are the standard errors associated with the coefficients. The smaller the

values are, the more accurate the model estimates the coefficients.
� Standard Coefficients (Std.Coef) are the coefficients obtained after standardizing all of the vari-

ables in the regression, including all of the dependent and independent variables, and running the
regression.

� t and Sig. are, respectively, the T-statistics and their associated two-tailed p-values used for testing
whether each coefficient significantly differs from zero at the level of 0.05.

9. ANALYSIS OF OUR REGRESSION MODELS

9.1 Comparison between Computer and Human Evaluations

We have obtained regression models of balance, hard-soft contrast, harmony, and aesthetics of logos
in Section 8. Figure 11 shows the average ranking scores of 60 logos evaluated across all subjects in
Section 7 (blue lines) and ranking scores evaluated by regression models (red lines).

To evaluate the prediction performances of our regression models, we show in Table V the average
Pearson correlation coefficient and associated two-tailed Significance (denoted as Average RP /Sig.) and
average mean squared error (denoted as Average MSE) between model-evaluated scores using Cb, Cc,
Ch, and Ca in Section 8 and manually evaluated scores of each dimension in Section 7 over 8 runs
for both training and testing sets to evaluate the average prediction performances of our regression
models for different training and testing sets. We also show the standard deviation (denoted as SD) of
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Table V. Statistics of Performances Associated with Different Models
over Eight Runs, Where S1 is the Training Set and S2 Is the Testing Set

Cb Cc Ch Ca

Average RP /Sig. (S1) .978/.000 .947/.000 .883/.000 .861/.000
Average RP /Sig. (S2) .964/.000 .924/.000 .878/.000 .851/.000
SD of RP /Sig. (S1) .011/.000 .023/.000 .014/.000 .016/.000
SD of RP /Sig. (S2) .012/.000 .020/.000 .015/.000 .010/.000
Average MSE (S1) .054 .074 .095 .110
Average MSE (S2) .076 .088 .105 .123

SD of MSE (S1) .011 .014 .016 .012
SD of MSE (S2) .012 .009 .010 .007

Fig. 12. Performance of training (in blue) and testing set (in red) with (a) high average RP correlation coefficient (above 0.85)
and (b) low average MSE (below 0.15) over regression models of balance, hard-soft contrast, harmony, and aesthetics for eight
runs.

RP /Sig. and MSE over 8 runs for both training and testing sets to evaluate the variation of prediction
performances in Table V. The table clearly shows that our regression models yield a highly significant
correlation between manually and computer-evaluated results with high accuracy, since the average
RP are high and associated average Sig. are less than 0.05 with low average MSE, besides the low SD
of RP /Sig. and MSE indicate that the variation of prediction performances is small over eight runs.
Our regression models have high prediction performances and the explanatory variables in regression
models have high predictive power in computational aesthetic evaluation of logos.

Additionally we perform analysis of variance (ANOVA) and the F/p between model-evaluated scores
and manually evaluated scores of 60 logos on balance, hard-soft contrast, harmony, and aesthetics are
.019/.891, .231/.633, .349/.557, and .753/.393, respectively. The p value is larger than 0.05 for each
model, which indicates that there is no statistically significant difference between model-evaluated
scores and manually evaluated scores.

9.2 RP and MSE over Regression Models for Eight Runs

Figure 12 shows the average RP and average MSE over regression models of balance, hard-soft con-
trast, harmony, and aesthetics for eight runs, where blue lines represent the training set and red lines
the testing set. We can observe that the regression models have high performances with high average
RP and low average MSE for both training and testing sets.
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Fig. 13. Examples of logos and associated scores evaluated in opposite positions by subjects (in front of the slash) and regression
models (at the back of the slash) of all predicted attributes. The logos on the top row in each blue box are scored very high and
those on the bottom row are scored very low.

9.3 Examples of Logos Associated with Scores Evaluated in Opposite Positions

Further, we show some examples of logos associated with scores evaluated in opposite positions for
each predicted attribute by subjects and regression models of balance, hard-soft contrast, harmony,
and aesthetics, respectively, in Figure 13. The evaluated scores of logos on the top row are very high
and those on the bottom row are very low. The figure indicates that our regression models can describe
each predicted attribute of logos in accord with human perception.

10. CONCLUSIONS AND FUTURE WORK

Building a connection between human perception of design principles revealed in logos and compu-
tational visual features extracted from logos is a challenging multidisciplinary problem. Our work
explores the relationship between human aesthetic perception and design principles. Experimental re-
sults show that our model predicted balance, hard-soft contrast, harmony, and aesthetics have highly
significant correlation with human evaluations on the same dimensions. To develop efficient feature
metrics is a crucial part for evaluating each design principle. Although features extracted here are low
level, all of them implicitly describe corresponding definition of each design principle revealed in logos.
Our work provides a machine-learning-based reference scheme for quantitative aesthetic evaluation of
graphic design patterns. Although our work is not meant to provide a full solution, it is a step forward
in this new and interesting research direction.
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The methods described in this article have several limitations.
� Currently, we do not consider the color factor, while color is certainly important in aesthetic evalu-

ation of logo images.
� The logos selected in our study are representatives of name-brand companies, professionally de-

signed with possibly high levels of balance, harmony, and aesthetics. Our trained models, therefore,
could potentially be generalized to the professional design logos. But they may not work very well
with poorly or randomly designed logos.

� Figurative logos, those with representational objects, are not included in our logo image set, since
they contain an emotion factor that could potentially affects human aesthetic perception.

In our future research, we will include the color factor in our aesthetic evaluation of logo images and
include casually designed logos for training in our models. We will also explore high-level semantic
features and extract emotion-related information in the aesthetic evaluation of figurative object-based
logo images. Moreover, we will use our work to guide and verify rule-based automatic generation of
logo designs [Li et al. 2014].

APPENDIX

A. STATISTICS OF HUMAN RATINGS ACROSS 60 LOGOS

The mean (denoted as μ) and standard deviation (denoted as σ ) of ratings across all subjects of each
logo on balance, contrast, harmony, and aesthetics are shown in Table VI.

Table VI. Statistics of Human Ratings on Balance, Contrast, Harmony, and
Aesthetics across 60 Logos

Logo number Balance (μ/σ ) Contrast (μ/σ ) Harmony (μ/σ ) Aesthetics (μ/σ )
1 5.00/0.00 1.36/0.49 4.30 /0.47 3.53 /0.63
2 4.56/0.50 4.50/0.57 3.50/0.51 4.13/0.57
3 5.00/0.00 4.20/0.76 4.50/0.57 4.60/0.49
4 4.97/0.18 1.20/0.41 4.40/0.62 3.30/0.75
5 5.00/0.00 2.73/0.45 3.96/0.61 3.96/0.72
6 5.00/0.00 3.97/0.41 4.73/0.45 4.77/0.43
7 2.40/0.49 4.50/0.51 3.90/0.76 4.17/0.79
8 5.00/0.00 2.50/0.51 1.86/0.35 2.10/0.66
9 3.63/0.49 2.30/0.46 2.73/0.58 2.76/0.63
10 5.00/0.00 4.66/0.48 4.70/0.47 4.80/0.41
11 4.97/0.18 2.47/0.63 4.90/0.31 4.70/0.46
12 5.00/0.00 3.20/0.41 2.40/0.56 2.63/0.76
13 3.33/0.61 2.37/0.49 2.30/0.46 2.37/0.61
14 3.00/0.37 3.87/0.73 2.23/0.50 2.73/0.78
15 5.00/0.00 2.93/0.25 3.53/0.51 3.47/0.82
16 3.40/0.50 2.60/0.50 2.46/0.57 2.53/0.68
17 5.00/0.00 2.77/0.68 3.43/0.68 4.17/0.75
18 5.00/0.00 1.57/0.68 4.00/0.37 3.27/0.64
19 4.03/0.67 2.37/0.49 2.17/0.53 2.37/0.61
20 5.00/0.67 3.03/0.18 1.50/0.57 1.80/0.55
21 4.03/0.61 3.23/0.57 3.63/0.72 3.63/0.49
22 5.00/0.00 1.27/0.45 4.07/0.64 3.37/0.61
23 5.00/0.00 3.20/0.66 3.60/0.77 3.67/0.48

(Continued)
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Table VI. Continued
Logo number Balance (μ/σ ) Contrast (μ/σ ) Harmony (μ/σ ) Aesthetics (μ/σ )

24 5.00/0.00 1.57/0.57 4.87/0.34 4.40/0.56
25 4.60/0.50 3.53/0.63 3.17/0.59 4.07/0.64
26 4.93/0.36 2.97/0.18 3.77/0.43 3.27/0.83
27 2.80/0.55 1.47/0.51 2.46/0.51 2.10/0.66
28 5.00/0.00 3.37/0.49 3.37/0.49 3.13/0.73
29 5.00/0.00 2.60/0.50 3.13/0.63 3.40/0.85
30 4.57/0.50 2.90/0.40 4.77/0.43 4.67/0.48
31 5.00/0.00 2.80/0.55 2.46/0.63 2.53/0.51
32 4.36/0.49 4.40/0.62 4.33/0.48 4.80/0.41
33 2.90/0.48 4.70/0.54 3.93/0.25 4.17/0.70
34 3.23/0.63 4.23/0.50 2.30/0.60 2.67/0.61
35 1.90/0.31 1.80/0.66 4.87/0.34 3.83/0.38
36 1.73/0.64 2.80/0.41 2.90/0.76 2.77/0.43
37 2.00/0.64 3.40/0.77 4.83/0.38 3.63/0.57
38 3.20/0.61 3.20/0.41 3.90/0.31 4.00/0.45
39 1.43/0.57 2.20/0.48 2.60/0.72 1.83/0.59
40 5.00/0.00 1.80/0.81 4.77/0.43 4.37/0.49
41 2.13/0.78 2.87/0.68 1.83/0.38 2.07/0.64
42 3.77/0.50 3.33/0.88 4.87/0.35 4.70/0.46
43 2.10/0.48 3.93/0.58 1.27/0.45 2.26/0.69
44 3.47/0.73 2.40/0.62 3.07/0.87 3.27/0.74
45 3.37/0.55 2.67/0.61 2.73/0.74 3.00/0.83
46 4.90/0.55 1.33/0.48 4.00/0.18 3.23/0.90
47 4.93/0.36 2.73/0.58 4.50/0.51 4.63/0.49
48 4.33/0.96 3.43/0.68 2.73/0.69 3.20/0.66
49 4.90/0.55 2.97/0.76 4.10/0.66 4.67/0.55
50 3.37/0.49 3.47/0.63 4.43/0.68 4.43/0.50
51 3.73/0.45 3.93/0.45 4.50/0.63 4.10/0.66
52 1.27/0.45 1.70/0.70 1.50/0.51 1.26/0.45
53 4.60/0.50 1.40/0.63 2.90/0.76 2.70/0.75
54 5.00/0.00 2.83/0.65 3.97/0.18 3.60/0.50
55 2.87/0.51 2.77/1.07 4.43/0.57 4.03/0.72
56 4.83/0.38 4.13/0.51 4.87/0.35 4.67/0.48
57 4.03/0.41 4.53/0.63 4.03/0.89 3.90/0.71
58 4.73/0.45 3.83/0.59 3.87/0.68 4.07/0.69
59 4.50/0.51 3.60/0.62 3.53/0.78 4.33/0.55
60 3.67/0.48 4.83/0.47 3.93/0.25 3.90/0.55
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