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Abstract—Moving sand pictures are interesting devices that can be used to generate an infinite number of unique scenes when

repeatedly being flipped over. However, little work has been done on attempting to simulate the process of picture formulation. In this

paper, we present an approach capable of generating images in the style of moving sand pictures. Our system defines moving sand

pictures in a few steps, such as initialization, segmentation and physical simulation, so that a variety of moving sand pictures including

mountain ridges, desert, clouds and even regular patterns can be generated by either automatic or semi-automatic via interaction

during initialization and segmentation. Potential applications of our approach range from advertisements, posters, post cards,

packaging, to digital arts.

Index Terms—Moving sand picture, tessellation, segmentation, color arrangement, physical simulation

Ç

1 INTRODUCTION

MOVING sand pictures are made by filling several kinds
of silicon carbides (sand grains) with specific weights

and colors, and a small amount of water between the two
pieces of glass. Although the moving sand picture device is
simple, when flipped over repeatedly, it can be used to gen-
erate an unlimited number of beautiful images of moun-
tains, rivers, and deserts, etc, as shown by two examples in
Figs. 1a and 1b.

Real life moving sand pictures are attractive due to their
interactive and visual appealing. However, the random
properties involved in the interactions between sand grains
and air bubbles formed by the water inside the devices
make the resulting pictures unpredictable, as shown in
Figs. 1c and 1d. One usually has to flip over the device
many times to obtain a beautiful picture. Computer simula-
tion of moving sand pictures could, however, support vari-
ous controls over the generated results and offer almost
unlimited room for creativity and imagination. For example,
one could easily change sand colors and/or granularities,
insert virtual obstacles, and possibly extend to three dimen-
sions. Research in this direction could potentially generate a
new type of visual communication media for a wide range

of applications in design industry, such as card, desktop,
packaging and textile pattern design.

In this study, we develop an approach that is able to gen-
erate moving sand pictures, ranging from mountain ridges,
clouds, desert, to regular patterns. The main contributions
of this study include: (1). Two means (halftoning and rect-
angle tessellation) to initialize the upper part of the drawing
window; (2). Tools for users to effectively control the result-
ing pictures to suit various application needs; (3). Acceler-
ated simulation with three layers of sand grains (dynamic,
static and fixed layers).

2 RELATED WORK

Moving sand pictures are different from traditional arts
because no strokes are involved in making pictures, the
result of a moving sand picture is very much like non-
photorealistic rendering, while its forming process is purely
physical as a result of sand-bubble-liquid interaction. It is
these similarities that inspired the proposed methodology,
that contains both physical simulation of sand collision and
falling, and artistic control over the layout and texture of
sand pile shapes.

In this section we just review some works upon that our
work draws, and omit the work fallen in non-photorealistic
rendering where the traditional media simulation is the
main concern, notably the choices of stroke placement and
the mixing of paint. In addition, moving sand pictures show
surprisingly complex behaviors since they involve compli-
cated interactions among sand grains, water and bubbles
which are hard to simulate accurately by physical means.

A related work, which is relatively simpler than moving
sand picture simulation, granular simulation has been stud-
ied extensively in geophysics and physics to engineering
analysis and computer graphics. In the following we mainly
comment on the most representative works from these com-
munities. Existing works related to the granular materials
can largely be divided as the following.
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For visual applications, continuum methods which simu-
late granular materials as fluid can give fairly convincing
results. The Smoothed Particle Hydrodynamics (SPH)
method was proposed originally to model fluid dynamics
in astrophysics [1]. Zhu and Bridson [2] modeled granular
materials as incompressible fluid with the fluid-implicit-
particle algorithm, and their approach relied on identifying
rigidly moving regions of material to obtain stable piles.
Lenaerts and Dutr�e [3] unified SPH framework where fluids
and granular materials are two-way coupled. Improving
the method of [2], Narain et al. [4] developed a new fluid
solver combining the strengths of both particles and grids
with enhanced flexibility and efficiency. In addition, Wilkin-
son and Willemsen [5] developed the Invasion Percolation
(IP) method to model complex fluids. Hawick and Ken [6]
adapted the IP model to experiment with flow of immiscible
fluids in model reservoir systems. A versatile and robust
SPH simulation approach for multiple-fluid flow was pro-
posed [7], and later extended to cover solid phases, includ-
ing deformable bodies and granular materials [8].

Natural methods have also been proposed for animating
granular materials that directly simulate the interactions
between individual grains. Luciani et al. [9] developed a
particle system model for granular materials using damped
nonlinear springs. An efficient discrete element method
(DEM) was proposed to capture granular phenomena in
[10], and Bell et al. [11] exhibited a two-way coupling
between granular materials and rigid bodies by using DEM.
Aldu�an et al. [12] used an adaptive resolution version of the
method [11] to improve performance. Furthermore, DEM
and smoothed particle hydrodynamics were utilized to sim-
ulate the intersection of fluids and granular materials [13].
Recently, Macklin et al. [14] presented a unified dynamics
framework for real-time visual effects that can be applied
by casting granular interactions as hard constraints.

Combining aspects of particle-based and grid-based
methods, Sulsky et al. [15] developed the Material Point
Method that uses two representations of the continuum,
one based on a collection of material points and the other on
a computational grid. It has been used in modeling granular
materials, such as snow [16] and sand [17]. Recently,
Gergely et al. [18] used the material point method to

discretize the governing equations for its natural treatment
of contact, topological change and history dependent consti-
tutive relations. Built upon this method, Gilles et al. [19]
derived a compact model for the rheology of the material.

Other works in granular materials focus on improving
computational efficiency. Granular materials were modeled
using height fields in [20] and [21]. Sumner et al. [22] took a
similar height fields approach with simple displacement and
erosion rules to model footprints, track, etc. Pla et al. [23]
applied cellular automata to model granular terrains interac-
tively. In thework by Bouchaud et al. [24] two populations of
grains, immobile and rolling, are recognized so that only roll-
ing grains need to be calculated. The model proposed by
Bouchaud et al. [24] was later used for improving the effi-
ciency of the granular materials [25], [26] and [27].

In contrast to granular simulation, only a few attempts
have been made on moving sand picture simulation. The
first attempt was by Pearce et al. [28] who constructed a lat-
tice-based simulation of a sand picture based around the
Kawasaki spin-exchange model [29] and IP model [6] with
empirical couplings between cells. The generated pictures
however visually differ greatly from those in Fig. 1. In this
study, we develop an approach for generating moving sand
pictures, which are visually similar to those in Fig. 1, and
also aesthetically pleasing.

3 APPROACH OVERVIEW

The overall architecture of our system is presented in Fig. 2.
First, at the initialization stage, we arrange sand grains with
different attributes, such as weight, size, and color in the
working window. We offer users two options at this stage.
One is to take a moving sand picture or a photograph as
input (Fig. 2c) and then apply halftoning on the input image
(Fig. 2d). The other is to tessellate the entire region with
small rectangles (called cells) of varying sizes (Fig. 2a) and
fill the cells with sand grains of different colors (Fig. 2b).
Users may further edit colors in the cells for personal
preferences.

Next, at the segmentation stage, we segment the entire
region using ellipses of varying sizes. Fig. 2e shows the
result of segmenting the image in Fig. 2d. Adoption of ellip-
ses aims at simulating holes where sand grains fall through,
and the ellipses eventually correspond to mountains in the
resulting pictures. Thus, in order to offer more control over
the composition of mountains, users may optionally input a
sketch (red lines in Fig. 2f) to guide the placement of ellipses
(black lines in Fig. 2f) for the desired composition.

Finally, at the physical simulation stage, we set the fall-
ing order of sand grains in each segmented cell in Fig. 2e. In
each cell, our approach sorts sand grains in a fixed order of
falling (Fig. 2h) and calculates each sand grain by Physx
library [30](Fig. 2g). We use a three-layer model to speed up
the simulation process (Fig. 2i). When all sand grains fall
down the final moving sand picture (Fig. 2j) is obtained.

4 INITIALIZATION OF SAND GRAINS

Since the gap between the enclosing glass plates in the mov-
ing sand picture device is usually small, it is sufficient for
us to simulate moving sand pictures on a two dimensional
space [28]. The first step of simulation is to arrange sand

Fig. 1. Real life moving sand pictures: Satisfactory results (a) and (b),
and unsatisfactory results (c) and (d).
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grains of different attributes such as weight, size and color
in the so-called initialization region over the upper part of
the simulation window. This section describes the working
window, the initialization region in the window, and attrib-
utes of sand grains (Section 4.1). We offer two initialization
strategies, i.e., halftoning (Sections 4.2) and tessellation
(Section 4.3), and then describe how to fill the colored sand
grains in the tessellated region (Section 4.4).

4.1 Working Window and Attributes of Sand Grains

We set the size of the working window at 1000�700 pixels,
which is enough to produce aesthetically pleasing moving
sand pictures. The initialization region is a sub-window in
the upper part of the working window, thus of the same
width as the working window, but varying height, subject
to the user’s aesthetic preference. The default height of the
initialization window is set at 350 pixels.

To simulate sand grains of different weights in moving
sand pictures, we employ four classes of sand grains, as sug-
gested in [31], and denote them by S1, S2, S3, and S4, respec-
tively. Inspired by [31] and [32], we assign the following
densities, 3:2 g=cm3, 3:2 g=cm3, 2:7 g=cm3, and 2:7 g=cm3, and
diameters, 0:2 mm, 0:2 mm, 0:1 mm, and 0:1 mm to S1�4 to
model the sand grains as small spheres. The number of sand
grains corresponding to S1�4 is set at 3=8, 3=8, 1=8, and 1=8 of
the total sand grains, as suggested in [31]. The colors of sand
grains corresponding to S1�4, denoted by C1�4, can be speci-
fied by the user.

4.2 Initialization by Halftoning

One strategy of initialization is to take a moving sand pic-
ture or a photograph with the same size of the initialization
region as input. Since pixel values in the input image are
usually much larger than the 4 color options used in our
system, we first convert the input image (Fig. 3a) into gray
scale one (Fig. 3b), and then perform halftoning on the gray
scale image to obtain an image with pixel values of four
classes (Fig. 3c), and assign corresponding attributes, such
as weights, sizes, and colors, to the halftone image (Fig. 3c),
finally obtain color halftone image as in Fig. 3d.

Halftoning has been an active research area for many
years, and thus several halfoning algorithms are available,
such as Floyd-Steinberg error diffusion [33], ordered dither-
ing [34], and Knuth’s dot-diffusion [35], etc. We employ the
Floyd-Steinberg error diffusion algorithm that achieves dith-
ering using error diffusion. The algorithm pushes the resid-
ual quantization error of a pixel onto its neighboring pixels,
to be handled later. Specifically, it spreads the residual quan-
tization errors out using the following distributionmask

0 P 7
16

3
16

5
16

1
16

 !
;

where P represents the pixel currently being scanned, and
the numbers represent the portion of the error that is dis-
tributed to the pixel in the specified position. The algorithm
scans the image top down and left to right, quantizing pixel
values one by one. When the quantization error is trans-
ferred to the neighboring pixels, the pixels that have already
been quantized are not affected. For more details on the
Floyd-Steinberg algorithm, please refer to [33].

When the moving sand pictures are not available, our
approach offers an alternative solution to initialize sand
grains. Unlike initializing sand grains by halftoning on an
input image, where the distribution of sand grains is pro-
vided by the input image itself, our new method of sand
grains initialization must solve the following two problems:
(1) tessellating the initialization region with small cells and
(2) filling the cells with sand grains of different attributes. We
propose two simple strategies for tessellating and filling sand
grains to generate scenes similar to those seen in the moving
sand picture device, described in the following two sections.

Fig. 3. Initialization by halftoning. (a) Input an image. (b) Convert the
input image into gray scale. (c) Halftoning the gray scale image. (d) Col-
ored halftoning image.

Fig. 2. Overview of our system. (a) Tessellation of initialization region. (b) Filling tessellation cells with sand grains. (c) Input the moving sand image.
(d) Halftoning. (e) Segmentation of initialization region. (f) Input the sketch (optional). (g) Simulation of sand grains falling and piling. (h) Determina-
tion of sand grains falling order. (i) Three layer model. (j) Result.
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4.3 Tessellation of Initialization Region

The first issue associated with tessellation is the choice of
cell shapes. Tessellating the initialization region with cells
of irregular shapes is extremely difficult because it requires
that the user manually draws a picture at the quality of
actual moving sand pictures. Because the initialization
region is a large rectangle occupying the upper part of the
working window, it is natural to choose small rectangles as
tessellation cells, as shown by the black lines in Fig. 4a. After
all cells are filled with different kinds of sand grains (sand
grains filling strategy will be described in Section 4.4), sand
grains from the cells fall downward to form a scene which
looks like mountain ranges (the sand grains falling proce-
dure will be described in Sections 6 and 7), as shown in
Fig. 4b. However, the ranges appear unnatural and even
mechanical.

Since sand grains fall down cell by cell in our approach,
sand grains falling from their corresponding cell pile up at
the bottom part of the working window to form a sandpile.
Obviously, the larger the cell is, the larger the correspond-
ing sandpile. It can then be expected that more natural
mountain ranges could be obtained with varied sizes of
rectangular cells in the tessellation region. For instance,
because distant mountains may appear lower than the
mountains nearby, we tessellate the initialization region
using rectangles with heights that increase progressively
from the top to the bottom. On each row, widths vary ran-
domly, as illustrated by the black lines in Fig. 5a. The corre-
sponding generated result is given in Fig. 5b, where
mountain sizes change more naturally.

4.4 Filling Tessellation Cells with Sand Grains of
Different Colors

After the initialization region is tessellated, all tessellation
cells must be filled with the four classes of sand grains,
S1�4, rendered with the corresponding four colors C1�4.
Fig. 1 shows that in the moving sand picture device the four
classes of sand grains are distributed in such a complex way
that different patterns and shapes can be formed. Thus, sim-
ply filling all rectangular cells with uniformly mixed S1�4

sand grains is not a good idea, because the resulting scene
may be generated without visible patterns. Therefore, it is
necessary to fill tessellation cells with mixed sand grains,
S1�4, yet with notably dominant colors, from cell to cell so
that visible patterns can be generated after sand grains
move down from the cells.

We propose the following strategy to fill S1�4 in tessella-
tion cells. A cell is filled in such a way that it appears to have
one color dominant over other three colors, and the ratio
between sand grains with dominant color and sand grains of
the other three colors is set empirically to 0.8:0.2 in one cell.

The four classes of sand grains S1�4 are set to 3
8,

3
8,

1
8, and

1
8 of

the total amount of sand grains, respectively (Section 4.1).
The algorithm that determines the color of a tessellation cell’s
sand grains is given in the following pseudo code:

Algorithm 1. Fill Tessellation Cells

1: for each cell in the tessellation region do
2: Select Sm 2 S1�4 with probabilities 3

8,
3
8,

1
8,

1
8;

3: Choose Cm as the dominant color;
4: Select Sn 2 {S1�4

Sm with probabilities 1
3,

1
3,

1
3;

5: choose Cn as the non-dominant color;
6: for each sand grain s in the rectangle cell do
7: if a random number R 2 ½0; 1� � 0:8 then
8: Assign swith color Cm;
9: else
10: Assign swith color Cn;
11: end if
12: end for
13: end for

5 SEGMENTATION OF TESSELLATED REGION

In a physical moving sand picture device, the falling process
of sand grains is complex due to interactions among sand
grains, bubbles andwater. Accurate simulation of this process
is almost impossible. Sand grains falling directly from rectan-
gular tessellation cells one by one would be a simple strategy
to simulate the process, and two simulated results shown in
Figs. 4b and 5b are not satisfactory, due to the lack of strip pat-
terns seen in Fig. 1. It is necessary then to re-segment the tes-
sellated region with different geometric primitives so that
strip patterns can be produced overmountain shapes.

5.1 Segmentation with Varying Ellipses

We adopt ellipses to approximate shapes formed by sand
grains falling downward and use them to re-segment the
tessellated region. Most of ellipses are bigger in area than
those of rectangular cells, thus one ellipse may overlap with
several rectangular cells, as shown in Fig. 6a. We take each
ellipse as the unit and let sand grains located in the ellipse
unit fall, sand grains with different dominant colors in the
small tessellation cells covered by an ellipse produce strip
patterns over the mountain shapes formed by over all sand
grains in the ellipse. We continue this procedss until all
ellipses are visited, the resulting picture shown in Fig. 6b
looks similar in style to those in Fig. 1.

When halftoning is used for initialization (Section 4.2),
tessellating the initialization region with varying rectangles
is unnecessary because the distribution of different sand
grains is irregular in the input image. We therefore skip the

Fig. 4. Tessellation of initialization region by uniform rectangles (a) and
corresponding simulation result (b).

Fig. 5. Tessellation of initialization region by rectangles of varying sizes
(a) and corresponding simulation result (b).
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tessellation step and perform segmentation with ellipses
directly on the halftoned input image.

5.2 Sketch Based Segmentation

Our goal is to reproduce moving sand pictures similar to
those in Fig. 6b, and also to generate moving sand pictures
which are aesthetically pleasing. It would be desirable then
to arrange mountains so that they can show mountain
ridges often seen in a natural scene. To this end, we design
a tool in our UI that allows users to draw a sketch as in
Fig. 7a, where long lines suggest mountain ridges, thus are
called as ridge lines, while arc-like curves along the ridge
lines suggest mountain profiles, they also depict how close
mountains are to each other in depth. Next, we detail how
to place ellipses of varying sizes according to the sketch.

Detection of Intersections in the Sketch. Intuitively, an
ellipse should be placed under an arc-like curve crossing
the ridge lines so that a mountain like pattern could be pro-
duced in the scene. It is necessary then to detect the intersec-
tions between ridge lines and arc-like curves first in the
sketch, this can be done with traditional line intersection
detection algorithm, and intersection points detected are
put into CPfP1; P2; . . .Png, where n is the total number of
intersection points detected.

Placement of Ellipses. To place an ellipse under the ith arc-
like curve, we need to determine the center, major andminor
axes of the ellipse. Also, considering that nearby mountains
appear larger than those further away, we should place ellip-
ses such that their sizes decreasing progressively bottom up.

In our implementation, we set the semi-major axis of the
ellipse by ai ¼ 0:5 �Am � aPiðyÞ, where Am is the maximum
major axis estimated by dividing the width of the initialized
region by the number of ridge lines near the bottom of the
sketch, PiðyÞ is the y coordinate of the ith detected intersec-
tion point, i ¼ 1; 2; 3; . . .n, and a is a parameter set at 0.3. We
let the eccentricity of ellipses vary in the range [0.45, 0.65],
with which the semi-minor axis bi for all ellipses to be used
in segmentation can be obtained.

The center ðOiðxÞ; OiðyÞÞ of the ith ellpise placed under
the detected intersection point ðPiðxÞ; PiðyÞÞ can be obtained
by OiðxÞ ¼ PiðxÞ and OiðyÞ ¼ PiðyÞ � bi, as illustrated by the
lower ellipse in Fig. 8.

Sketch-Guided Elliptical Segmentation. With all attributes
obtained for n ellipses, we can place them in the initializa-
tion region for segmentation, as illustrated by two black
ellipses centered at Oi and Oj in Fig. 8. Via experiments we
find that, when the distance between centers of two intersec-
tion points along one ridge line is larger than 1.2 times of the
semi-minor axis of the ellipse to be placed, the sand pile
shapes generated are away from the ridge line in the sketch,
as shown by Figs. 7b and 7d. In order to preserve the ridge
line in the generated sand pile shapes, the long and narrow
ellipses should be inserted on the left and right sides on the
top of the lower ellipse, so that sand grains inside these two
ellipses may produce strip patterns beside the sand pile
shape produced by sand grains in the lower ellipse.

The two inserted ellipses are highlighted in red in Fig. 8,
we determine their centers Q1 and Q2 on the lower ellipse
simply by letting u varying in the predefined ranges, their
orientations are the same as the tangent at Q1 and Q2 on the
lower ellipse, the semi-major axes of two inserted ellipses
are set at 0.6 times of the semi-major axis of the lower
ellipse, and their eccentricities are set in the range [0.96,
0.98]. With the elliptical segmentation modified by inserting
two long and narrow ellipses (red ones in Fig. 7c), the ridge
line in the sketch can be preserved in the generated sand
pile shapes as expected (Fig. 7e).

6 DETERMINATION OF SAND GRAINS FALLING
ORDER

After the tessellated region is segmented by a set of ellipse
cells, we sort the segmentation cells by row order according
to the y-coordinates of their centers and then place the seg-
mentation cells on each row randomly, until all cells in the
row have been visited.

For each cell, we must determine the falling order of sand
grains in the cell. There are many possible orders for

Fig. 6. Segmentation of the tessellated region with varying ellipses (a)
and corresponding simulation result (b).

Fig. 7. Segmentation guided by the sketch. (a) The sketch. (b) Segmen-
tation without long and narrow ellipses. (d) Corresponding simulation
result. (c) Segmentation with long and narrow ellipses. (e) Correspond-
ing simulation result.

Fig. 8. Blue line indicates the mountain ridge, green lines indicate
arc-like curves in the sketch, and red ellipses indicate inserted ellipses.
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thousands of sand grains to fall. We thus observe how sand
grains fall in a physical moving sand picture device and
choose a method that is able to mimic the natural falling
order.

When the moving sand picture device is flipped over, the
air bubbles formed by water rise from the bottom. When ris-
ing up, large air bubbles begin to break into small ones. Due
to the gravity of sand grains above large air bubbles, small
gaps begin to appear between air bubbles, and sand grains
above air bubbles begin to fall through the gaps. An accu-
rate physical simulation of the air bubble’s rising and break-
ing is beyond the scope of this paper. Nevertheless, this
behavior inspires us to propose a simple strategy to set the
order of sand grains falling as follows.

In each segmentation cell that is selected, we first take the
center of the bottom line of the cell as a reference, and then
we sort sand grains in the cell in ascending order of the dis-
tances between each sand grain and this center. For sand
grains with equal distance between their static positions
and the center, they are randomly sorted one by one until
they are all visited. Fig. 10 shows a half circle with a radius
d equal to the distance between a sand grain and the center
of the bottom line of the segmentation cell.

7 SIMULATION OF SAND GRAINS FALLING
AND PILING

Our approach simulates the process of sand-piling physi-
cally. All sand grains fall as solid bodies toward the ground
due to gravity. When a collision between sand grains occurs
while falling, we consider it an elastic collision or inelastic
collision depending on the weights assigned to the sand
grains. We simulate the falling, collision, and piling of sand
grains using Physx [30].

In Physx, all physical objects have at least one material,
which defines the friction and restitution properties used
to resolve a collision with the objects. Friction uses the
Coulomb Friction Model, which involves 2 coefficients, i.e.,
static friction coefficient and dynamic friction coefficient (some-
times called kinetic friction). Friction resists relative lateral
motion of two solid surfaces in contact. These two coeffi-
cients define a relationship between the normal force exerted
by each surface on other surfaces and the amount of friction
force applied to resist lateral motion. Static friction defines
the amount of friction applied between non-moving surfa-
ces. Dynamic friction defines the amount of friction applied
between surfaces that are moving relative to each-other.

The coefficient of restitution of two colliding objects is a
fractional value representing the ratio of speeds after and
before an impact, taken along the line of impact. A coeffi-
cient of restitution of 1 is said to collide elastically, while a
coefficient of restitution < 1 is said to be inelastic.

In our implementation, we set the parameters of dynamic
friction, static friction, and restitution to 0:4; 0:4, and 0.1,
respectively, based on our experiments. Changing the fric-
tion coefficient will affect the final look of generated sand-
pile shapes, as demonstrated in Fig. 9, sandpile shapes vary
progressively from flatter to steeper when values of friction
coefficients increase. Moreover, the size of each grain also
affects the simulation, smaller sand grains may result in flat-
ter sand piles and bigger sand grains may result in steeper
sand piles.

Fig. 10 shows a segmentation cell with a dashed line
ellipse laid on a local coordinate system with the origin in
the middle of the bottom line in the cell. To simulate a small
gap between air bubbles in the moving sand picture device,
we put an outlet in the middle of the bottom line in the cell
(orange line in Fig. 10), and set its width at 15 mm to ensure
that all four classes of sand grains are able to pass through
the outlet. We sort each sand grain in a cell according to the
distance di (i=1,...n, where n is the number of sand grains
contained in a cell) between its static position and the origin
of the coordinate system and, from the minimum to the
maximum values among di, we pick up a sand grain si (red
solid circle in Fig. 10) according to its di, and assign a hori-
zontal velocity vxvx, which starts at si and points to the Y axis
(For those sand grains having the same value in di, we ran-
domly pick up one until they all are picked up). For si to fall
out of the outlet from its static position, vx should satisfy the
following equations:

Dx ¼ vxt
Dy ¼ gt2=2

�
; (1)

where Dx and Dy are coordinates of si in the local coordinate
system, t is time, and g is the acceleration due to gravity.
Using equations in Eq. (1), we can solve vx and find

vx ¼ Dx

ffiffiffiffiffiffiffiffi
g

2Dy

r
: (2)

The vertical velocity vy, pointing downwards, is assigned
to si with vy ¼ gt, where t starts when si begins to move. As
t increases, the sand grain s moves to the outlet along the
trajectory indicated by the blue line in Fig. 10.

8 ACCELERATION OF SIMULATION

In Physx, the simulation of sand grain’s falling, colliding,
and piling up must take all sand grains in the scene into
account. Thus, as more sand grains come into the scene,
the time involved in the simulation calculations increases
dramatically. To reduce the computational cost, the BCRE

Fig. 10. Moving a sand grain from its current position to the outlet in a
segmentation cell.

Fig. 9. Sand pile shapes generated with dynamic friction and static fric-
tion set to 0.1 in (a), 0.4 in (b), and 0.9 in (c). The restitution remains to
be 0.1 in (a), (b) and (c).
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model was proposed in [24]. The model treats the sand pile
as two layers, the dynamic layer and the static layer (described
later on). The visible and rolling part of the sand flow is sim-
ulated using the discrete element method and the invisible
and static layer is represented by a height field.

Because the number of sand grains used in our system is
about 3 � 5 times that used in the BCRE model [27], it may
take more than 2 hours to complete the moving sand picture
simulation even when the two layer BCRE model is used
(see statistics in Table 1 in Section 10). As such, we desire to
reduce the simulation time. In this section, we introduce an
additional layer, the fixed layer, to the BCRE model in order
to accelerate the simulation process:

� dynamic layer: consists of sand grains that can move
and are fully controlled by Physx, as indicated by
the red circles in Fig. 11;

� static layer: consist of sand grains that are almost
immobile due to their speeds and are also fully con-
trolled by Physx, shown by the blue circles in Fig. 11;

� fixed layer: consists of sand grains that are immobile
because they are under the static layer, shown by the
black circles in Fig. 11.

8.1 Classification of Three Layers

In order to classify the piled sand grains into three layers, we
first map the four classes of sand grains S1�4 from the scene,
handled in Physx, to the pixels in the working window. We
then use an arrayHs½j�, (j ¼ 1; . . . ; n ), initialized with zeros,
to record themaximumheight of the static layer, where j cor-
responds to the jth pixel in theworkingwindow, and n is the
width of the window. In our implementation, n is also equal
to the width of the scene handled in Physx.

We devise several simple rules to determine whether a
specific sand grain on the sand pile belongs to the dynamic,
static, or fixed layer. A sand grain is in the dynamic layer
when it is moving in space (falling). When it falls on the
sand pile, it is added to a setCd.

In Physx, the time step is controlled by the parameter
elapsed time. In our implementation we adopt the default set-
ting provided in Physx, 0.016 s, which is adequate for both
simulation and rendering in our application. We realize that
updating all data used in the three layers at every time step
slows down the simulation significantly. Based on our experi-
ments, we take 40 Physx time steps as a simulation cycle, and
update all the data in the three layers a the end of each cycle.

After Cd is filled with sand grains that have fallen on the
sand pile during one simulation cycle, we traverse sand
grains in Cd. For a sand grain si, (i ¼ 1; . . . ;md, where md is
the number of sand grains in Cd), at position ðx; yÞ in Cd

(shown by a lower red solid circle, enlarged in the upper
right of Fig. 11), we first truncate x with bxþ 0:5c to obtain
an index j, and then pick two sand grains, recorded in
Hs½jþ 1�, and Hs½j� 1� (shown by the two blue solid circles
near the lower red solid circle, enlarged in the upper right
of Fig. 11) to calculate an angle defined by uðx; yÞ ¼
0:5 � ðu1 þ u2Þ, where u1 and u2 are calculated by u1 ¼
arctanðHs½jþ 1� � yÞ=ððjþ 1Þ � xÞ and u2 ¼ arctanðy�Hs

½j� 1�Þ=ðx� ðj� 1ÞÞ, respectively, as illustrated by the two
angles shown in Fig. 11. Here uðx; yÞ approximately
describes the slope of the static layer at Hs½j�. By setting a
parameter a to confine uðx; yÞ it is possible to control the
slope defined by Hs½j�. In our implementation we set a at
p=6 by default. Users can however tune it to obtain desired
effects.

If a sand grain s satisfies following two conditions:

� its velocity is below 3� 10�5 m=s
� uðx; yÞ is less than a

it should be in the static layer, and thus moved from Cd

to a set Cs. Furthermore, if the height of si is larger than the
current height Hs½j� of the static layer, i.e, y > Hs½j�, we
updateHs½j�with y.

We use another array Hf ½j�, which is initialized to store
zeros, to record the maximum height of the fixed layer.
Since the fixed layer is below the static layer, we need to first
set a suitable static layer thickness before Hf ½j� is updated.
Through experiments, we find that a thick static layer
would consume consierable time in the Physx simulation
because it would involve a large number of static sand
grains in the computation. A too thin static layer would,
however, cause sand grains from the dynamic layer go
through small gaps too fast. We therefore set the thickness
of the static layer to be 2:0 mm.

For a sand grain si, (i ¼ 1; . . . ;ms, where ms is the num-
ber of sand grains inCs), at position ðx; yÞ inCs, we truncate
x with bxþ 0:5c to obtain an index j and. If the following
two conditions are satisfied:

� Hs½j� �Hf ½j� > 2:0 mm
� y < Hs½j� � 2:0 mm
then the sand grain si is in the fixed layer, and moved

fromCs toCf . We updateHf ½j� to y if y > Hf ½j�.
We repeat the above procedure to update Cd, Cs, Cf ,

Hs½j� and Hf ½j� at the end of each simulation cycle in Physx
until all the sand grains in the initialized region fall down.
The above algorithm is outlined in the pseudo code below
(Algorithm 2).

TABLE 1
Summary of Processing Time with Different Models

and Types of Initialization

#of sand grains Type Initia 3LM BCRE

Fig. 14 3:5� 105 Tessellation 2.373 s 55 m 153 m
Fig. 15 3:5� 105 Halftoning 0.17 s 61 m 169 m
Fig. 16 3:5� 105 Halftoning 0.145 s 40 m 176 m
Fig. 17 4:3� 105 Halftoning &

Tessellation
3.223 s 97 m 271 m

Fig. 18 2:6� 105 Tessellation 2.935 s 47 m 83 m

Fig. 11. A sand pile subdivided into three layers.
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Algorithm 2. Three-Layer Model

1: for all sand grains siðx; yÞ 2 Cd do
2: index j ( bxþ 0:5c;
3: angle u1 ( arctanðHs½jþ 1� � yÞ=ððjþ 1Þ � xÞ;
4: u2 ( arctanðy�Hs½j� 1�Þ=ðx� ðj� 1ÞÞ;
5: slope uðx; yÞ ( 0:5 � ðu1 þ u2Þ;
6: if its velocity vs < 3� 10�5m=s & uðx; yÞ < a then
7: move si fromCd toCs;
8: if y > Hs½j� then
9: updateHs½j� ( y;
10: end if
11: end if
12: end for
13: for all sand grains siðx; yÞ 2 Cs do
14: index j ( bxþ 0:5c;
15: ifHs½j� �Hf ½j� > 2:0mm & y < Hs½j� � 2:0mm then
16: move si fromCs toCf ;
17: if y > Hf ½j� then
18: updateHf ½j� ( y;
19: end if
20: end if
21: end for

8.2 Comparison Between BCRE Model and Our
Three Layer-Model

Once a sand grain s is considered part of the fixed layer, it is
no longer part of the Physx computation. Since most of sand
grains are in the fixed layer while the moving sand picture
is being formed, our three-layer model can reduce the
computational cost significantly. Fig. 12 compares the time
costs against the number of sand grains in the scene using
the BCRE model and our three-layer model, where the run-
time data is recorded using our three-layer model and the
(two-layer) BCRE model respectively when the number of
sand grains increases from 5,000 to 225,000 with the interval
of 20,000.

In the BCRE model, much time is spent on the generation
of the height field and themesh as sand grains enter the scene.
The simulation time increases almost linearly as the number
of sand grains in the scene increases, as shown by the blue
line in Fig. 12. In our three-layer model, the simulation time
also tends to converge to a constant when the number of sand
grains increases, as shown by the red line in Fig. 12. This is
because most of sand grains in the scene is in the fixed layer,

not involved in the Physx computations. We can find the time
cost of BCRE is larger than time cost of three-layer model
when the number of sand grains is more than 45,000. Since
the number of sand grains ranges from 3:5� 105 to 5� 105,
which is much larger than 45,000, introducing the fixed layer
can reduce the simulation time dramatically.

Fig. 13 shows mountain like patterns generated by the
the BCRE model (left) and our three-layer model. The
results show that the two methods achieve very similar sim-
ulation effects.

9 HEURISTIC SETTING RULES

In our approach, sand moving pictures are composed of
sand piles covered by ellipses used for segmentation, thus,
the sizes of ellipses have direct effects on sizes of sand piles
and. Semi-major axes and semi-minor axes of ellipses deter-
mine the shapes of sand piles, specifically, steep sand piles
could be generated by ellipses of smaller eccentricities, and
flat sand piles by ellipses of large eccentricities.

Strip patterns appearing as textures in sand piles are pro-
duced by sand grains inside rectangular cells covered by
ellipses. Hence if more strip patterns are desired in sand
piles, rectangular cells used for tessellation should be
smaller than ellipses used for segmentation. Additionally,
the colors of sand grains inside rectangular cells have effects
on the contrasts of textures inside sand piles.

We could use the above observations as heuristic rules to
in creating desired moving sand pictures. For instance, we
could set large ellipses of smaller eccentricities to generate
mountains and use smaller ellipses of large eccentricities to
generate scenes like sea surfaces and deserts.

Although our approach is originally designed for gener-
ating irregular mountain-like patterns, it is able to generate
interesting regular patterns with intricate details, as shown
in the next section. This is achieved using rectangles with
horizontal sides equaling the width of the initialization win-
dow and vertical sides of varying sizes at the tessellation
stage, and curves of varying widths and heights repetitively
along the horizontal axis at the segmentation stage.

10 RESULTS

This section presents several results of moving sand pic-
tures generated using the aforementioned approach.

Mountain Ranges. Fig. 14 shows a sketch (Fig. 14a), seg-
mentation cells drawn in black lines over the tessellated
cells in (Fig. 14b), with colors of sand grains set to (51,55,56),
(98,102,105), (90,190,120) and (190,198,200), respectively
(RGB). Two screen shots of our working window captured
during the simulation process are shown in Figs. 14c and
14d, and the moving sand picture generated in Fig. 14e).
Some moving sand picture devices enhance the realism by
overlaying a background picture in the upper part of the

Fig. 12. Number of sand grains in the scene versus Time cost in generat-
ing moving sand picture with BCRE model and our three-layer model.

Fig. 13. Sand simulation using the BCREmodel (a) and our approach (b).
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image, rather than leaving it blank after all the sand grains
have fallen to the bottom part. We could also add a back-
ground image, such as that in Fig. 14f, to the generated mov-
ing sand pictures to enhance the realism. The enhanced
result is shown in Fig. 14g.

Mountains in Sunset. Fig. 15 shows a moving sand picture
generated by taking another moving sand picture of size
1000� 350 pixels (Fig. 3a) as input image for initialization.
After halftoning is performed on Fig. 3a, colors of sand
grains in C1�4 are set at ð10; 10; 10Þ; ð63; 63; 63Þ; ð198; 53; 59Þ,
and ð240; 182; 40Þ, respectively. We segment the resulting
image (Fig. 3d) by several ellipse cells (black lines in Fig. 15a)
on the basis of sketch in Fig. 15b. Fig. 15c shows the moving
sand picture generatedwith a sunset image added.

Desert with Camels. Fig. 16 presents a desert-like moving
sand picture generated using halftoning on an input image
of a desert photograph of Fig. 16a, the colors of sand grains
in C1�4 are set to ð26; 12; 10Þ; ð100; 30; 10Þ; ð200; 100; 20Þ, and
ð250; 140; 30Þ. In order to obtain flatten sand piles to depict
desert surfaces, we adopt small segmentation cells as indi-
cated by the black lines in Fig. 16a and place them over the
input photograph in an automatic manner.

Tomake it aesthetically pleasing,we addfigures/objects to
the generated moving sand pictures. In order to offer
additional control over the scene, we propose a simple
method that places a binary mask on the scene, calculates the
bounding box of themask, and then scans the area covered by
the box from top down left to right. We then render sand
grains fallen on the mask using two dark colors within C1�4,
C1 andC2 with a probability of 0.7 and 0.3, respectively.

Mountains & Clouds. Fig. 17 shows an example in which
different kinds of objects can be generated in a single pic-
ture, such as mountains in different distances, and the
clouds between them. This is be achieved by simply

Fig. 14. Mountain ranges. (a) The sketch. (b) Initialization and segmenta-
tion. (c) � (d) Two screen shots captured during the generation process.
(e) Generated mountain ranges. (f) Background picture. (g) Generated
mountain ranges with the background picture added.

Fig. 15. Mountains in sunset. (a) Initialization with a moving sand picture
and segmentation. (b) Sketch. (c) Final moving sand picture with a sun
background picture added.

Fig. 16. Desert with camels. (a) Initialization with a photograph and
segmentation. (b) Generated moving sand picture-desert with camels
and human figures added.
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dividing the initialization region into several areas for
mountains and clouds, and then using large rectangles with
big color variations to initialize the mountain areas and
small rectangles with small color variations to initialize the
cloud areas, and finally segment mountain areas with large
ellipses and cloud areas with small ellipses, as indicated in
Fig. 17a. The resulting moving sand picture with a bright
moon added is shown in Fig. 17b.

Regular Patterns. In addition to images of natural scenes
depicted by previous moving sand pictures, our approach
is also able to generate regular patterns via simple settings
at the tessellation and segmentation stages, as shown in
Fig. 18. At the tessellation stage, we place several horizontal
rectangles of the same width and varied heights one by one
vertically. At the segmentation stage, we first arrange two
neighboring ellipses of different major and minor axis as a
pattern unit and copy the unit along the horizontal axis
(such a row corresponds to a pattern strip in the generated
moving sand picture). Next, we repeat the above procedure
upward to form the second row composed of different
pattern units. This procedure continues until the entire ini-
tialization region is covered. To separate neighboring pat-
terns, thin rectangles could be inserted between them.

During the generation process, each row produces a hori-
zontal patterned strip which is asymmetric. To obtain a sym-
metric pattern, we could simply copy the asymmetric pattern
and flip it vertically, and place flipped asymmetric pattern
over the asymmetric pattern just produced. This can be done
automatically in our system as indicated by Figs. 18b and 18c.

As discussed before, the sizes of ellipses have direct
effects on the patterns of generated moving sand pictures.
A rich variety of patterns could therefore be obtained by
simply changing the sizes of ellipses at the segmentation
stage. The regular patterns generated by our approach may
be hard to make using any existing painting software, thus

could be used widely for textile or decorative patterns on
various products, such as hats, carpets and mugs.

Our simulation system is implemented using Microsoft
Visual C++, NVIDIA Physx and OpenGL, and run on a PC
with 2.60 GHz CPU (Intel (R) Core), 4GB memory and NIV-
DIA GeForce GT 750 M. Table 1 lists the statistics associated
with our simulation model and the BCRE model for the pre-
vious 5 examples, where Type is the type of initialization,
Initial is the time spent in initialization in seconds (s), 3LM
and BCRE are the time spent in our three-layer model in
minutes (min) and BCRE models in hours (h), respectively.
The table shows that introducing the fixed layer in our
model, the simulation time is reduced by 2 to 4 folds com-
pared with the BCRE model.

11 CONCLUSIONS AND FUTURE WORK

This paper has demonstrated how moving sand pictures
could be simulated graphically with parameterization and
control. The modules described in different sections could be
used alone or in a combinational manner. Thus, users could
generate moving sand pictures similar to a moving sand
picture device, and also highly artistic ones. Potential applica-
tions of our approach range from advertisements, posters,
postcards, packaging, to digital arts. As a future work, we
plan to extend the current method to three dimensional, so
that sand sculptures in the style ofmoving sandpictures could
be generated.

ACKNOWLEDGMENTS

This work has been supported by the Natural Science
Foundation of China (61772463 and 61379069), the National
Key R&D Plan of China (2016YFB1001501), and the
Fundamental Research Funds for the Central Universities
(2017XZZX009-03).

Fig. 17. Mountains & clouds. (a) Initialization and segmentation. (b) Final
generated moving sand picture with a moon background picture added.

Fig. 18. Regular patterns. (a) Initialization and segmentation. (b)�(c)
Two screen shots captured during the generation process. (c) Final pat-
terns produced.
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